[id:213,1]

Singular solutions of the turbulent boundary layer equations in the case of marginal separation as $Re \to \infty$

B. Scheichl¹ and A. Kluwick¹

¹Institute of Fluid Dynamics and Heat Transfer, Vienna University of Technology, Resselgasse 3, 1040 Vienna, Austria (www.fluid.tuwien.ac.at).

We consider a nominally steady and two-dimensional turbulent boundary layer (BL) of uniform density along a flat surface under the action of an adverse pressure gradient. Classical analysis of the flow in the limit of large Reynolds number, $Re \to \infty$, (a survey is found e.g. in [2]) predicts the well-known asymptotically small velocity defect holding within most of a strictly attached BL. However, as demonstrated in [1], a more general asymptotic approach accounting for a large velocity deficit and, in turn, the possibility of separation apparently requires the existence of a second perturbation parameter, denoted by α . The latter is (i) essentially independent of Re, (ii) serves as a measure for the BL slenderness and is (iii) in fact provided by the empirical constants entering any commonly employed Reynolds shear stress closure.

Including $\alpha \ll 1$ in the theoretical considerations as first put forward by MELNIK (1989), referred to in [1], has the important consequence that the BL thickness remains finite and of $O(\alpha)$ in the limit $Re^{-1} = 0$, which will be considered here. To this end, let x, y, ψ, δ and ℓ denote Cartesian coordinates parallel and normal to the wall, the stream function, the BL thickness and the mixing length, non-dimensional with global reference quantities, respectively. As shown in [1], appropriately scaled variables in the outer part of the BL are $Y = y/\alpha, \Psi = \psi/\alpha, L = \ell/\alpha^{3/2}, \Delta = \delta/\alpha$ which upon substitution into the set of Reynolds-averaged Navier–Stokes equations yield the leading-order problem

$$\Psi_{Y}\Psi_{Yx} - \Psi_{x}\Psi_{YY} = -p_{x} + T_{Y}, \quad p_{x} = -U_{e}U_{ex}, \quad T = L^{2}\Psi_{YY}|\Psi_{YY}|; \\ Y = 0: \quad \Psi = T = 0, \quad Y = \Delta(x): \quad \Psi_{Y} = U_{e}(x,\beta), \quad T = 0,$$
 (1)

where we require that $L \to L_0(x) = O(1)$ for $Y \to 0$, implying $\Psi_Y = U_s + O(Y^{3/2})$. The resulting wall slip $U_s(x,\beta)$ reflects the absence of viscous forces and is assumed to depend on the controlling parameter β used to characterize the potential flow velocity $U_e(x,\beta)$ imposed at the BL edge. Additional sublayers allowing among others to satisfy the no-slip conditions at the wall emerge if the expansions are carried on to higher orders in α and Re^{-1} . Note, however, that

the solution in the outer region which comprises most of the BL is completely determined by (1). Here we are interested primarily in the case that U_s vanishes locally, indicating the onset of separation.

In this connection numerical solutions of (1) have been obtained for retarded flows specified by

$$U_e(x,\beta) = (x+1)^m \left[\beta \left(\exp(-5x^2) - 1\right) + 1\right]; \quad L = I \left(Y/\Delta(x)\right)^{1/2} \Delta(x).$$
(2)

Klebanoff's intermittency factor $I(Y/\Delta)$ was implemented to improve the prediction of the flow near the BL edge. It is expected, however, that other choices of $U_e(x,\beta)$ will not affect the flow behaviour near $U_s = 0$ significantly. Also note that problem (1) admits (in addition to the trivial result $\Psi_Y \equiv U_e$) self-similar solutions $\Psi = \Delta U_e F(Y/\Delta)$, $\Delta \propto x$, for external flows of the form $U_e \propto x^m$, where the exponent m is a function on F'(0) and -1/3 < m < 0, leading to a wall slip $U_s \propto x^m F'(0)$, F'(0) < 1; c.f. [1]. These solutions were used to provide initial conditions at x = 0 for the numerical calculations with $U_e(x,\beta)$ given by (2) which were carried out for a range of values of β ; see Figure 1: If β is sufficiently small the distribution of U_s is smooth, and $U_s > 0$ throughout. However, if the parameter β exceeds a critical value β_{crit} , $U_s(x, \beta_{crit})$ is found to vanish at a single location $x = x_{crit}$ but is positive elsewhere. A further increase of β will cause a breakdown of the calculations accompanied by the occurrence of a weak singularity slightly upstream at $x = x^*$.

A qualitatively similar behaviour of the wall shear in laminar BLs was observed originally by RUBAN (1981), see e.g. [2], and is now commonly referred to as marginal separation. This notion is used also here although the mechanism leading to separation is vastly different from the laminar counterpart.

Figure 1: Distributions of U_s and Δ near $x = x_{crit}$.

To study the local flow behaviour near $x = x_{crit}$ the pressure gradient is expanded as $p_x = P_0 + \epsilon + P_1 s + \ldots$ for $s \to 0_{\mp}$ where $s = x - x_{crit}$, $\epsilon = \beta - \beta_{crit} \ll 1$. We first focus on the case $\epsilon = 0$. Since Δ assumes a finite value Δ_0 at $x = x_{crit}$ one infers that $L_0 \to L_{00}$ as $s \to 0$. The balance (1) is retained in flow regimes II \mp , see Figure 2. There the appropriately rescaled local quantities $\eta = y/(L_{00}^{2/3}(\mp s)^{1/3}), f = \Psi/(L_{00}^{2/3}P_0^{1/2}(\mp s)^{5/6})$ suggest the expansions

$$f = f_0(\eta) + (\mp s)^{\lambda} \ln^{\nu}(\mp s) f_{1\mp}(\eta) + \dots ; \quad \mp 1/2 {f'_0}^2 \pm 5/6 f_0 f''_0 = -1 + ({f''_0}^2)' . \quad (3)$$

The solutions of the resulting differential equations for $f_0, f_{1-}, f_{1+}, \ldots$, supplemented with boundary conditions following from (1) are sought subject to the requirement of sub-exponential growth for $\eta \to \infty$, in order to provide a match to the solution in the regimes I \mp . In case of the upper sign, i.e. $x < x_{crit}$, a numerical treatment indicates that the only acceptable solution of the nonlinear leading-order equation for f_0 is given by $f_0 = 4/15 \eta^{5/2}$. It expresses the balance between pressure and Reynolds shear stress gradient at the surface for regularly vanishing U_s as $s \to 0_-$. In contrast, numerical calculations for the lower sign, i.e. $x > x_{crit}$, indicate the existence of a further solution having $f'_0(0) \doteq 1.1835$ and $f_0 = 4/15\eta^{5/2} + O(\eta^{3/2})$ as $\eta \to \infty$. As a result, the flow exhibits a non-zero wall slip $U_s \sim f'_0(0)(P_0s)^{1/2}$, which is singular at $s = 0_-$. Hence, the convective term in (1) evaluated at Y = 0 jumps from 0 to $U_s U_{sx} \sim P_0 f'_0(0)^2/2$ at $x = x_{crit}$. However, for s < 0, the behaviour of U_s is fixed by the homogeneous solution f_{1-} of a linear problem implying the well-known Kummer's equation, together with the inhomogeneous problem arising due to terms of $O(\nu(-s)^{\lambda} \ln^{\nu-1}(-s));$ c.f. (3). Non-exponential growth as $\eta \to \infty$ is provided if $\lambda = 1/2, 3/2, \ldots$ and $\nu = 0$. In turn, the expected linear behaviour $U_s \sim -c s$, with c > 0, is revealed.

Finally, in regimes I \mp where Y = O(1) expansions $\Psi = \Psi_0(Y) + (\mp s)^{r_{\mp}} \Psi_1(Y) + \dots, r_- = 1, r_+ = 1/3$, hold. In turn, $\Delta \sim \Delta_0 + O((-s)^{r_{\mp}})$; c.f. Figures 1, 2.

Figure 2: Asymptotic splitting near Figure 3: Bifurcating distributions of $x = x_{crit}$ as $\epsilon \to 0$; broken lines: $\epsilon = 0$. \hat{U}_s , determined by solving (6).

Note that regular terms reflecting the smooth behaviour of p_x have been disregarded since Ψ is near $x = x_{crit}$ mainly governed by local eigensolutions as discussed so far. Therefore, in the case $\epsilon \neq 0$, the above structure for s < 0 is perturbed solely due to regular terms, associated with $\lambda = -1/2$ in (3), which cannot explain the excitation of the singular downstream solution as the regular one is obviously suppressed, see Figure 1. However, inspection of the results for $x < x_{crit}$ indicate that the contributions resulting from f_0 and f_1 become of the same size if $\eta \sim (-c^2 s)^{1/3}$, c.f. (3), forcing the formation of a new sublayer III– (see Figure 2), where singular eigensolutions may arise. Introducing the scaled quantities $\hat{\eta} = \eta/(-c^2 s)^{1/3}$, $\hat{f} = f/(-c^2 s)^{5/6}$, it follows that

$$\hat{f} = \hat{f}_0(\hat{\eta}) + O(-s) + \epsilon(-s)^{\mu} d \exp[-\chi/(c^2 s)] g(\hat{\eta}) + \dots, \ \hat{f}_0 = 4/15 \ \hat{\eta}^{5/2} + \hat{\eta} \ ; \ (4)$$

$$\chi \left[(1+2/3\,\hat{\eta}^{3/2})g' - \hat{\eta}^{1/2}g'' \right] = 2\left(\hat{\eta}^{1/2}g\right)', \ g'(0) = 1, \ g(0) = g''(0) = 0.$$
 (5)

Thus, the unknown constant d > 0 measures the perturbation of U_s . A numerical investigation shows that problem (5) allows for an eigensolution g exhibiting non-exponential growth as $\hat{\eta} \to \infty$ solely if $\chi = 1/3$. Only in that case the solution is found analytically. It reads $g = 2/3 \hat{\eta} \exp(-z) + (2/9)^{1/3} \hat{f}'_0(\hat{\eta}) \int_0^z t^{-1/3} \exp(-t) dt$ where $z = 2/9 \hat{\eta}^{3/2}$. An analogue study of the inhomogeneous higher-order problem for the contribution of $O((-s)^{\mu-1} \exp(-\chi/s))$ to the expansion (4) gives the single value $\mu = -9/5$. In turn, the perturbation g provokes exponentially small disturbances $\propto \epsilon f'_0$ and $\propto \epsilon \Psi'_0$ in the flow regimes II– and I–, respectively.

Expansion (4) ceases to be valid within region IV, Figure 2. Here we define appropriate variables X, $\hat{Y} = Y/(L_{00} \hat{\epsilon})^{2/3}$ and $\hat{\Psi} = \Psi/(P_0^{-1/2} L_{00}^{-2/3} \hat{\epsilon}^{5/3})$ where

$$-cs = \hat{\epsilon} - \hat{\epsilon}^2 c X, \quad c\hat{\epsilon} = -\chi \left(1 - \mu \ln(-c^2 \ln |d\epsilon|/\chi) / \ln |d\epsilon|\right) / \ln |d\epsilon|.$$

Substitution into (1) yields to leading order the reduced problem

$$\hat{\Psi}_{\hat{Y}} \hat{\Psi}_{\hat{Y}X} - \hat{\Psi}_X \hat{\Psi}_{\hat{Y}\hat{Y}} = -1 + \hat{T}_{\hat{Y}} , \ \hat{T} = (\hat{\Psi}_{\hat{Y}\hat{Y}})^2 ; \ \hat{\Psi}|_{\hat{Y}=0} = \hat{\Psi}_{\hat{Y}\hat{Y}} = 0 , \hat{T}|_{\hat{Y}\to\infty} \sim \hat{Y} ; \ \hat{\Psi}|_{X\to-\infty} \sim \hat{f}_0(\hat{Y}) + j g(\hat{Y}) \exp(\chi X) , \ j = \pm 1, 0 ,$$

$$(6)$$

which has to be solved numerically. The distributions of the rescaled wall slip $\hat{U}_s = \hat{\Psi}_{\hat{Y}}|_{\hat{Y}=0}$ are depicted in Figure 3. In the subcritical case $\epsilon < 0$, i.e. j = +1, the solution of (6) asymptotes to the non-trivial downstream solution $\Psi \sim L_{00}^{2/3} P_0^{1/2} f_0(\eta)$, holding in region II+, for $X \to \infty$, c.f. Figures 2, 3. Likewise, analysis of the flow regime I+ reveals that $\Delta - \Delta_0 = O(X^{1/3})$ as $X \to \infty$ there. For j = 0 the solution of (6) is $\hat{\Psi} = \hat{f}_0(\hat{Y})$, which corresponds to the critical case $\epsilon = 0$. In the supercritical case $\epsilon > 0$, that is j = -1, the solution breaks down at a distinct location $X = X^*$, i.e. $x^* < x_{crit}$ in the original scaling.

Again, this behaviour is examined by means of a local analysis: Introducing appropriate local variables $S = X - X^* \to 0_-, \zeta = \hat{Y}/(-S)^{1/3}, \hat{F} = \hat{\Psi}/(-S)^{5/6}$:

$$\hat{F} = \hat{F}_0(\zeta) + (-S)^{\sigma} \hat{F}_1(\zeta) + \dots; \quad -1/2 \, \hat{F}_0^{\prime 2} + 5/6 \, \hat{F}_0 \hat{F}_0^{\prime \prime} = -1 + \left(\hat{F}_0^{\prime \prime 2}\right)^{\prime}$$

Here the leading-order term $\hat{F}_0 = 2^{1/2} \zeta$ gives rise to a GOLDSTEIN-type singularity, i.e. $U_s \sim (-2P_{00} s)^{1/2}$ (c.f. [2]). As the existing limiting profile, $\hat{\Psi}(X^*, \hat{Y})$, of the solution in regime IV cannot be matched to the solution in the region $\zeta = O(1)$, a transition layer is introduced where $\hat{Y} = O\left((-S)^{1/6}\right)$ and inertia terms balance the imposed pressure gradient to leading order. The matching procedure, which concludes the present analysis, then shows that $\sigma = 1/4$, $\hat{F}_1 \propto \zeta^{5/2}$, and $\Delta = \Delta_0 + O\left(\gamma, (-S)^{1/6}\right)$ (see the singular branch in Figure 1).

The effect of small finite values of the slenderness parameter α on that singular behaviour is the topic of the current research.

References

- B. Scheichl. Asymptotic theory of marginal turbulent separation. Doctoral thesis, Vienna University of Technology, 2001.
- [2] H. Schlichting and K. Gersten. Boundary-layer theory. Springer, 2000.