
User-Controlled Creation of Multiresolution Meshes
Erik Pojar

neo, Vienna, Austria
erik.pojar@neo.at

Dieter Schmalstieg
Vienna University of Technology, Austria

dieter@cg.tuwien.ac.at

Abstract
We present a tool for the user-controlled creation of
multiresolution meshes. Several automatic mesh reduction
methods of high quality have been presented in the past, but
most of these methods are not able to identify mesh regions
of high semantic or functional importance, for example the
face of a character model or areas deformed by animation.
To address this problem, we present a method allowing a
user to provide importance weights for mesh regions to
control the automatic simplification process. To demonstrate
the usefulness of this approach in a real world setting, a
Maya plug-in is presented that lets the user create multi-
resolution meshes with importance weighting interactively
and intuitively. The user simply paints the importance of
regions directly onto the mesh. All user input like weighting,
resolution change, etc. are applied in real-time to give
instant feedback during the modeling process. The plug-in
can handle arbitrary meshes with attributes (vertex colors,
textures, normals) and attribute discontinuities. This work
aims to show that an integrated editing approach with full
support for mesh attributes, which lets the user exercise
selective control over the simplification rather than
operating fully automatic, can bring multiresolution meshes
out of academic environments into widespread use in the
digital content creation industry.

ACM Category and Subject Descriptor: I.3.5
[Computer Graphics] Computational Geometry and Object
Modeling - hierarchy and geometric transformations
Additional Keywords: level of detail, model
simplification, multiresolution modeling

1 Introduction
Complex polygonal meshes are ubiquitous in computer
graphics. However, real-time applications such as video
games executing on constrained hardware such as game
consoles, or applications that stream geometric models from
CDROM [19] or over the network, require control over the
size and complexity of polygonal geometry.

One way to get a low polygon approximation of a large
model is to create it manually [15]. An artist using a
modeling package can either manually reduce the original
high polygon model, or create a representation with fewer
polygons from scratch. However, with growing complexity
of the original model, reduction by hand becomes an
unfeasible approach. To simplify complex models quickly,
automatic mesh reduction tools are needed. This need was
recognized long ago, and this field has received a lot of
research attention in the past [2][12].

Most reduction algorithms share the common goal of
completely automatic reduction of the input meshes. Auto-
matic reduction is doubtlessly necessary and appropriate for
large models from real-world sources, such as laser ranging,
surveying, medical scans, FEM etc. These data sets are
typically extremely large, and must be reduced to moderate
size with fully automated methods and guaranteed error
bounds.

Figure 1: The „cow“ model reduced to 20% - eyes and nose
marked as important

In contrast, the digital entertainment industry uses inter-
active modeling tools to create data sets of moderate com-
plexity, which must then be reduced to really small sizes (a
few thousand triangles). In this domain, fine-grained artistic
control is required.

This is especially true if parts of the mesh are of high
semantic or functional importance. For example, consider
the potential semantic and functional meaning for a model of
a human. The face may be of higher visual importance than
the body; we would like to spend more polygons for the face
than for the rest of the geometry. Depending on the appli-
cation, other regions of the mesh may have similar high
semantic importance to the user. If the human model is
animated through e.g., skeletal animation, functional im-
portance arises. We would like to keep more polygons for
the deformable regions around the joints than for the rigid
mesh areas.

To some extent, visual importance can be deduced from
the geometry. Several simplification algorithms take mesh
borders and (attribute) discontinuities into account because
these features are of high perceptual importance. But ulti-
mately, only the creator knows the intended use of a model,
therefore completely automatic reduction can never infer all
the constraints of a model.

However, we believe that it is possible to get the best of
both worlds: To enable user-controlled creation of multi-
resolution meshes, we introduce a weighted error metric that
lets the user specify the importance of mesh regions. The
reduction of the mesh still happens automatically, but the
user input is taken into account: Regions of high importance
are reduced less, while regions of low importance are
reduced more aggressively. By embedding importance
weights into the simplification metric, the user gains a new
level of control over the model reduction process, enabling
users to create simplified models of higher functional,
semantic and visual quality.
Another goal of our work was to create a real-world tool that
is easy to use. Our solution was therefore implemented as a

Maya plug-in in order to offer an integrated workflow to the
user. Using Maya’s rich Artisan interface, a user can specify
the importance of a mesh region, by directly painting
weights onto the mesh. While editing, all user input is
always applied in real-time to give instant feedback during
the modeling process. The plug-in handles arbitrary meshes
with arbitrary mesh attributes (vertex colors, textures,
normals) and attribute discontinuities.

In the remainder of this paper, we review related work
(section 2), discuss the quadric error metric (section 3),
followed by the user interface (section 4), and show some
results (section 5).

vi vj
vi´contract

expand

Figure 2: (left) Contraction of the edge (vi, vj) into a
single vertex vi´, (right) Wedge-based representation -
each wedge is associated with a separate quadric

2 Related Work
A large number of methods for automatic surface simpli-
fication have been presented in the past. For a recent review
of different simplification schemes, see [2][12]. The
approach presented here falls into the category of iterative
decimation through edge contraction (Figure 2, left). A key
problem in selecting an edge or vertex pair contraction is a
suitable error metric, e.g., [6][16][9].

Garland’s and Heckbert’s quadric error metric [11] is of
particular relevance for us because we based our imple-
mentation on the QSlim software package [13]. Later, in
[10] Garland and Heckbert extended their quadric metric to
handle surface attributes (texture coordinates, normals, etc.)
when reducing the geometry. For a mesh with m scalar
attributes, they generalized their distance-to-plane metric in
R3 to a distance-to-hyperplane metric in R3+m. Hoppe pre-
sented an improved attribute-preserving quadric metric in
[5]. He maintains the attribute-to-plane correspondence in
R3, resulting in lower storage needs, better results and higher
performance. He also demonstrated that attribute wedges are
an effective way to handle attribute discontinuities. In [4] he
showed how to further speed up the evaluation of the metric.
Again, Hoppe’s work [5] is of particular relevance for us,
because we combined his improved attribute handling metric
and the concept of attribute wedges with the original QSlim
source code for our implementation.

There has not been as much research in the field of user-
controlled mesh reduction as on automatic mesh reduction.
SemiSimp [3] by Li and Watson aims at improving the
quality of aggressively simplified models. They mainly
focus on changing the order of the simplification hierarchy
to change the detail distribution over the models surface.
While doing so, the partial ordering of the simplification
hierarchy has to be carefully maintained, which restricts the
editing operations. SemiSimp also allows simple geometric
manipulations like re-positioning of vertices and segmented
simplification to further improve the final results.

A similar tool, Zeta [14], from Cignoni, Montani,
Rocchini and Scopigno also allows the user to manipulate
the initial order of the simplification steps. Their approach
does not rely on a simplification hierarchy but on what they
call a hyper-triangulation model. In effect, they can reorder
the simplification operations more freely. However, the
hyper-triangulation model only supports 2-manifold meshes.
Zeta does not allow propagated geometry manipulation or
segmented simplification.

SemiSimp and Zeta use local manual editing operations
for mesh editing. Especially with SemiSimp the user has to
work on the extremely fine-grained level of manipulating
single vertices and edges. We chose a different approach: By
embedding additional information into the model, our
simplification still executes automatically, while taking
semantic and functional importance into account. With
respect to exercising control over the mesh on a higher level
than simple vertices, our approach has some aspects in
common with recent work on remeshing [17].
Also, both SemiSimp and Zeta are demonstrated as stand-
alone tools. In contrast, our approach for user-controlled
creation of multiresolution meshes has been implemented as
a Maya plug-in, offering improved workflow integration.

3 Weighted Error Metric

3.1 Basic Quadric Metric
Our approach is based on iterative edge contractions using
Garland’s and Heckbert’s quadric error metric [11], in-
cluding Hoppe’s enhancements for appearance attributes to
the quadric metric [5]. As a foundation for the weighted
error metric, we will briefly discuss the basics of quadric-
based mesh simplification. The original model gets reduced
by repeatedly applying edge contractions. Here is an outline
of the basic algorithm:

1. Extract all edges from the source model
2. Assign a cost of contraction to each edge
3. Put the edges pairs in a priority queue, keyed on cost

of contraction
4. Repeat until the desired approximation is reached:

a. Remove the edge (i, j) with the least cost from
the queue

b. Contract this edge into the single vertex vi´,
update the mesh neighborhood

c. Update costs for all edges connected to vi or vj
The quadric error metric is used to calculate both the cost of
a contraction and the target position of the unified vertex vi´.
It is a compact representation of the planes associated with a
vertex through a 4x4 matrix. Because the matrix is
symmetric, 10 floating-point values are sufficient to store a
quadric.

A quadric Q is constructed from a plane. Q then
represents that plane and Q(v) computes the squared
distance of a vertex v to the plane represented by Q.
Quadrics define addition in a natural way: Q1(v)+Q2(v) =
(Q1+Q2)(v), where (Q1+Q2) is the component wise sum of
the two quadrics.

The quadric error metric was enhanced by Garland and
Heckbert [10] and Hoppe [5] to handle appearance
attributes. Because Hoppe’s method needs less storage space
and produces results of higher quality, we chose to use his
approach. He also handles attribute discontinuities like
creases or discontinuous texture coordinates with attribute
wedges (Figure 2, right) to represent the different attributes
associated with a single vertex. For us, the utilization of
attribute wedges was absolutely necessary, because pro-
duction tools like Maya impose no restriction on the usage
of attributes in a mesh. When using attribute wedges, instead
of associating a quadric with each vertex, a separate quadric
for each attribute wedges of a vertex is kept. A vertex is
partitioned into k ≥ 1 wedges, each wedge having its own
attribute vector and its own quadric representing the faces
together with the attribute vector of that wedge. Using
wedge-based quadrics, the cost for contracting an edge (i, j),
connecting the vertices vi and vj into a single vertex vi´ is
calculated as:

• Compute the unified quadric Q´ representing all wedge
quadrics associated with vi and vj

• Compute the vertex position vi´ that minimizes Q’(vi´).
This also computes the new attributes needed for all
wedges.

The value of Q’(vi´) is the cost of the contraction. For edge
contractions involving attribute discontinuities the compu-
tation of the unified quadric Q´ is not trivial. One needs to
choose which wedge/attribute pairs get unified to a single
wedge during contraction and which wedges get removed
from the target vertex [5].

3.2 Weights
It is obvious that the simplification process is controlled by
the cost of the contractions (see section 3.1). Mesh areas
with edges of low contraction cost will get reduced earlier
and more heavily than areas with higher contraction cost,
regardless of the semantic or functional importance of these
areas.

To give the user more control over the mesh simplifi-
cation, we let the user change the computed cost of the edge
contractions. To achieve this, the cost of the contraction is
weighted by a user-controlled value.

For our discussion of the weighted error metric it is
sufficient to know that the cost of contracting an edge (i, j) is
computed through a quadric Q´. Q´ is the sum of all wedge
quadrics associated with the vertices vi and vj. This com-
bined quadric Q´ is then used to choose the target vertex
position vi´ of the edge contraction. The target vertex vi´ is
assigned the position that minimizes Q´(vi´). The cost of the
contraction, which we will call the geometric cost, costg, is
the value of the unified quadric Q´ at the position vi´:

costg = Qi´(vi´)
The cost of a contraction is always positive (≥ 0). Assuming
that there is a weight function ω(i, j) that defines a weight
for an edge (i, j), the weighted cost, costw of a contraction is
computed as:

costw = ω(i, j) · costg = ω(i, j) · Q´(vi´)

Recall that the mesh simplification is driven by the cost of
the edge contractions. By using costw as our cost function,
we can influence the order of the simplification operations
through the weight function ω(i, j).

An important property of the weighting scheme is that it
does not change the geometric properties of a pair con-
traction. The target position of the unified vertex is left
unchanged and still is only determined by the squared
distance to the set of planes represented by the quadric. The
weight only changes the order in which the contractions are
applied, not the result of the contractions.

To define the weight function ω(i, j), we have associated
each vertex vi with a scalar weight value wi ≥ 0. By default
all vertex weights are assigned the value 1. The two vertex
weights wi, wj of a vertex pair are used to compute the pair’s
weight based on a function of the user’s choice:
ω(i, j) = average(wi, wj) OR min(wi, wj) OR max(wi, wj)

The weight of a vertex is directly connected to the semantic
or functional importance of the vertex to the user. To keep
the geometric detail of important regions, the user can assign
large weights (wi ≥ 1). This will increase the cost of
contraction and thus cause the algorithm to first reduce other
regions of the mesh. Regions of low interest can be assigned
small weights in the range [0…1], which will make the
contractions appear as low cost to the algorithm. A weight of
1 does not change the cost of the contraction at all.
If all weights wi are left at their default value of 1, i.e.,

costw = 1·costg = costg,

then geometry is reduced as if there was no weighting at all.

3.3 Combination of weights
After the weight for a vertex pair has been defined, we also
need to define the weight wi´ for the unified vertex vi´. It is
generally not sufficient to use the same value as ω(i, j) for
the weight wi´ of the unified vertex. Through an edge
contraction, the two original vertices of the edge get con-
tracted to a single vertex. Repeated pair contraction oper-
ations produce a vertex hierarchy or vertex tree (cf. [7], [1],
[8]). and often are used for selective refinement of meshes.
In a vertex hierarchy, each vertex represents all the vertices
of its sub tree. The weight of a vertex in the hierarchy should
thus represent the overall user importance of the combined
mesh region represented through the sub-tree of the vertex.

To compute the combined weight of a vertex vi´ in a ver-
tex hierarchy, we need to know the weights of the leaf
vertices in the sub-tree of vi´. Let W be the set of these
weights. Now we can compute the combined weight wi´ by
selecting a function from:

wi´= average(w ∈ W) OR min(w ∈ W) OR max(w ∈ W)

We found that using the average weight produces the most
intuitive results. Note that the average has to be computed
from all leaf weights in the hierarchy. Therefore we cannot
generally use the ω(i, j) results to compute wi´.

Moreover, we cannot simply sum up all the weights of the
leaf vertices to compute the weight of a root vertex, because
it leads to a counter-intuitive importance-weight feedback.
Whenever two regions of high importance are merged, the
result becomes even more important and thus unattractive
for further reduction. As a consequence, other regions get
reduced too heavily. This is also a reason for us to keep the
weights and the quadrics separated at all times. Although
component-wise a priori multiplication of Q by w leads to
identical results with respect to the error metric, it also
implies the undesired importance aggregation described
above.

3.4 Enhanced deterministic metric
In his QSlim [13] implementation of the quadric error
metric, Garland used a heap keyed on the cost of contraction
to sort the edge contractions. We found that ordering to be
not strict enough for an interactive multiresolution-editing
environment.

When editing a multiresolution mesh it is common that
the user switches the resolution back and forth very often.
For example: if a user is interested in a simplified model
representation with a face count of roughly 75% of the
original model, the user will frequently switch between the
representations in the range of 70% to 80% while editing.
This causes edges to get removed and re-inserted into the
heap frequently. If any two edges have the same cost of
contraction, their relative order in the heap is undetermined.
Their ordering would depend on the heap implementation
and the insertion order. It is not an uncommon situation, that
edges have the same cost of contraction. For example, on a
tessellated plane, all edges have the same cost of con-
traction. In such a situation, a simplified model represen-
tation of a fixed resolution would not only depend on the
user’s editing operations but also on the order in which he
applied them. Simply increasing the resolution and de-
creasing it again can produce a slightly different model
representation.
This is clearly unintuitive and disturbing for a user, who will
expect the simplification process to be deterministic. There-
fore we used a stricter ordering for our implementation.

Figure 3: The Artisan interface is used to paint the importance of mesh regions on the “Hagen” model. The regions
around the two eyes on the source mesh in front are marked simultaneously as important using the reflection tool. The
destination mesh in the back is reduced to 15%. Note the preserved detail around the eyes.

Instead of only using the cost of contraction as our ordering
criteria, we also include the vertex indices of the edge in the
ordering. If two edges have the same contraction cost, the
edge with the smaller indices will be placed in front of the
other edge. This stricter ordering fulfills our need for
deterministic simplification.

4 User Interface
To demonstrate the usefulness of our approach in a real
world setting, a Maya plug-in is presented that lets the user
create multiresolution meshes with importance weighting
interactively and intuitively. To start an editing session, the
user needs to create a multiresolution mesh from an existing
polygonal mesh. The selected source mesh, with all texture
coordinates, normals and vertex colors, is cloned into a
multiresolution mesh, which is inserted into the scene. For
the editing session, the original source mesh is also left in
the scene as a reference.

Once a multiresolution mesh has been created, the user
can start editing it. There are several global parameters that
control the overall reduction process (See Figure 4).

• Resolution: The resolution attribute controls how many
faces are used in the approximation of the source
model. The resolution is specified in percent.

• Vertex Placement: The vertex placement policy
controls the position of the resulting vertex from a pair
contraction. There are three vertex placement policies
to choose from: optimal, end-or-mid and endpoint.
Optimal placement chooses a position that minimizes
the error of the contraction. While this produces the
best results, it introduces new vertex positions, which
can sometimes be problematic for interactive
applications. For applications which only want to use
the original vertices, endpoint placement is best suited.

In this case a vertex pair always gets contracted into
one of the original vertices.

• Attribute Controls: Here the user can control the
influence of mesh attributes on the reduction process.
There are three attribute groups: texture coordinates,
normals and vertex colors. Each group can be
individually switched on and off. The importance of
each group can be specified through a scalar weight
factor (lambda terms from [5]).

• Weight Controls: The weight controls let the user
choose how the combined, hierarchical vertex weights
and the edge weights are calculated. The user can
choose between min, max and average.

All attribute changes are immediately applied to the
multiresolution mesh. Because these attributes are global
parameters of the reduction, changing them means that the
simplified model has to be completely recalculated. Usually
this takes only little time, because the quadric error metric
evaluates very quickly and models for interactive appli-
cations like games or simulations usually do not exceed a
few thousand polygons.

All attributes are fully accessible by Maya’s dependency
graph. This means that they can be set, read, connected and
animated like any other attribute in Maya. For example one
could connect a distance-to-camera evaluator to the
resolution attribute to achieve dynamic LOD.

The attributes presented so far were global parameters for
the mesh reduction. To specify the importance of certain
mesh regions, the user simply paints the weights reflecting
the functional or semantic importance directly onto the
source mesh. See Figure 3 for an image of the mesh painting
in action. The painted weights are displayed color coded
directly on the source mesh. The mesh painting is done
through Maya’s Artisan Interface. Through the use of
Artisan, the user has access to a well-known, intuitive and
feature-rich user environment (see Figure 6).

Figure 4: Global Parameters of a multiresolution mesh

Figure 5: Areas that will get reduced soon are
highlighted. The user can choose between two different
visualization methods: Lines (left) or Faces (right).
Either the line width or the face transparency is used to
visualize reduction order.

Artisan features different paint operations (add, replace,
scale, smooth), brush styles and sizes, global flood fill oper-
ation, mirrored painting on symmetric meshes, support for
pressure sensitive input devices etc. An embedded graphical
user interface allows the user to easily and freely configure
the value range to paint the weights and has numerous
display control options.

All weights painted onto the source mesh are immediately
reflected in the reduced version of the mesh. Consider the
editing situation depicted in Figure 3: the “Hagen” model
has been reduced to 15% but the user wants more geometric
detail around the eyes. By painting the importance of the
eyes onto the source mesh, the geometric detail around the
eyes increases as the user paints. However, the overall
amount of geometry is left unchanged. The model stays
reduced to 15%, these 15% are just redistributed in a
different way.

Again, this means that the mesh reduction has to be
recalculated, to take the new weights into account. Currently
this happens after each brush-stroke. We are aware that for
some models this can be a bit slow. Alternatively, a delayed
update feature allows to freely paint the weights, while the
mesh is not recalculated until the corresponding command
(hot key release) is given.

Figure 6: Artisan user interface for importance painting

When editing a mesh by painting weights onto it, it is often
useful to know in advance which regions of the mesh will
get reduced next. Usually, the user wants to increase the
weights for important regions as long as they are about to
get simplified immediately. To provide the user with this
information we have implemented a visualization node that
highlights mesh areas about to get simplified (Figure 5). The
visualization simply highlights the top n (adjustable by the
user) edge contractions from the simplification heap.

The user can choose between two visualization modes:
lines and faces. Like all other features, the highlighting is
also always updated in real-time while the user paints. In
effect, this gives the user the possibility to paint weights to
remove the reduction highlights from important areas. The
user can continue painting until all the important regions are
not highlighted any more and less important regions are
highlighted for reduction instead.

5 Results
In this section we present some examples of user-controlled
creation of multiresolution meshes. All examples were
produced using our Maya plug-in. Figure 7 shows the
“Fighter” model reduced to 15% (1044 triangles). The
model was simplified completely automatic. Texture
coordinates where taken into account in the simplified
model. Although the result is not bad, there are some
problematic areas:

Figure 7: The “Fighter” model reduced to 15% (1044
triangles) with no weighting.

The fingers start to degenerate to single triangles, a crack in
the trousers around the ankles has appeared, the ears are
gone, the braids are shortened and the face has lost a lot of
its original detail. Figure 8 illustrates the kind of improve-
ment achievable through the use of importance weighting.
Figure 9 shows the original model and the applied weights:
the face and the ears are marked as most important. The
hands are also marked as important regions, but the applied
weights are smaller than for the face. The smallest weights
have been applied to some parts of the trousers and the
braids. Through the weighting we could improve the quality
of the face, the fingers and the braids and also removed the
crack in the trousers. Notice that the models detail has not
been increased; the available polygon budget has only been
redistributed differently.

For animated meshes, the deformable regions usually are
of special functional importance. Deformed regions tend to
get stretched and squashed during animation and therefore
often need to keep more geometric detail than the
surrounding rigid regions. See Figure 10 for an illustration
of the problem. Here the “Fighter” model was first simpli-
fied and then deformed using a skeleton. The resulting de-
formation could be improved by weighting the vertices in
the elbow region.

Figure 11 shows a different scenario: Here the skeleton
was not bound to the simplified model but to the source
model instead. While the model is animated a simplified
mesh (reduced to 50%) is created for each animation frame.
Because the simplification algorithm uses the already
deformed source model as input, the deformed regions get
reduced already taking the deformation into account. In
effect, each simplified model for each frame is slightly
different. In such a case we do not need to weight areas to
account for functional importance. However, one still might
want to weight other regions of high semantic importance.

Finally, Figure 12 is another example of functional
importance. Facial animation is applied to the “Old Man”
model. Without proper weighting, the simplified version
folds over in several places and the mouth region is distorted
heavily. Even though the weights where applied very
quickly and uniformly the resulting simplified model is
much more faithful to the original: the mouth is deformed
properly and the folded mesh areas are gone. (Figure 12,
right).

Figure 8: The “Fighter” model reduced to 15% (1044
triangles), using importance weighting

Figure 9: The fighter model at full resolution (6952 tri-
angles). The inset shows the visualization of the
importance weights. The face and the ears are marked as
being more important as the hands.

6 Summary and future work
We have described a weighted quadric error metric for the
user-controlled creation of multiresolution meshes. The user
is enabled to control the simplification of a mesh by
interactively painting the importance of regions as weights
onto the mesh. This enables the user to improve the quality
of multiresolution meshes by taking semantic and functional
importance into account. While we used weights with a
quadric cost metric, user-controlled weighting should be
easily applicable to all mesh simplification algorithms that
use iterative simplification driven by a cost metric. For
algorithms that do not produce vertex hierarchies, the

combined weights need to be calculated differently, but a
modified algorithm for that is straight forward.

To demonstrate the usefulness of our approach in a real
world setting, a Maya plug-in for the creation and
manipulation of multiresolution meshes was presented. The
plug-in can operate on arbitrary (non manifold) meshes with
arbitrary mesh attributes. To release our work as a Maya
plug-in is both an attempt to bridge the gap between
academic research and real-world applications and also an
attempt to provide a highly useful tool. By embedding a
method for user-controlled polygonal simplification into an
existing modeling package, both the polygonal reduction
tool and the modeling package are enhanced, and the user
gains most.

In future work, it would be desirable to further enhance
the user interface and to add the possibility of the following
editing features: (weighted) positional constraints for
vertices, enabling the user to lock the position of certain
vertices and a possibility to exclude certain vertices and
edges from the reduction; this could be desirable for borders
connecting to other meshes. Also, we would like to include
an interface for selecting arbitrary vertex pairs, which also
should be contracted during simplification.

We would also like to investigate methods for automatic
or assisted creation of importance weights: For animated
meshes, it should be possible to deduce higher weights for
deformable regions by either sampling the animated mesh or
by analyzing the weights for skeletal animation. Another
possibility for automatic weight generation may be to
analyze the local texture density of a mesh. Models created
by hand tend to have higher texel density in areas of high
importance.

7 Acknowledgments
We would like to thank Tobias Mayr for providing the
“Fighter” model and Christian Haas for the “Hagen” and
“Old Man” models. The “Cow” model is freely available
from ViewPoint DataLabs. (http://avalon.viewpoint.com).
The second author is supported by the Austrian Science
Fund FWF under grant Y193.

8 Software
The presented Maya plug-in and its source code is available
for download from http://www.pojar.net/ProgressiveMesh/

9 References
[1] David P. Luebke, Carl Erikson. View-Dependent

Simplification of Arbitrary Polygonal Environments.
Computer Graphics (SIGGRAPH '97 Proceedings),
pages 199-208.

[2] David P. Luebke. A Developer's Survey of
Polygonal Simplification Algorithms. IEEE
Computer Graphics & Applications, 2001

[3] Gong Li, Benjamin Watson. Semiautomatic
Simplification. Symposium on Interactive 3D
Graphics, pages 43-48, 2001.

[4] Hugues Hoppe, Steve Marschner. Efficient
Minimization of New Quadric Metric for
Simplifying Meshes with Appearance Attributes.

[5] Hugues Hoppe. New Quadric Metric for Simplifying
Meshes with Appearance Attributes. In David Ebert,
Markus Gross, and Bernd Hamann, editors, IEEE
Visualization '99, pages 59-66. IEEE, October 1999.

[6] Hugues Hoppe. Progressive Meshes. Computer
Graphics (SIGGRAPH '96 Proceedings), pages 99-
108, 1996.

[7] Hugues Hoppe. View-dependent refinement of
progressive meshes. Computer Graphics
(SIGGRAPH '97 Proceedings), pages 189-198, 1997.

[8] Julie C. Xia, Amitabh Varshney. Dynamic view
dependent simplification for polygonal models.
Computer Graphics (SIGGRAPH '96 Proceedings),
volume 30(4), 1996.

[9] Leif Kobbelt, Swen Campagna, Hans-Peter Seidel. A
General Framework for Mesh Decimation. In
Proceedings of Graphics Interface, pages 43-50,
1998.

[10] Michael Garland, Paul S. Heckbert. Simplifying
Surfaces with Color and Texture using Quadric Error
Metrics. IEEE Visualization '98 Proceedings, pages
263-269, 1998.

[11] Michael Garland, Paul S. Heckbert. Surface
Simplification Using Quadric Error Metrics.
Computer Graphics (SIGGRAPH '97 Proceedings),
pages 209-216, 1997.

[12] Michael Garland. Multiresolution Modeling: Survey
& Future Opportunities. Eurographics '99 - State of
the Art Reports, pages 111-131, 1999

[13] Michael Garland. QSlim Simplification Software.
http://graphics.cs.uiuc.edu/~garland/software/qslim.h
tml

[14] Paolo Cignoni, Claudio Montani, Claudio Rocchini,
Roberto Scopigno. Zeta: a Resolution Modeling
System, Graphical models and image processing:
GMIP, volume 60, pages 305-329, 1998.

[15] Paul Steed. The art of low-polygon modeling. Game
Developer, pages 62–69, June 1998,
http://www.gdmag.com/backissue1998.htm#jun98.

[16] Peter Lindstrom, Greg Turk. Image-Driven
Simplification. ACM Transactions on Graphics,
19(3), pages 204-241, July 2000.

[17] Pierre Alliez, Mark Meyer and Mathieu Desbrun:
Interactive Geometry Remeshing. Proc. SIGGRAPH
2002

[18] Rémi Ronfard, Jarek Rossignac: Full-range
Approximation of Triangulated Polyhedra. Computer
Graphics Forum 15(3): 67-76

[19] Stephen White. Postmortem: Naughty Dog's Jak &
Daxter: The Precursor Legacy by Stephen White.
Game Developer magazine, April 2002,
http://www.gamasutra.com/features/20020710/white
_01.htm

http://avalon.viewpoint.com/
http://www.pojar.net/ProgressiveMesh/
http://graphics.cs.uiuc.edu/~garland/software/qslim.html
http://graphics.cs.uiuc.edu/~garland/software/qslim.html
http://www.gdmag.com/backissue1998.htm
http://www.gamasutra.com/features/20020710/white_01.htm
http://www.gamasutra.com/features/20020710/white_01.htm

Original model, the elbow is de-
formed through skeletal animation.

Reduced to 15%, the deformed
elbow is stretched and squashed.

Reduced to 15%, the elbow is
improved through weights.

Figure 10: An example of functional importance. Weighted deformable regions can improve the quality of animated meshes.

Figure 11: The simplified model was created from an animated source model. Note how each animation frame got simplified
slightly different, adapting to the deformation of the elbow. No weights where used.

Original model at rest pose, the inset
shows the importance weights

Reduced to 50%, deformed through
facial animation. No weights applied

Reduced to 50%, deformed through
facial animation. Weights applied
.

Figure 12: The „Old Man“ model reduced to 50%, deformed through facial animation. The middle image shows the results
without importance weighting, the right image shows the improved results after importance weights have been applied.

