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Abstract-This paper presents some new explicit expressions for
the impulse responses of the Case 3, Case 4, and differentiating
Hilbert transformers. The proposed closed-form design is based
on the fullband least-squares differentiator and relations between
differentiator and Hilbert transformer. The obtained simple
formulas give an efficient way to determine tap-coefficients of
designed Hilbert transformers even with a hand calculator.
Several numerical examples and comparison with McClellan-
Parks algorithm prove the efficiency of this approach.

I. INTRODUCTION

The Hilbert transformers (HTs) have various applications,
namely in speech and image processing, signal modulation,
radar techniques, seismic signal processing, etc. Among the
most popular approaches for design of HTs are the McClellan-
Parks algorithm [1], eigenfilter method [2], and least-squares
approach [3]. Several interrelations between digital one/half
band filters, low/high order digital differentiators, and
discrete/differentiating HTs are discussed in [4]. Other useful
relationships are also given in [5-7]. New designs of discrete
and differentiating HTs are presented in [8] using their relation
with the Taylor series based differentiators. Some other explicit
expressions for the impulse response of maximally flat FIR
HTs are derived in [9-1 1]. Le Bihan [9], for example, proposes
an efficient algorithm for calculation the coefficients of
maximally flat (for midband frequencies) HTs and
differentiators. As a result, new closed-form explicit and
recursive formulas are derived. A different approach for
maximally flat HTs using Taylor configuration is shown in
[10]. Further, Khan and Okuda [11] proposed new designs of
even and odd length HTs by transforming a design of
differentiators with flat magnitude response. Thus, the obtained
HTs have relatively narrow transition bands compared to the
existing maximally flat designs. The fractional maximally flat
FIR HTs are further designed in [12], together with some
efficient hardware realization structures. An additional
contribution to the problem is given in [13], including a closed-
form design of maximally flat FIR HTs, differentiators and
fractional delayers based on power series expansion. Efficient
implementation structures based on the simple forms of
weighting coefficients are also presented.
An application of the Hopfield-type neural network for
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design of HTs and digital differentiators is shown in [14].
Using the frequency-response masking technique and the
relationship between a halfband filter and a transformer, Lim
and Yu [15] considered a synthesis of new very sharp HTs.
The aim of this work is to derive several explicit formulas

for the tap-coefficients of FIR Hilbert transformers, which will
be obtained through fullband least-squares (LS) differentiator.
As a starting point we use the exact expressions for the impulse
response of a fullband differentiator [16] and interrelations [4].
The problem is stated in Section II. The derivation of the new
relations for Case 3/Case 4 HTs and differentiating HTs is
shown in Section III and Section IV of this work, respectively.
Our examination will finish with some simulation results and
conclusions (Section V).

II. PROBLEM FORMULATION

The ideal frequency response HIjT of a Hilbert transformer
is [2,3]:

where

(1)HT (ej)) = DHT(a)).eiz 2

DHT () {-1: C z< 0< C2

1, -)C2 < )j < -)JC1
and Wcl and WC2 are the lower and upper edge frequencies,
respectively. Either Case 3 or Case 4 antisymmetric FIR
impulse response sequences can be used to approximate the
ideal frequency response (1).
The frequency response ofthis kind of FIR filter is:

H(ejw ) = M(co).ej(z 2 w(N 1)2
where M( ) is real valued, given by:

{(N-1)12
Z b(n) sin nco, N odd (Case 3)

M(0o) = N12
l b(n) sin(n -1 / 2)0, N even (Case 4)
n=l

(2)

(3)

and b(n) can be expressed as a function of the tap-coefficients
[3].
For the design of linear-phase first-order digital

differentiators (DDs), the impulse response d(n) is also
antisymmetric [2,3]. Therefore, we have d(n)=-d(N-1-n)
and d((N -1)/ 2) = 0 (for N odd) and the transfer function is:
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N-1

H(z) = E d(n).z- (4)
n=O

The ideal DD has the following frequency response:

HI' (ejco) D (co).eif , (5)
whereDDD(CO) Co for O.<.<or <z and c denotes the
passband edge frequency of a differentiator.

It is shown [16], that for first-order fullband DD (N even,
c=z) designed by LS method the following compact relation
for the coefficients b(n) from (3) could be derived:

8.( n+1 <N<b(n) = .(2n ) < n <2
For clarity, we introduce below an integer t instead of n.

Using the fact that:

b(t)=2dN-t) 1<t N

we can write the expressions for the impulse response of the
fullband LS DD (obtained as a result of the method [16]) as:

N t) N 4.( 1)t, 1<t< N (6)
2 2 zz.(2t 1) 2

By that means, the need to solve the system of linear equations
for the case of fullband DD [16] is avoided. Below, we present
new designs of even and odd length HTs by transforming an
existing design of fullband DDs (6), which is obtained using
the LS method.

III. DESIGN OF FIR CASE 3 AND CASE 4 HILBERT TRANSFORMERS

The following relation between the coefficients of Case 3 HT
and d(n) is given in [4]:

h (n) J(1)( N) 2.[(N-1)12-n 2]d(n 2), n even (7)
1 0, n odd,

2(N-1)
where the transfer function is: H3 (z)= E h3 (n).z-n and N is

n=O

the length of differentiator (see Fig. 1). The length of obtained
Case 3 Hilbert transformer is therefore 2N-1.
We would like to express the tap-coefficients h3(n) as a

function of d N t in order to use the known relation (6).
t2 N

Therefore, we set n = N_t for 1 < t < N and obtain:
2 2 2

h3(N -2t)= (1) 2t dN -t, N-2t even (8)
Taking into account that N-2t is always an even number for t
integer and fullband DD (N even), and using equations (6) and
(7), we get:

2 N
h3(N-2t) =h3(N-2+2t) 1<t<2zr(2t 1) 2 (9)

1 35 Ni1h3(N- 2r) h3(N- 2±+2r) =tr,.. 2 22 2

Hilbert Case 3 transformer
2(N-1)

H3 (z)= k(n).-
n=O

2N- 1: length of Hilbert Case 3
transformer (odd)

First-order fullband Case 4 Hilbert Case 4 transformer
differentiator N-1

NH( -n H4 (z) h4 (n) .z-n
H(z) Yd(n).Z n=O

n=O N: length of Hilbert Case 4
N: length of differentiator transformer (even)

(even)

Differentiating Hilbert
transformer

2(N-1)
HD(z) = hD (n) Z

n=O

2N-1: length of differentiating
Hilbert transformer (odd)

Fig. 1. Design transformations.

The last formula gives a very simple expression for the
coefficients of Case 3 HT designed through fullband Case 4
DD with length N. As we have started our design from fullband
LS DD, we can conclude now, that the Hilbert transformer (9)
also possesses least-squares features. Indeed, the examples
given in Section V clearly show typical LS magnitude
responses of designed Hilbert transformers.

The second equation from (9) corresponds to inserting a zero
between every two successive coefficients, i.e. h3(n)=O when n
is odd number (n=1,3,5,...,2N-3).

If we remove the zero-valued samples of the Case 3 LS HT
expressed by (9), we will further obtain Case 4 LS HT.
Reference [4] proposed the following relation for even-length
HT:

h4(n) = h3(2n) ((1)-N) 2N 1n)Jd(n), O<n<N-1 (10)
N-1

which transfer function is: H4(z) = h4(n).z -
n=O

From (6) and (10), it is easy to derive the following new
relation for Case 4 HT designed by LS technique:

h4C 2 4h( 21+t)
2 N * (11)

;T(2t - 1) 2

It is clear, that he total number of non-zero impulse response
coefficients (and therefore the computational complexity) of
designed Case 4 HTs is the same as this one of the fullband
DDs (for N even number).
As an example, we have designed the resulting HTs for

length of differentiator N=6 using the proposed new
expressions (9) and (11). The numerical values of the
coefficients d(n), h3(n), and h4(n) are shown in Table I.
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TABLE I
COEFFICIENTS' VALUES OF DESIGNED HTS AND FULLBAND DD

n 0 1 2 3 4 5 6 7 8 9 10
4 4 4 4 4 4

d(n) 25fT 9r 4T 4 9;f 25fT

2 2 2 2 2 2
h3(n) 0 0 0 0 0

5ff 3fT if 3fT 5/v

h4(n) 2 2 2 2 2 2

hD(n) 20 2 02 2 2 O 2 O 2
2'T 9ff ff 2 if 9ff 25

Additionally, taking into account (3), we can determine the
magnitude response of a designed Case 4 HT as follow:

4 N12 I

M(n)) = --E sin(n - 1/ 2)w, N even
Z n=1 2n-1

The above result is a very simple and allows a fast calculation
of the M(Z).

IV. DESIGN OF DIFFERENTIATING HILBERT TRANSFORMERS

Cizek [17] proposed a differentiating HT, the output of
which is the derivative of the Hilbert transform of the input
signal. It was later proved by authors [4], that the coefficients
of differentiating HT can be expressed as:

(-1)(fN) 2 d(n / 2) n even

hD(n)= {, n odd#N-1

t 'n =N-1

(Fig. 2(a)): using our method (solid line) and McClellan-Parks
algorithm (dashed line). The edge frequencies could be easily
determined from the amplitude response as ctj0=0154fz and
fC2=Z-ctj=0.9846z (see for details the smaller figure in Fig.

2(a)). A typical LS behaviour of a designed Hilbert transformer
in contrast to the equiripple HT can be observed. The error
functions and the impulse responses for the same example are
given in Fig. 2(b), Fig. 2(c), and Fig. 2(d). It is known that the
equiripple HTs are optimal in minimax sense. Our results show
that a better error function for the proposed HTs is obtained
(see Fig. 2(b)) in most of the frequency band, except in very
narrow regions at the band edges.

Concerning the impulse responses, we can conclude that the
values obtained with the above considered methods are very
close, except the values of the first and last samples (i.e. h3(0)

1.2

01)
LO 0.8

K05
0
n

T 0.6

E 0.4

(12)

0.

2(N-1)
where HD(z) ZhD (n).z Hence, the length of designed

n=O

differentiating HT will be 2N-1, where N is the length of a
fullband differentiator.

Using (6) and (12), we obtain the following new relations for
the coefficients of differentiating HT:

hD(N - 2t) = hD(N - 2 + 2t)
2 N

ir(2t - 1)2'I1< < 2

hD(N - =-

hD(n)= 0, where n =1,3,5,...,2N -3 and n.N-I

(13)
o

0
III9

It is obvious, that all non-zero coefficients of hD(n) are
negative and symmetric (except for n=N- ). This is in contrast
to h3(n), where non-zero coefficients are antisymmetric. The
values of hD(n) calculated for N=6 are also given in Table I.

V. EXAMPLES AND CONCLUSIONS

In order to test our relations, we have created a few simple
Matlab programs. As an example, we design below a Case 3
HT with length 2N-1=59 (N=30: length of fullband DD). In
view of comparison, two amplitude responses are obtained

1.5 2
Frequencyw in radls

Fig. 2(a). Amplitude responses of Hilbert Case 3 transformer with
a =0.0l54T, O2=0.9846ff, and length 2N-1=59 designed by our method

(solid line) and McClellan-Parks algorithm (dashed line).

0.5 1 1.5 2
Frequencyw in rad/s

Fig. 2(b). Error functions, for our method (solid line) and McClellan-
Parks algorithm (dashed line).
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and h3(2N-2), see Fig. 2(c) , Fig. 2(d)).
The amplitude response of designed differentiating HT with

the same length (2N-1=59) is given in Fig. 3(a). In our
approach, we could obtain even length HT only with Case 4
type characteristic. The amplitude response of such a HT (with
length N=50) is shown as an example in Fig. 3(b).

We consider below the performance of designed Case 3 HTs
using relations (9). Let we denote the passband (or middle
band) width of the Case 3 HTs with B=C02-ot. The obtained
magnitude responses of these HTs have relatively wide
passband width B (as can be observed from the examples). The
above result is a consequence of the fullband differentiator case
(with q=;r) which is a starting point of the proposed method.
We have investigated how the value ofB depends on the length
of designed HTs. Next figure (Fig. 4) presents edge frequency

nu.o

0.G

04

02

o6

-0.2

-0.4

-O6

J.b
0 10 20 30 40 50 60

samples n

Fig. 2(c). Impulse response h3(n): our method.

0.8

0.2Ei L L-r - - - - - - - - -r- - - - - - - - r - - - - - - - --

66E>

64.2

0 10l 26 30 40 50 6
samples n

Ctz2 as a function of the length 2N-1 for Case 3 HT. We have
determined fourteen different cases of HTs designed with
lengths values between 7 and 191. As boundary cases, we have
obtained the following parameters of designed response:
0t{2=0-8895T (B=2.4473 rad/s) and O12=O.9952r (B=3.1114
rad/s) for HTs with lengths 7 and 191, respectively.
As a conclusion, we can summarize that this paper presents

some new simple relations for design of three types of Hilbert
transformers based on least-squares approach. These explicit
formulas give an efficient and easy way for computation of tap-
coefficients of HTs even with a hand calculator. Design
examples and comparison with McClellan-Parks algorithm
prove the effectiveness of proposed approach. The accuracy is
very good taking into account that also we avoid application of
complex iterative procedures.

CD

co

cor

.- 1 .5

0.5

0 0(5 1 15 2 25 3
Frequency w in rad/s

Fig. 3(a). Amplitude response of differentiating HT
with length 2N-1=59.

0 0.5 1 15 2
Frequency w in rad/s

Fig. 2(d). Impulse response h3(n): McClellan-Parks algorithm. Fig. 3(b). Amplitude response of Case 4 HT with length N=50.
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Fig. 4. Edge frequency 09C2 as a function of the length of a Hilbert
Case 3 transformer for the proposed method.
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