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We consider a nominally steady and two-dimensional turbulent boundary
layer (BL) of uniform density along a flat surface under the action of an adverse
pressure gradient. Classical analysis of the flow in the limit of large Reynolds
number, Re → ∞, (a survey is found e.g. in [2]) predicts the well-known asymp-
totically small velocity defect holding within most of a strictly attached BL.
However, as demonstrated in [1], a more general asymptotic approach accounting
for a large velocity deficit and, in turn, the possibility of separation apparently
requires the existence of a second perturbation parameter, denoted by α. The
latter is (i) essentially independent of Re, (ii) serves as a measure for the BL
slenderness and is (iii) in fact provided by the empirical constants entering any
commonly employed Reynolds shear stress closure.

Including α ≪ 1 in the theoretical considerations as first put forward by
Melnik (1989), referred to in [1], has the important consequence that the BL
thickness remains finite and of O(α) in the limit Re

−1 = 0, which will be con-
sidered here. To this end, let x, y, ψ, δ and ℓ denote Cartesian coordinates
parallel and normal to the wall, the stream function, the BL thickness and the
mixing length, non-dimensional with global reference quantities, respectively.
As shown in [1], appropriately scaled variables in the outer part of the BL are
Y = y/α, Ψ = ψ/α, L = ℓ/α3/2, ∆ = δ/α which upon substitution into the set
of Reynolds-averaged Navier–Stokes equations yield the leading-order problem

ΨY ΨY x − ΨxΨY Y = −px + TY , px = −UeUex , T = L2 ΨY Y |ΨY Y | ;
Y = 0 : Ψ = T = 0 , Y = ∆(x) : ΨY = Ue(x, β), T = 0 ,

}

(1)

where we require that L → L0(x) = O(1) for Y → 0, implying ΨY = Us +
O

(

Y 3/2
)

. The resulting wall slip Us(x, β) reflects the absence of viscous forces
and is assumed to depend on the controlling parameter β used to characterize the
potential flow velocity Ue(x, β) imposed at the BL edge. Additional sublayers
allowing among others to satisfy the no-slip conditions at the wall emerge if the
expansions are carried on to higher orders in α and Re

−1. Note, however, that



2 Solutions of turbulent boundary layer equations at marginal separation

the solution in the outer region which comprises most of the BL is completely
determined by (1). Here we are interested primarily in the case that Us vanishes
locally, indicating the onset of separation.

In this connection numerical solutions of (1) have been obtained for retarded
flows specified by

Ue(x, β) = (x+ 1)m
[

β
(

exp(−5x2) − 1
)

+ 1
]

; L = I (Y/∆(x))
1/2

∆(x) . (2)

Klebanoff’s intermittency factor I(Y/∆) was implemented to improve the pre-
diction of the flow near the BL edge. It is expected, however, that other choices
of Ue(x, β) will not affect the flow behaviour near Us = 0 significantly. Also note
that problem (1) admits (in addition to the trivial result ΨY ≡ Ue) self-similar
solutions Ψ = ∆UeF (Y/∆), ∆ ∝ x, for external flows of the form Ue ∝ xm,
where the exponent m is a function on F ′(0) and −1/3 < m < 0, leading to a
wall slip Us ∝ xmF ′(0), F ′(0) < 1; c.f. [1]. These solutions were used to provide
initial conditions at x = 0 for the numerical calculations with Ue(x, β) given by
(2) which were carried out for a range of values of β; see Figure 1: If β is suffi-
ciently small the distribution of Us is smooth, and Us > 0 throughout. However,
if the parameter β exceeds a critical value βcrit, Us(x, βcrit) is found to vanish
at a single location x = xcrit but is positive elsewhere. A further increase of β
will cause a breakdown of the calculations accompanied by the occurrence of a
weak singularity slightly upstream at x = x∗.

A qualitatively similar behaviour of the wall shear in laminar BLs was ob-
served originally by Ruban (1981), see e.g. [2], and is now commonly referred to
as marginal separation. This notion is used also here although the mechanism
leading to separation is vastly different from the laminar counterpart.
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Figure 1: Distributions of Us and ∆ near x = xcrit.

To study the local flow behaviour near x = xcrit the pressure gradient is
expanded as px = P0 + ǫ + P1s + . . . for s → 0∓ where s = x − xcrit, ǫ =
β − βcrit ≪ 1. We first focus on the case ǫ = 0. Since ∆ assumes a finite value
∆0 at x = xcrit one infers that L0 → L00 as s→ 0. The balance (1) is retained in
flow regimes II∓, see Figure 2. There the appropriately rescaled local quantities
η = y/

(

L00
2/3(∓s)1/3

)

, f = Ψ/
(

L00
2/3P0

1/2(∓s)5/6
)

suggest the expansions

f = f0(η)+(∓s)λ lnν(∓s) f1∓(η)+. . . ; ∓1/2 f ′0
2
±5/6 f0f

′′
0 = −1+

(

f ′′0
2)′

. (3)
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The solutions of the resulting differential equations for f0, f1−, f1+, . . ., supple-
mented with boundary conditions following from (1) are sought subject to the
requirement of sub-exponential growth for η → ∞, in order to provide a match
to the solution in the regimes I∓. In case of the upper sign, i.e. x < xcrit, a
numerical treatment indicates that the only acceptable solution of the nonlinear
leading-order equation for f0 is given by f0 = 4/15 η5/2. It expresses the balance
between pressure and Reynolds shear stress gradient at the surface for regularly
vanishing Us as s → 0−. In contrast, numerical calculations for the lower sign,
i.e. x > xcrit, indicate the existence of a further solution having f ′0(0)

.
= 1.1835

and f0 = 4/15η5/2+O
(

η3/2
)

as η → ∞. As a result, the flow exhibits a non-zero

wall slip Us ∼ f ′0(0)(P0s)
1/2, which is singular at s = 0−. Hence, the convective

term in (1) evaluated at Y = 0 jumps from 0 to UsUsx ∼ P0f
′
0(0)

2
/2 at x = xcrit.

However, for s < 0, the behaviour of Us is fixed by the homogeneous solution
f1− of a linear problem implying the well-known Kummer’s equation, together
with the inhomogeneous problem arising due to terms of O

(

ν(−s)λ lnν−1(−s)
)

;
c.f. (3). Non-exponential growth as η → ∞ is provided if λ = 1/2, 3/2, . . . and
ν = 0. In turn, the expected linear behaviour Us ∼ −c s, with c > 0, is revealed.

Finally, in regimes I∓ where Y = O(1) expansions Ψ = Ψ0(Y )+(∓s)r∓Ψ1(Y )+
. . ., r− = 1, r+ = 1/3, hold. In turn, ∆ ∼ ∆0 +O

(

(−s)r∓

)

; c.f. Figures 1, 2.
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Figure 2: Asymptotic splitting near
x = xcrit as ǫ→ 0; broken lines: ǫ = 0.
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Figure 3: Bifurcating distributions of
Ûs, determined by solving (6).

Note that regular terms reflecting the smooth behaviour of px have been
disregarded since Ψ is near x = xcrit mainly governed by local eigensolutions as
discussed so far. Therefore, in the case ǫ 6= 0, the above structure for s < 0 is
perturbed solely due to regular terms, associated with λ = −1/2 in (3), which
cannot explain the excitation of the singular downstream solution as the regular
one is obviously suppressed, see Figure 1. However, inspection of the results for
x < xcrit indicate that the contributions resulting from f0 and f1 become of the
same size if η ∼ (−c2s)1/3, c.f. (3), forcing the formation of a new sublayer III−
(see Figure 2), where singular eigensolutions may arise. Introducing the scaled

quantities η̂ = η/(−c2s)1/3, f̂ = f/(−c2s)5/6, it follows that

f̂ = f̂0(η̂) +O(−s) + ǫ(−s)µd exp[−χ/(c2s)]g(η̂) + . . . , f̂0 = 4/15 η̂5/2 + η̂ ; (4)
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χ
[

(1 + 2/3 η̂3/2)g′ − η̂1/2g′′
]

= 2
(

η̂1/2g
)′
, g′(0) = 1, g(0) = g′′(0) = 0 . (5)

Thus, the unknown constant d > 0 measures the perturbation of Us. A numerical
investigation shows that problem (5) allows for an eigensolution g exhibiting non-
exponential growth as η̂ → ∞ solely if χ = 1/3. Only in that case the solution is

found analytically. It reads g = 2/3 η̂ exp(−z)+(2/9)1/3f̂ ′0(η̂)
∫ z

0
t−1/3 exp(−t) dt

where z = 2/9 η̂3/2. An analogue study of the inhomogeneous higher-order
problem for the contribution ofO

(

(−s)µ−1 exp(−χ/s)
)

to the expansion (4) gives
the single value µ = −9/5. In turn, the perturbation g provokes exponentially
small disturbances ∝ ǫf ′0 and ∝ ǫΨ′

0 in the flow regimes II− and I−, respectively.
Expansion (4) ceases to be valid within region IV, Figure 2. Here we define

appropriate variables X, Ŷ = Y/(L00 ǫ̂)
2/3 and Ψ̂ = Ψ/(P0

1/2L00
2/3ǫ̂5/3) where

−c s = ǫ̂− ǫ̂2cX , c ǫ̂ = −χ
(

1 − µ ln(−c2 ln |dǫ|/χ)/ ln |dǫ|
)

/ ln |dǫ| .

Substitution into (1) yields to leading order the reduced problem

Ψ̂Ŷ Ψ̂Ŷ X − Ψ̂XΨ̂Ŷ Ŷ = −1 + T̂Ŷ , T̂ = (Ψ̂Ŷ Ŷ )2 ; Ψ̂|Ŷ =0 = Ψ̂Ŷ Ŷ = 0 ,

T̂ |Ŷ →∞ ∼ Ŷ ; Ψ̂|X→−∞ ∼ f̂0(Ŷ ) + j g(Ŷ ) exp(χX) , j = ±1, 0 ,

}

(6)

which has to be solved numerically. The distributions of the rescaled wall slip
Ûs = Ψ̂Ŷ |Ŷ =0 are depicted in Figure 3. In the subcritical case ǫ < 0, i.e. j =
+1, the solution of (6) asymptotes to the non-trivial downstream solution Ψ ∼

L00
2/3P0

1/2f0(η), holding in region II+, for X → ∞, c.f. Figures 2, 3. Likewise,
analysis of the flow regime I+ reveals that ∆−∆0 = O(X1/3) as X → ∞ there.

For j = 0 the solution of (6) is Ψ̂ = f̂0(Ŷ ), which corresponds to the critical case
ǫ = 0. In the supercritical case ǫ > 0, that is j = −1, the solution breaks down
at a distinct location X = X∗, i.e. x∗ < xcrit in the original scaling.

Again, this behaviour is examined by means of a local analysis: Introducing
appropriate local variables S = X−X∗ → 0−, ζ = Ŷ /(−S)1/3, F̂ = Ψ̂/(−S)5/6:

F̂ = F̂0(ζ) + (−S)σF̂1(ζ) + . . . ; −1/2 F̂ ′2
0 + 5/6 F̂0F̂

′′
0 = −1 +

(

F̂ ′′2
0

)′
.

Here the leading-order term F̂0 = 21/2ζ gives rise to a Goldstein-type singular-
ity, i.e. Us ∼ (−2P00 s)

1/2 (c.f. [2]). As the existing limiting profile, Ψ̂(X∗, Ŷ ),
of the solution in regime IV cannot be matched to the solution in the region
ζ = O(1), a transition layer is introduced where Ŷ = O

(

(−S)1/6
)

and iner-
tia terms balance the imposed pressure gradient to leading order. The match-
ing procedure, which concludes the present analysis, then shows that σ = 1/4,
F̂1 ∝ ζ5/2, and ∆ = ∆0 +O

(

γ, (−S)1/6
)

(see the singular branch in Figure 1).
The effect of small finite values of the slenderness parameter α on that sin-

gular behaviour is the topic of the current research.
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