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Abstract

Model Transformations are a key prerequisite for Model Driven Engineering
(MDE) and therefore represent an active research area. Various model transfor-
mation languages are available, whereas the languages can be categorized into
different approaches. Depending on the particular situation, one model trans-
formation approach might be better suited to accomplish the given task than
another approach. Classifications of model transformation languages exist, which
also include a taxonomy of general features a model transformation language may
support. Based on this taxonomy, it is possible to compare model transformation
approaches in order to find out how suitable they are for a given problem. Like
in common object oriented-programming approaches, such as Java, there are
some particular problems which appear repeatedly. For example, it is often
necessary to transform an attribute value in the source model to an object in
the target model. For such cases, it should be considered to solve these prob-
lems in a generic way for improving the reuse of model transformation definitions.

In this thesis, four model transformation languages, namely Atlas Transfor-
mation Language (ATL), SmartQVT, Kermeta, and ModelMorf are evaluated
based on the taxonomy proposed by Czarnecki et al. [5]. These languages are
chosen, because they represent the state of the art approaches for transforming
models in the field of MDE. ATL is a hybrid language mixing declarative
and imperative constructs. Kermeta and SmartQVT act as examples for an
imperative language. More specifically, SmartQVT implements the operational
part of the Object Management Group Query/View/Transformation (OMG
QVT) standard. ModelMorf implements the Relational QVT language and
therefore represents a purely declarative approach.

For the purpose of conducting the evaluation, several model transformation ex-
amples are defined and implemented using the aforementioned languages. These
examples cover model transformation problems appearing in practice, in order
to emphasize the advantages and limitations of the particular language. In the
second part of this thesis, Kermeta is used to implement a library which solves
common problems appearing in model transformations. This library can then be
used in practical transformations for simplifying the development process. Fi-
nally, the results of the evaluation are discussed, in order to propose guidelines
on which model transformation approaches are suitable for which problems.
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Kurzfassung

Modelltransformationen sind die Grundlage für Model Driven Engineering
(MDE) und stellen daher ein aktives Forschungsfeld dar. Es gibt verschiedenste
Modelltransformationssprachen, welche in verschiedene Kategorien eingeteilt
werden können. Abhängig von der jeweiligen Situation, kann ein bestimmter
Modelltransformationsansatz geeigneter als ein Anderer sein, um eine be-
stimmte Aufgabe zu lösen. Klassifikationen von Modelltransformationssprachen
existieren, darin beinhaltet ist auch eine Sammlung von allgemeinen Fea-
tures, welche von Modelltransformationssprachen unterstützt werden können.
Basierend auf dieser Klassifikation ist es möglich, verschiedene Modelltransfor-
mationsansätze zu vergleichen, um herauszufinden, wie geeignet sie für jeweils
ein bestimmtes Transformationsproblem sind. Erste Untersuchungen zeigen,
dass wie in üblichen objektorientierten Programmiersprachen, wie etwa Java,
es bestimmte Problemstellungen gibt, die wiederholt auftreten. Zum Beispiel
ist es oft notwendig, einen Attributwert im Quellmodell zu einem Objekt im
Zielmodell zu transformieren. Für solche Fälle sollte man in Erwägung ziehen,
diese Probleme generisch zu lösen, um die Wiederverwendbarkeit von Modell-
transformationen zu verbessern.

Basierend auf der von Czarnecki et al. vorgeschlagenen Klassifikation [5]
werden in dieser Arbeit vier Modelltransformationssprachen, nämlich At-
las Transformation Language (ATL), SmartQVT, Kermeta und ModelMorf
evaluiert. Diese Sprachen wurden ausgewählt, da sie den momentanen Stand
der Technik für Modelltransformationen im Bereich von MDE repräsentieren.
ATL ist eine hybride Sprache und mischt sowohl deklarative als auch imperative
Sprachkonstrukte. Kermeta und SmartQVT dienen als Beispiele für imperative
Sprachen. Weiters implementiert SmartQVT den Operational Part des Object
Management Group Query/View/Transformation (OMG QVT) Standards.
ModelMorf implementiert den Relational QVT Standard und repräsentiert somit
einen rein deklarativen Ansatz.

Für die Durchführung der Evaluierung, werden mehrere Beispieltransforma-
tionen definiert und mit den zuvor erwähnten Sprachen implementiert. Diese
Beispiele decken Transformationsprobleme ab, die in der Praxis auftreten, um die
Vorteile und Beschränkungen der einzelnen Sprachen aufzuzeigen. Im zweiten Teil
der Arbeit wird mit Kermeta eine Bibliothek implementiert, die wiederkehrende
Problemstellungen, die bei Modelltransformationen auftreten, löst. Diese Biblio-
thek kann dann in der Praxis genutzt werden, um den Entwicklungsprozess von
Transformationen zu vereinfachen. Zuletzt werden die Ergebnisse der Evaluierung
diskutiert, um Richtlinien vorzuschlagen, welche Modelltransformationsansätze
für welche Probleme geeignet sind.
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1 Introduction

1.1 Motivation and Goal of this Thesis

The need for model transformation has risen considerably in the last years.
Model transformation is a key technology in the area of Model Driven Engi-
neering [3], in which models take the part of the central artifact generated in a
software engineering process. Model transformation however can also be used
in other fields than software engineering. A notable example for this is the
transformation of business process models [1].

Model Driven Architecture (MDA) [19], as OMG’s approach to Model Driven
Engineering, also includes model transformation features. For this purpose, OMG
issued a Query/View/Transformation (QVT) Request For Proposal, for which 8
different model transformation languages were developed and presented [15].

As can be seen by the responses to OMG’s QVT Request For Proposal, the
interest in model transformation is very high. Apart from that, many model
transformation approaches have been developed independently. Because of
the sheer quantity of different model transformation languages, it is difficult
to get an overview. Several different main approaches to the problem are
available, such as imperative, declarative, and graphical model transformation
languages. These languages differ considerably in their features and overall usage.

Because of these factors, it is not easy to choose a model transformation
language for a particular situation. For the efficient and cost-effective solution
of a transformation problem, it is crucial to know the requirements for the
transformation language. Once the requirements are clear, it is still difficult to
choose a certain language, simply because so many transformation languages are
available. In order to make a decision, several candidate languages have to be
evaluated against the requirements needed.

In order to gain a better understanding of what is possible with model trans-
formation languages and which features they offer, Czarnecki et al. proposed
a taxonomy of model transformation language features [5]. Based on this
taxonomy, four different model transformation languages are evaluated in this
thesis. Their feature support is assessed and discussed. The goal of this thesis
is to offer guidance in choosing a model transformation language for a certain
transformation project.



1 Introduction 10

1.2 Related Work

This thesis is set in the field of Model Driven Engineering with its most
prominent protagonist Model Driven Architecure, with the focus set on model
transformation. Several other papers and theses are also set in the field of model
transformation languages.

• In [1], Altan discusses one particular model transformation approach,
namely Triple Graph Grammars. The focus lies on the transformation of
business process models.

• In [31], Schäfer compares several different transformation languages for
their suitability for model based user interface design.

• In [39], Wimmer et al. discuss CAR mappings, including often occurring
model transformation patterns. The transformation patterns discussed in
Section 10 are based on the patterns introduced in this paper.

Although not set in the field of model transformation, de Jonge et al. [6]
present a framework for program transformation. In this paper, XT is discussed,
which combines several existing program transformation libraries into a reusable
framework.

1.3 Structure of this Thesis

The subsequent chapters are structured as followed:

• In Chapter 2, an introduction to model transformation in general is given.
The role of model transformation as part of MDA is explained. Further
different applications and model transformation approaches are discussed.

• Chapter 3 contains the criteria catalogue, which is later used to evaluate
the model transformation languages in this thesis. All features evaluated
are explained, and possible values are listed.

• Chapter 4 explains the sample transformations which are later implemented
using different model transformation languages. The transformation
ooclass2table is an example for a simple transformation, whereas epc2ad is
more sophisticated.
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• Chapters 5 to 8 discuss the four model transformation languages evaluated
in this thesis, namely ATL, SmartQVT, Kermeta and ModelMorf. First,
an introduction to each language is given, followed by an explanation of the
language’s core features and user interface. After that, the implementation
of the two sample transformations described in Chapter 4 is presented,
followed by a overall summary on the respective language.

• Chapter 9 contains the evaluation results, based on the features of the
criteria catalogue in Chapter 3. For every group of features, a table lists
the feature support of all languages evaluated. Additionally, the results are
discussed at feature group level. Finally, the lessons learned are discussed.

• Chapter 10 documents KLRT, the Kermeta Library for Reusable Transfor-
mations. An introduction and motivation on recurring model transforma-
tion patterns is given. The patterns implemented by KLRT are explained,
followed by a description of the implementation of KLRT. Finally, a sample
transformation is implemented using KLRT and plain Kermeta, and the
differences are discussed.

• Chapter 11 provides a summary of this thesis and gives an outlook on
further work.
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2 Introduction to Model
Transformation

2.1 Model Transformation as Part of MDA

MDA is an approach for using models in software development [28], thereby the
model is seen as the primary artifact of the software development process. Model
transformation is a key part of MDA, because it used to derive one model from
another, and for closing the gap between problem-oriented description and its
implementation.

Figure 2.1: Model Transformation Pattern based on [25]

The basic idea and coherence of MDA and model transformation can be seen
in Figure 2.1. The most basic entity is the meta-metamodel, as can be seen at
the top of the illustration. This layer of the hierarchy is also called M3-layer. The
meta-metamodel only contains basic elements, which are sufficient for specifying
metamodels. In MDA, which is the model driven engineering approach by OMG,
MOF [16] is used as meta-metamodel. The two packages, which together build
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MOF, namely Essential MOF (EMOF) and Complete MOF (CMOF) are also
self-specified, which means the EMOF is described using EMOF, and CMOF is
described using CMOF [16].

Using a meta-metamodel like MOF, metamodels can be specified. Metamodels
reside at the M2-layer of the MDA metamodeling stack (MM1 and MM2 in Fig-
ure 2.1) and are valid instances of M3-layer meta-metamodels. Metamodels are
usually used as basis for creating models, which are meant to be representations
of real-world entities. A widely known and used example for a metamodel is
the UML metamodel, which consists of the UML Infrastructure [29] and UML
Superstructure [30]. Besides these metamodels, another metamodel resides on
layer M2, which is specific for model transformation, namely MMT. MMT de-
notes the metamodel of the model transformation language used. Although most
transformation languages use textual syntax rather than MOF-based models,
many model transformation languages still are specified using a meta-metamodel
like MOF, like it is the case with QVT [17] and ATL [20]. In such cases, the
textual representation is interpreted as concrete syntax.

On the layer M1, the models themselves, in this case Model1 and Model2, can
be found. These models directly represent real-world (M0) entities. In practice
this may be UML models, business process models etc. Models at the M1 layer
are able to use constructs defined in the metamodels at level M2. From a model
transformation point of view, a specific transformation also resides at this layer,
because it is an instance of a model transformation language metamodel, and
therefore uses the features provided by the metamodel. A model transformation
uses models at the same layer as input and output models. For example, a model
transformation written in QVT is conform to the QVT metamodel at layer M2
and operates on models at layer M1, which themselves again are conform to
other metamodels at layer M2 (e.g. UML metamodel and relational database
metamodel).

2.2 Applications for Model Transformation

In the following, different usage scenarios for model transformation are explained.

2.2.1 Horizontal Model Transformation

A horizontal model transformation is a transformation, where the source model
and the target model belong to the same abstraction level [27]. An example for
this particular type of transformation is refactoring, because the target model
marks a change in internal structure compared to the source model, but without
altering the abstraction level of the model.

2.2.2 Vertical Model Transformation

The opposite of horizontal model transformation is vertical model transforma-
tion. In this case, different levels of abstraction are used in the source and target
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model [27]. It is also called refinement, because additional information is added,
resulting in decreasing the abstraction level of the target model. On the other
hand, information could be removed from the source model to create a more
abstract target model.

The transformation of platform independent model to platform specific
model [28] is a typical case of a vertical transformation, because both input and
output model are on different levels of abstraction. Platform specific information
is added to the target model (denoted by the blank rectangle in Figure 2.2)
during the transformation, thus lowering the abstraction level. The platform
specific information may also be called platform description model, or PDM
abbreviated [14], especially if the platform specific information is placed in a
separate model. In this case, a model transformation language which supports
multiple source models and target models is mandatory. On the other hand,
it is also possible that the platform specific information is contained within
the transformation itself, and no additional input model besides the platform
independent model is read.

Figure 2.2: Transformation from PIM to PSM [28]

Code expressed in a specific programming language can also be interpreted
as a model conforming to a metamodel(see [21]). From this perspective, code
generation from models in MDA, also known as Model2Code, can also be seen
as vertical model transformation, because abstract information contained in the
source model is transformed to a more concrete model, namely the generated
code.

2.2.3 Endogenous Model Transformation

Transformations which affect models expressed in the same language are called
endogenous. Both source and target models conform to the same metamodel [27].
Examples for endogenous transformations include optimization or refactoring.
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2.2.4 Exogenous Model Transformation

Contrary to endogenous transformations, exogenous transformations are ex-
pressed between models conforming to different metamodels. Exogenous
transformations can also be called translations, because it is focused on the
mapping of a model in different metamodels.

An important example for exogenous transformations is code generation, or its
opposite, reverse engineering. During code generation, a model conforming to
a specific metamodel is translated to its equivalent expressed in another meta-
model. For example, a UML Class Diagram can be translated to Java code.
The translation of Java code into UML Class Diagram is an example for reverse
engineering.

2.2.5 Summary of Usage Scenarios

Horizontal/vertical transformations and endogenous/exogenous transformations
to not contradict and exclude each other. In fact they can be considered as
two orthogonal dimensions, as can be seen in Table 2.1. The table shows usage
scenarios for all possible combinations between the two dimensions.

Horizontal Vertical
Endogenous Refactoring Formal refinement
Exogenous Language migration Code generation

Table 2.1: Horizontal/Vertical and Endogenous/Exogenous Transformations [27]

Refactoring

Refactoring is an instance of horizontal and endogenous transformation, because
the same level of abstraction is kept in the source and the target model, and the
language of both source and target models also stays the same. Refactoring is
used to improve the quality of a certain model, without changing its behavior.

Formal Refinement

Formal refinement adds information to a given model. Therefore the level of
abstraction lowers, because the information in the model gets more specific (ver-
tical transformation). On the other hand, the language and metamodel of the
target model remains unchanged in comparison to the source model (endogenous
transformation).

Language Migration

In language migration, the source model is transformed to another language (ex-
ogenous transformation). The model semantics however are preserved, resulting
in the same level abstraction as in the source model (horizontal transformation).
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Code Generation

Code generation lowers the level of abstraction in the target model, because
the code generated is more specific and verbose than its source model. (vertical
transformation). Obviously, also a shift in the language between source and target
model occurs (exogenous transformation).

2.3 Classification of Model Transformation
Approaches

Numerous different model transformation languages exist nowadays. Many of
them follow different approaches, but often share some similarities. Parallels to
classic programming languages can be drawn, because all of them were developed
for different purposes having different goals in mind. The same issue applies to
model transformation languages.

For this reason, it is possible to establish a list containing major features
which are useful in a model transformation setting. The following taxonomy of
model transformation language features is based on [5].

Even at the highest level, several approaches to model transformation exist.
The distinction among them can be compared to the different paradigms in
programming languages. Because of the fundamental differences between the
approaches, many lower-level features make more sense in one particular language
than in another. In literature, no clear distinction has prevailed. Depending of
the focus of the respective classification, other categories are choosen. Different
top-level taxonomies can be found in [5], [24], or [27]. Additionally, some of
the proposed approaches do not contradict each other. In some cases it is
possible, that the basic idea of several approaches is similar, but the languages
set the focus on different goals. For example, both graphical and textual model
transformation languages can be declarative, as it is the case with Triple Graph
Grammars [2] or ATL. Moreover, some approaches also incorporate techniques
from others. A common example are declarative languages, which also support
imperative statements. Because of the mixing of different paradigms, they are
called hybrid approaches.

In the following, a top-level distinction of model transformation approaches
is given. Only dedicated model-to-model transformation languages are taken
into consideration. The categories reflect the most prominent language paradigm
addressed by the respective language. The distinction is mainly based on [5].

2.3.1 Direct-Manipulation

Direct-manipulation techniques to model transformation consist of a general
purpose programming language and an API which provides access to model and
metamodel data. A popular example for this approach is Java in connection
with Java Metadata Interface (JMI). JMI provides an MOF-based infrastructure



2 Introduction to Model Transformation 17

for the creation, storage, access, discovery, and exchange of metadata [33].
In fact, programming languages which are not primarily intended for model
transformation can be used for that purpose if an API for accessing model and
metamodel data is available [4].

When using a direct-manipulation approach, it is not necessary to get famil-
iar with new development tools and a different language syntax. The complete
transformation is written in the language given. Therefore all language constructs
available can be used to perform the transformation. In most cases however, the
language used is not primarily intended for model transformation. This results
in many missing features typically used in a model transformation setting.

2.3.2 Imperative

Imperative (also called operational [5]) approaches to model transformation
are very similar to the imperative paradigm in programming languages. From
a model transformation point of view, the imperative approach is also similar
to direct-manipulation . However, the languages in this category offer a more
advanced support for model transformation features, without having to use an
external API.

A well-defined control flow exists, which means that all statements in the
transformation code are executed in order. Imperative model transformation
techniques focus on how the transformation has to be executed, contrary to the
what of declarative approaches [27].

Many constructs which exist in languages like Java are available in imperative
model transformation languages, including for example statements which alter
the program flow (conditions, loops), or subroutines.

Because of the similarity to conventional programming languages, imperative
model transformation languages are easier to learn for experienced program-
mers. Many constructs and ways of thinking can be directly applied that way.
Because of the widespread control the programmer has over the transformation
execution, it is also possible to implement transformations in a very efficient
way. Furthermore, complex transformations can be specified more easily than
with other approaches. For this reason, some model transformation languages,
such as ATL, provide imperative style constructs besides their main approach.

On the downside, imperative approaches suffer from more overhead code than
other approaches. Many issues have to be accomplished in an explicit way. This
however goes hand in hand with the flexibility and control the developer has
over the transformation. Simpler parts of the transformation have to be written
using more code than what is necessary for example in a declarative language,
resulting in less readable code. If loading and saving of input and output models
also has to be done in an explicit way, even more code has to be written. This
can be observed in Chapters 6 and 7, where the code for loading and saving a



2 Introduction to Model Transformation 18

model in Kermeta needs approximately as many lines of code as nearly the whole
transformation in SmartQVT.

2.3.3 Declarative

Declarative (also called relational [5]) approaches focus on what the transfor-
mation has to accomplish [27]. The developer specifies how the elements in the
source and target model relate to each other. For this purpose, constraints,
for example in OCL, can be specified as well [5]. Contrary to imperative
approaches, control flow and rule order is not explicit. Therefore, procedural
details of the transformation are hidden, which results in a smaller amount of
code necessary. Because the transformation code is more compact, and consists
of less how details, it is easier to comprehend. This applies especially for simpler
transformation problems, which therefore are faster and easier to implement
than in imperative model transformation languages.

Additionally, some declarative approaches support bidirectionality, which
means that source and target models can be transformed in either way using
the same transformation specification. This is hardly possible in imperative
approaches.

On the other hand, more complex transformations are harder to specify in
declarative model transformation languages, because they are not a expressive
and give the developer less control as imperative languages.

Declarative model transformation languages can be further divided into several
categories [27]. Functional approaches for example are oriented on functional-
style programming languages. Also, graph transformation languages are often
considered declarative as well.

2.3.4 Hybrid

All model transformation approaches described above have their strengths and
shortcomings. Imperative approaches are very powerful, but also very verbose,
and therefore harder to read and understand. Declarative languages on the other
hand may not be suitable for complex transformation tasks. For this reason,
some languages incorporate concepts of more than one model transformation
approach. This makes it possible to use the advantages of more than one
paradigm, and weaknesses can be compensated.

Despite the multi-paradigm idea, these languages often concentrate on one
approach and only use other concepts to address situations, in which the main
approach is not very suitable. A popular example is ATL, which primarily
uses a declarative approach, and encourages the developer to use declarative
style whenever possible. For transformation problems which can only be solved
difficult (if at all), ATL also offers imperative code blocks.
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As seen in the example in Listing 2.1, ATL uses a do block to include
imperative code. The attribute name is copied to the target model using usual
ATL declarative syntax. The target model element also has an attribute cnt,
which is unique for every element in the model, and therefore is incremented
every time a model element is created. This is accomplished using the do block,
which denotes imperative code in ATL.

Listing 2.1: Mixing Declarative and Imperative Code in ATL

1 helper def : cnt : Integer = 0;
2
3 rule Function2Activity {
4 from
5 f : EPC!Function
6 to
7 a : ActivityDiagram!Activity (
8 name <- f.name
9 )

10
11 do {
12 thisModule.cnt <- thisModule.cnt + 1;
13 a.cnt <- thisModule.cnt;
14 }
15 }

2.3.5 Graph Transformation

Graph transformation based approaches interpret models from a graph theoretical
point of view. Model elements and their relationships are seen as graph vertices
and edges. Graph transformation rules have a left hand side, and a right hand
side, which correspond to the source and target model of the transformation [5].
This concept is similar to the relations in declarative approaches, therefore graph
transformation is sometimes considered a subcategory of declarative approaches,
for example in [27].

Graph-based does not necessarily mean that the transformation is specified
in a visual way. As described above, graph refers to the theoretical foundation
used in these approaches. However, many graph-based model transformation
languages use a visual notation for specifying the transformation.

A particular example for graph-based transformation approach are Triple
Graph Grammars (TGG), introduced by Andy Schürr [32]. Triple Graph
Grammar rules use an additional third subgraph, called correspondence graph,
which elements are linked to the source and target elements logically connected.
From a model transformation point of view, the correspondence graph holds the
tracing information of the transformation.
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Figure 2.3: An Example Rule using Triple Graph Grammars

Figure 2.3 illustrates an example usage of graph-based transformations. This
rule defines how events and edges relate to each other.
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3 Criteria Catalogue

In this chapter, a criteria catalogue of model transformation language features
is defined. It is based on the features presented in [5] and divided into several
categories, which represent top-level model transformation features. These are
then divided further.

Top level feature Table
Transformation Rules 9.1
Rule Application Control 9.5 and 9.6
Rule Organization 9.7
Source-Target Relationship 9.8
Incrementality 9.9
Directionality 9.10
Tracing 9.11

Table 3.1: Top-level Features

3.1 Transformation Rules

Transformation rules can be understood as the smallest unit of a transformation
[5]. Depending on the specific model transformation approach, a transformation
rule can be a rewrite rule with a left-hand and right-hand side (declarative),
but for example also a procedure (imperative). Transformation rules itself is
not a criteria which can be met oder not, because their support in a language
has to be included obviously. It is divided into several subcriteria, do describe
how exactly a particular model transformation languages implements the concept
transformation rule.

3.1.1 Syntactic Separation

A model transformation offering syntactic separation clearly separates the parts
of a rule operating on different models [5]. In declarative approaches, this is
the case in lefthand and righthand sides of a rule. In imperative approaches,
however, the distinction between the models involved is not that clear.

Possible values: [Yes | No]
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3.1.2 Multidirectionality

Multidirectionality describes the possibility to execute a rule in different direc-
tions. This criteria can hardly be fulfilled by imperative or direct-manipulation
based approaches, because they describe the transformation step-by-step in an
algorithmic way.

Possible values: [Yes | No]

3.1.3 Application Condition

An application condition describes conditions that can be attached to rules. The
rule is only executed if the condition evaluates to true.

Possible values: [Yes | No]

3.1.4 Intermediate Structures

Intermediate structures are built by the model transformation language in order
to accomplish the transformation. These informations are usually not part of
the models transformed and can be persisted. Traceability links are an example
for intermediate structures.

Possible values: [Yes | No]

3.1.5 Reflection

Reflection allows transformation rules to access the transformation themselves.

Possible values: [Yes | No]

3.1.6 Aspects

Aspects denote the support of concepts found in aspect oriented programming,
for example weaving and crosscutting.

Possible values: [Yes | No]

3.1.7 Domain

Domains denote parts of a rule for accessing the models involved in the trans-
formation. Usually, this means source and target models. In some cases, several
domains are possible, for example model merging or model weaving [5].

Domain Language

Domain languages describe the structure of a domain and thus its models. For
this reason, the domain language is the metamodel a certain model conforms to.
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Possible values: domain languages (for example MOF, EMF)

Static Mode

This feature is interpreted differently as in [5]. No distinction between in and out
is made, because usually both are available in model transformation approaches.
Therefore the feature option separate is introduced, denoting that a given domain
can only be input or output.

The static mode of a domain can have one of the following values:

• separate. Domains acts as either as input (source) or output domain.

• in/out. In multidirectional approaches, domains act both as input and
output domains.

Dynamic Mode Restriction

Dynamic mode restriction enables the changing of the static modes described
above. For example, a particular model transformation language could allow to
restrict an in/out domain to only in at runtime.

Possible values: [Yes | No]

Typing

Typing refers to the way variables and types are classified in the respective
model transformation language. It can either be untyped, syntactically typed or
semantically typed. A model transformation language using syntactical typing
has to detect at compile-time if values of incompatible data types are assigned
to each other (for example a string value to an integer).

Possible values: [untyped | syntactically | semantically]

Body

The feature Body consist of three subcategories.

• Variables. Variables contain model elements of the models involved in the
transformation.

Possible values: [Yes | No]

• Patterns. Patterns are model fragments containing variables [5]. The struc-
ture of patterns can be either String, Terms or Graphs. The syntax can
be abstract or concrete, where the last can be further divided in textual or
graphical.

• Logic. Logic is divided in the following three sub-features:
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– Language Paradigm. This describes the language paradigm the par-
ticular model transformation approach uses. Possible paradigms are
Object-oriented, Functional, Logic Procedural, or Hybrid.

– Value Specification. Value specification can be either Imperative as-
signment, value binding or constraint.

– Element Creation. Elements in the target model can be created im-
plicit or explicit.

3.1.8 Parameterization

The three subfeatures of parameterization denote, what kind of values can be
specified as parameters.

Control Parameters

This is the simplest case, only values can be passed as parameters.

Possible values: [Yes | No]

Generics

Generics enable the passing of data types as parameters. This is very similar to
generics in C++ or Java.

Possible values: [Yes | No]

Higher-order Rules

Higher-order rules allow the use of rules themselves as parameters.

Possible values: [Yes | No]

3.2 Rule Application Control

Rule application control is used to determine the rule application locations.
The rule application strategy can be either deterministic, non-deterministic

or interactive. A deterministic rule application strategy uses for a example a
traversal strategy. On the other hand, One-point non-deterministic strategy
applies a rule to a non-deterministically selected location, whereas concurrent
strategy applies the rule to all matching locations concurrently.

Rule scheduling defines in which order the respective rules are applied.

3.2.1 Form

The rule order can be specified in an implicit or explicit way. In an implicit
rule scheduling order, the developer has no direct control over the order in which
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the rules are applied. The opposite is the case with explicit rule scheduling.
Explicit scheduling can be either internal or external. Using internal explicit rule
scheduling, the developer can call other rules within rules. On the other hand,
in external rule scheduling, the execution order of the rules can be specified
separated from the rules themselves.

3.2.2 Rule Selection

Rule selection denotes how rules to be executed are selected. A particular model
transformation approach can offer any of the following selection possibilities:

• Explicit Condition

• Non-deterministic

• Conflict resolution

• Interactive

3.2.3 Rule Iteration

Rule iteration can be either one of the following values:

• Recursion

• Looping

• Fixpoint Iteration

3.2.4 Phasing

Phasing is the ability of organizing the transformation into several phase, where
each only certain rules can be executed.

Possible values: [Yes | No]

3.3 Rule Organization

Rule organization includes features which deal with composing and structuring
of transformation rules.

3.3.1 Modularity Mechanisms

Modularity mechanisms allow to group several rules. This is similar to the
packaging mechanism in UML and Java.

Possible values: [Yes | No]
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3.3.2 Reuse Mechanisms

Reuse mechanisms address techniques which enable reusing of rules or modules.
Some approaches for example allow rule inheritance, where one rule extends the
behavior of another rule. Also, logical composition is possible.

3.3.3 Organizational Structure

Organization structure describes how rules are generally organized. For example,
a source-oriented organizational structure organizes rules according to the source
metamodel.

Possible values are:

• Source-oriented

• Target-oriented

• Independent

3.4 Source-Target Relationship

Source-Target relationship denotes how target model elements are created from
source model elements.

3.4.1 New Target

Model transformation languages using the new target approach of source-target
relationship always create a new target model from the source model.

3.4.2 Existing Target

Some model transformation approaches allow the manipulation of already existing
target models. In this way, existing model elements can be updated by deleting
and recreating them (destructive) or by extension only, where target model el-
ements can not be deleted. In-place manipulation of existing targets element is
used, when source and target model are both the same model [17].

3.5 Incrementality

3.5.1 Target-Incrementality

Target-incrementality enables the updating of the target model incorporating
changes in the source model, without rebuilding the whole target model. This
feature is the same as described in Section3.4.2.
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3.5.2 Source-Incrementality

Source-incrementality aims to minimize how many source elements have to be
rechecked upon an incremental model transformation. This feature can be com-
pared to incremental compiling [5].

3.5.3 Preservation of User Edits in the Target

This feature denotes the ability to preserve changes made by users in the target
model. In a code generation setting for example, the method code implemented
by a developer is left untouched upon incremental code generation.

3.6 Directionality

The directionality of a model transformation language can either be unidirectional
or multidirectional. Unidirectional languages allow only transformations from
one particular source model to another particular target model. Multidirectional
approaches however also allow the transformation back form the target model
to the source model. This can be accomplished using rules which allowing a
multidimensional mapping definition (see also Section 3.1), or by implementing
the rule separately for each direction [5].

3.7 Tracing

The connection of source and target models in a model transformation is called
tracing. It establishes links between a source model element and its correspond-
ing target element. Not all model transformation languages offer built-in support
for tracing. In most languages not support it, tracing can be implemented by
the developer however.

In case of a dedicated tracing support, the language can either create the
traceability information automatically (possibly tunable), or the developer has
to establish the tracing links himself.

The tracing information created can be stored in the source or target model
itself, or separately.

Possible values: [Yes | No]
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4 Running Model Transformation
Examples

Several sample model transformation scenarios are used to compare the trans-
formation languages described. The metamodels are created as Ecore files using
the EMF tree-based editor. For each ecore file, an EMF editor is generated, and
also exported as Eclipse plugin. This is necessary for using the metamodels in
Kermeta and SmartQVT.

4.1 Running Example 1: ooclass2table

Mapping UML-style, object-oriented class schemata to relational database
models can be thought of the Hello World or 99 bottles of beer of model
transformation. This type of transformation is not too complex and can be done
very quickly. On the other hand, it involves more than simple copying of classes
and attributes. Therefore it is very handy to get a fast, first impression of how a
given model transformation technology works.

Figure 4.1: OoclassMM Metamodel

The ooclass2table transformation in this thesis is rather simple, compared
to other, more sophisticated transformations found elsewhere. Classes are
contained in an instance of the class ooclassMMContainer. Every class has
several attributes, which have a name, a datatype and can be identifying.
Classes can also have references to other classes. Advanced features, such as
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user defined data types, generalization, containment etc. are not incorporated,
for simplicity’s sake. It is also notable, that it is always assumed that only one
identifying attribute exists per class.

Figure 4.2: TableMM Metamodel

The transformed class model roots in an tableMMContainer element, which
itself contains tables. Every table has a name and several columns. These columns
are created in several different ways:

1. Non-identifying attributes of the source class are simply copied from the
ooclass-model.

2. Identifying attributes get copied as well, but are furthermore marked as
primary key in the table model.

3. References to other classes cause a foreign key column in the referenced
class.

In other words, columns can not be created in a single step. It is necessary
to create columns depending on the containing attributes of a class, but also
depending on the references a class has. This can be solved for example by
calling a rule for each reference a column has. This called rule has to find out
the identifying attribute of the class given, which can generally be solved with
OCL expressions.

Additionally, datatypes are mapped as well. Any given datatype expressed
as string which is not included in this table, is simply mapped as-is. Table 4.1
describes the mapping.
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ooclassMM tableMM
String VARCHAR(30)
Integer INT
Double DOUBLE
Date DATE

Table 4.1: Mapping of Datatype in Ooclass2table

4.2 Running Example 2: epc2ad

The Mapping of event-driven process chains to UML activity diagrams is an
example for a transformation of behavioral models, opposed to structural mod-
els like in ooclass2table. This transformation is more complex than ooclass2table.

Figures 4.3 and 4.4 show the respective metamodels used in the example
transformation of this thesis. It should be noted, that they do not mean to
reproduce an exact metamodel covering all features of the respective business
process modeling language. Both only consider a subset of the model elements
available. For example, the organizational and data view are missing in the
event-driven process chain metamodel, and the activity diagram metamodel
does not include activity partitions. Further, activityFinalNode and initialNode
are subclasses of activity, which is not the case in reality. Additionally, the
metamodels do not guarantee absolute correctness of the result models. For
example, in event-driven process chains, functions and events always have to
follow another alternating. This constraint is not included in the metamodel. In
this thesis, it is modeled that way to simplify the transformation.

The aim of the design of both metamodels is to emphasize the challenging
parts of a possible epc2ad transformation.

In both metamodels, a single container elements exists, which holds abstract
items. All other elements of the respective metamodel are subclasses of item,
and are therefore included in the model container element.

As can be seen in both metamodels for event-driven process chains and activity
diagrams, there are more classes which have to be transformed, compared to the
ooclass2table transformation described above. Some concepts of these diagrams
can not be mapped in a simple 1:1 class mapping. A notable example is the
mapping of events to edges. Events are nodes in event-driven process chains, but
correspond to edges in activity diagrams. Therefore, the control flow elements
are not needed to be transformed. They are only needed to establish the correct
relationships between the activity nodes involved.

Another interesting aspect are activityFinalNode and initialNode. They do not
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Figure 4.3: EpcMM Metamodel

Figure 4.4: AdMM Metamodel
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have corresponding metaclasses in the event-driven process chain metamodel,
because event-driven process chains always begin and end with events and do
not have such dedicated elements, which mark the beginning and the end of a
diagram. During the transformation, events with no incoming or outgoing edge
have to be identified. Further, an activityFinalNode or initialNode respectively
has to be created as well.

It is also challenging to create the edges and their relationships in a correct
way, because this concept may occur in connection with different other model
elements involved:

• Event followed by Function

• Function followed by Event

• Event, followed by Logical Operator and several Functions

• Function, followed by Logical Operator and several Events

• Several Events, followed by Logical Operator and one Function

• Several Functions, followed by Logical Operator and one Event

Variations which include the use of logical operators imply the creation of one
or more additional edges.
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5 ATL - Atlas Transformation
Language

5.1 Introduction to ATL

ATL is the ATLAS INRIA & LINA research group’s answer to the OMG QVT
request [20]. It can be thought of a hybrid language, which incorporates both
imperative and declarative paradigms. The preferred style however is declarative.
Imperative code should be used to specificity mappings which are rather difficult
to describe in a declarative way.

ATL is a component of the AMMA (Atlas Model Management Architecture)
platform [10]. Other components of AMMA are AM3 (model management),
AMW (model weaving), KM3 (metamodel specification language), and several
others.

5.2 Core Features

ATL is notable for its hybrid approach to model transformation. Most parts of
a transformation to be implemented can be specified in ATL’s declarative style.
Because declarative style code is not as expressive as imperative code, some
model transformation problems are hard to implement by using a declarative-only
approach. Therefore ATL offers also support for imperative code. Imperative
code can be used in do blocks of transformation rules, or completely separated
in helper rules.

ATL offers an updated compiler version, which is called ATL 2006. It offers
several features additionally to the default compiler version. However these fea-
tures are not well documented as of now. Some of the new features are (see [11]):

• several source pattern elements

• rule inheritance

• improved OCL support

• endpoint called rules

The ATL 2006 compiler does create bytecode which is compatible to the ex-
isting ATL virtual machine. Therefore, compiled ATL code using 2006 compiler
features is still compatible with older virtual machine versions. To enable the ATL
2006 compiler, the following comment as seen in Listing 5.1 has to be placed at
the first line of the respective ATL file:
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Listing 5.1: Selecting the ATL 2006 Compiler

1 -- @atlcompiler atl2006

5.3 User Interface

ATL is available as Eclipse plugin. For a developer with experience in Eclipse,
ATL tool support is therefore very familiar. Syntax highlighting, error indication,
and integration with the Eclipse debugger are also very helpful.

Figure 5.1: Editing an ATL File in Eclipse

As seen in Figure 5.1, the ATL development perspective in Eclipse is very
similar to the Java perspective. On the left hand side, the package explorer is
seen. Editor sub-windows are placed in the center pane. At the bottom, the
ATL console is seen. If an error occurs during the runtime of a transformation,
corresponding error messages are written there.
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5.4 Sample Transformations

5.4.1 Solution for ooclass2table

Because of their similar approach, the transformation of ooclass2table is very
similar in ATL and SmartQVT. Although ATL is a hybrid language and supports
both imperative and declarative techniques, the use of declarative code is en-
couraged. This transformation follows that rule and uses mainly declarative style.

ATL automatically chooses the order in which the rules are executed. It is
not necessary for the developer to specify an entry point. In most cases, it is
sufficient to simply write all mapping rules. In the case of ooclass2table, ATL
first executes the rule ooclassMM2tableMM (see Listing 5.2), because this rule
applies to the root model element of the source model.

The root elements of both metamodels can be easily mapped, which is done
using the declarative rule ooclassMM2tableMM in ATL.

Listing 5.2: ooclass2table in ATL: Rule ooclassMM2tableMM

1 rule ooclassMM2tableMM {
2 from
3 c:ooclassMM!ooclassMMContainer
4 to
5 t:tableMM!tableMMContainer (
6 name <- c.name ,
7 tables <- c.classes
8 )
9 }

Classes are basically copied to the target model without modification, however,
additional columns are created using the lazy rule ref2column. As can be seen,
ATL keeps already mapped columns and does not overwrite them during the
second rule which creates columns. Therefore, ATL implicitly performs a union
operation whenever the same target element is mapped multiple times, instead
of overwriting already created target model elements.

Listing 5.3: ooclass2table in ATL: Rule ooclass2table

1 rule ooclass2table {
2 from
3 c:ooclassMM!ooclass
4 to
5 t:tableMM!table (
6 name <- ’tbl_ ’+c.name ,
7 columns <- c.attributes ,
8 columns <- c.references ->collect(e|thisModule.

ref2column(e))
9 )

10 }
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The rule ooclass2table shown in Listing 5.3, also calles the lazy rule ref2column
for creating the foreign key columns. For this purpose, all references are collected
and the lazy rule is executed for each class which is referenced.

Attributes can also be easily mapped to columns, which is shown in Listing 5.4.
The only difference between source and target model element is the attribute type.
The datatype attribute is a string in both ooclass and table metamodels, however,
they have different values (see Table 4.1). This mapping is done using the helper
dbType.

Listing 5.4: ooclass2table in ATL: Rule attribute2column

1 rule attribute2column {
2 from
3 a:ooclassMM!attribute
4 to
5 c:tableMM!column (
6 name <- a.name ,
7 isPrimaryKey <- a.isId ,
8 type <- thisModule.dbType(a.type)
9 )

10 }

The rule ref2column (see Listing 5.5) is only executed when it is called (hence
the name of the rule type lazy) and creates foreign-key columns for all attributes
which are identifying in the referencing class. These identifying attributes are
select with an OCL expression. A selection of all attributes containing the isId
attribute is created. Because the metamodels in this transformation are assumed
to only have exactly one identifying attribute, the result of this selection only
contains this one attribute. Therefore, the OCL operation first() can be used to
access the identifying attribute of the class.

The mapping of datatypes described in Table 4.1 is again done using the helper
dbType, which translates a given input string to an output string.

Listing 5.5: ooclass2table in ATL: Lazy Rule ref2column

1 lazy rule ref2column {
2 from
3 cl:tableMM!class
4 to
5 c:tableMM!column (
6 name <- ’FK_ ’+cl.name+’_’+cl.attributes ->select(e|e.

isId=true)->first ().name ,
7 type <- thisModule.dbType(cl.attributes ->select(e|e.

isId=true)->first ().type),
8 isForeignKey <- true
9 )

10 }
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5.4.2 Solution for epc2ad

The transformation of event-driven process chains to activity diagrams uses some
features of ATL, which are only available in the 2006 version of the ATL-compiler.
Especially, rule inheritance is only available in this version, which is used for the
mapping of logical operators and events.

Listing 5.6: epc2ad in ATL: Abstract Rule logicalOperator2multiNode

1 abstract rule logicalOperator2multiNode {
2 from
3 lo:epcMM!logicalOperator
4 to
5 mn:adMM!multiNode(
6 incoming <-lo.incoming ->collect(e|e.sourceConnectable)

,
7 outgoing <-lo.outgoing ->collect(e|e.targetConnectable)
8 )
9 }

The abstract rule logicalOperator2multiNode as shown in Listing 5.6 maps the
incoming and outgoing control flows. Because three different logical operators
exist, which share common properties (namely incoming and outgoing), the map-
ping is created by two rules: the abstract rule logicalOperator2multiNode and a
separate rule respectively AND, OR and XOR, which inherit from the abstract
rule logicalOperator2multiNode.

Listing 5.7: epc2ad in ATL: Rule event2edge Start

1 rule event2edge_Start extends event2edge_base {
2 from
3 ev:epcMM!event(
4 ev.incoming.oclIsUndefined () and
5 not ev.outgoing.oclIsUndefined ()
6 )
7 to
8 ed:adMM!edge(
9 source <-initialNode ,

10 target <-ev.outgoing.targetConnectable
11 ),
12
13 initialNode:adMM!initialNode(
14 outgoing <-ed
15 )
16 do {
17 adMM!adMMContainer.allInstances ()->asSequence ()->first

().contains <-initialNode;
18 }
19 }

A concrete rule which inherits from an abstract rule is shown in Listing 5.7.
event2edge Start extends the abstract rule event2edge base. This rule is also
notable for its from part, which includes a application condition. The rule only is
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executed, if the condition evaluates to true. In this case, the event in question has
to have a n outgoing control flow, but it is not allowed to have an incoming control
flow. Therefore, for the correct mapping of this event, an initalNode has to be
created as well. The imperative do part of the rule adds the created initialNode
to the model container.

5.5 Summary on ATL

As mainly declarative approach, transformations in ATL can be implemented
straightforward and fast. As a downside, despite ATL’s imperative constructs,
some transformation problems, like the mapping of logical operators in epc2ad,
are relatively difficult to solve.

ATL’s Eclipse integration offers a very flexible and useful development environ-
ment. Syntax highlighting, error indication, and debugging functionality is very
helpful during the development of transformations. A slight shortcoming of ATL
is, that output models are not checked for their metamodel conformance. This
may lead to transformations which seem to run correctly, but the created models
are erroneous.
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6 SmartQVT

6.1 Introduction to SmartQVT

SmartQVT [36] is developed by France Telecom R&D. It is written in Java and
available under the EPL open source license. SmartQVT aims to implement the
QVT-Operational language, which is a subset of the Queries/Views/Transforma-
tions standard by OMG [17]. Therefore, SmartQVT follows the imperative model
transformation approach. It is available as Eclipse-plugin.

6.2 Core Features

SmartQVT acts as a compiler in that sense, that given QVT-Code is compiled
to Java source code. This is accomplished by a two-stage architecture [35]:

• The QVT Parser converts QVT textual syntax into corresponding repre-
sentation in terms of the QVT metamodel.

• The QVT Compiler produces, from a QVT model, a Java program on top
of EMF generated APIs for executing the transformation.

Because of this architecture, it is possible that the SmartQVT compiler can be
used in connection with other tools which output a QVT model conforming to the
QVT metamodel [35]. Additionally, serialized QVT transformations conforming
to the QVT metamodel can be loaded and executed at runtime.

6.3 User Interface

Very similar to ATL, SmartQVT is an Eclipse plugin, as seen in Figure 7.1.
Later versions (based on the Python QVT parser) did not offer error indication,
but recent versions of SmartQVT support this feature, which is very convenient
for transformation development. Additionally, syntax highlighting is available.
Because SmartQVT compiles QVT code to Java code, no QVT-level debugger is
available.

6.4 Sample Transformations

6.4.1 Solution for ooclass2table

Implementing ooclass2table in SmartQVT is possible in a simple way and consists
of less code than for example the implementation in Kermeta. Although both



6 SmartQVT 40

Figure 6.1: Editing a SmartQVT File in Eclipse

transformation languages follow a imperative approach, the amount of code used
in SmartQVT is considerably smaller than in Kermeta.

An entry point is defined, which is always the rule main(), as seen in Listing
6.1. In this rule, the mapping rule class2table is called for all instances of ooclass
in the given model, by using the [] brackets.

Listing 6.1: ooclass2table in SmartQVT: Main Rule

1 transformation class2table(in classModel:CLASSES ,out
tableModel:TABLES);

2
3 main() {
4 classModel.objects ()[ooclass]->map class2table ();
5 }

The target tables’ columns are again created by two different rules: one rule
copies the containing attributes to the target model, whereas the other rule
creates foreign key columns based on class references. Both rules are called in a
single statement, as described in Listing 6.2. If two sequential statements would
be used, the second one would overwrite the result of the first statement. This is
unlike ATL, where a union of both results is created implicitly. Because of this
behavior, the result of both rule calls have to be joined explicitly. This is done
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via OCL, using the union() expression.

Listing 6.2: ooclass2table in SmartQVT: Rule class2table

1 mapping ooclass :: class2table () : table {
2 name := ’tbl_ ’+self.name;
3 columns := self.attributes ->map attr2col ()->union(self.

references ->collect(c|c->map class2fkey ()));
4 }

Attribute can be mapped to columns in a simple way. For the mapping of the
datatype, a helper function is again used. The complete rule is shown in Listing
6.3.

Listing 6.3: ooclass2table in SmartQVT: Rule attr2col

1 mapping attribute :: attr2col () : column {
2 name := self.name;
3 type := self.type.dbType ();
4 isPrimaryKey := self.isId;
5 }

Creating the foreign key columns shows similarity to how this problem is
solved in ATL, as seen in Listing 6.4. Again, all attributes with the isId flag
set to true are selected. Because of the assumption, that only one attribute is
identifying, the selection can only return one element, which is accessed via the
OCL statement first().

Listing 6.4: ooclass2table in SmartQVT: Rule class2fkey

1 mapping ooclass :: class2fkey (): column {
2 name := ’FK_ ’+self.name+’_’+self.attributes ->select(a|a.

isId==true).first().name;
3 type := self.attributes ->select(a|a.isId==true).first().

type.dbType ();
4 isForeignKey := true;
5 }

6.4.2 Solution for epc2ad

The transformation of Event-driven Process Chains to UML Activity Diagrams
is considerably more complex than the simplified transformation ooclass2table
described in the previous section. The entry rule main is used to call the
mapping rule for the model containers involved, which in turn then calls all
subsequent transformation rules.

The rule epc2ad diag in Listing 6.5 maps the container elements of the EPC
and AD models used in the transformation. First, the EPC container’s name is
copied to the target container. After that, the mapping operations are called in
the following order:
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• Map all Functions to Activities (line 3)

• Map all Logical Operators (line 5)

• Map all Events with both incoming and outgoing control flows (line 6)

• Map the beginning Event of the model (line 7)

• Map the ending Event of the model (line 8)

• Create missing edges, which have not been created by the rules executed
before (lines 10 - 12)

Listing 6.5: epc2ad in SmartQVT: Rule epc2ad diag

1 mapping epcMMContainer :: epc2ad_diag ():adMMContainer{
2 name:=self.name;
3 contains :=self.contains[funct]->map funct2activity ()->

asOrderedSet ();
4
5 contains.append(self.contains[logicalOperator]->map

lop2multiNode ());
6 contains.append(self.contains[event]->map event2edge ());
7 contains.append(self.contains[event]->map event2edge_init

());
8 contains.append(self.contains[event]->map event2edge_end

());
9

10 result.contains[activity]->forEach(a) {
11 missingLinks(a);
12 };
13
14 -- rootobjects according to QVT specification , but

rootObjects in SmartQVT
15 contains :=contains ->union(adModel.rootObjects ()->select(e

|not e.isKindOf(adMMContainer)));
16 }

After the mapping rules have been executed, in line 15 all created elements
which are not yet inside the target container element are moved there.

The rules funct2activity and lop2multiNode are very simple, because they do
not handle relationships to other elements. Therefore their code is not shown
here. They simply create the desired target elements, namely ActivityNodes and
MultiNodes. Because they are created first, it is insured that later rules, which
handle the creation of Edges and the corresponding relationships, do not have to
take care of ActivityNodes and MultiNodes.

The rule event2edge end in Listing 6.6 illustrates, how Events are mapped to
edges, and how the creation of new elements is handled. This rule aims to create
an activityFinalNode, and additionally sets the relationship between this newly
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created node and the following ActivityNode. In its header, the rule includes
a guard expression, which in this case means, that the rule is only executed,
if the Event in question has no outgoing Control Flows and therefore is the
last Event of the model. In its body, the rule first maps the Event’s name and
creates a new ActivityFinalNode using the object statement. The newly created
ActivityFinalNode’s incoming Edge is set to the Edge which is to be created by
this rules, using the special variable result. In lines 7 - 11, the previous node’s
outgoing Edge is set to result as well. If the previous node is a ForkJoinNode,
the Edge has to be added to the outgoing collection, whereas if it is a simple
node, there is only one outgoing edge (not a collection), which can be set directly.

Listing 6.6: epc2ad in SmartQVT: Rule event2edge end

1 mapping event:: event2edge_end ():edge when { self.outgoing ==
null}

2 {
3 name:=self.name;
4 target := object activityFinalNode {incoming := result };
5 source :=self.incoming.sourceConnectable.resolveone(

activityNode);
6
7 if (source.oclIsKindOf(forkJoinNode)) {
8 source.oclAsType(forkJoinNode).outgoing := source.

oclAsType(forkJoinNode).outgoing ->union(result);
9 } else {

10 source.oclAsType(activity).outgoing := result;
11 };
12
13 }

Because not all Edges can be created using only the mechanism described
above, the missing Edges have to be created separately. For this purpose, two
helper rules are implemented, namely missingLinks and getNextConnectable (see
Listings 6.8 and 6.7).

Listing 6.7: epc2ad in SmartQVT: Helper getNextConnectable

1 helper getNextConnectable(a:activity):activityNode {
2
3 var x:=a.invresolve(funct)->first();
4 --->first ().oclAsType(singleConnectable).outgoing.

targetConnectable;
5 return x.outgoing.targetConnectable.resolveone(

activityNode);
6
7 }

The helper getNextConnectable is responsible for looking up the following Ac-
tivityNode for a given Activity. This functionality is needed later on to create
all missing Edges. Because during the transformation, not all links in the target
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Activity Diagram are guaranteed to be correct, the needed information is looked
up in the source model. For this purpose, the helper function performs a inverse
resolving operation, in order to get the corresponding Function to the Activity
given. The Function’s successor node is accessed via the outgoing Control Flow,
and then resolved to the corresponding ActivityNode in the target model, which
is returned eventually.

Listing 6.8: epc2ad in SmartQVT: Helper missingLinks

1 helper missingLinks(a:activity):OclVoid {
2
3 if (a.outgoing == null) {
4 var next:= getNextConnectable(a);
5 a.outgoing := object edge {
6 source :=a;
7 target :=next;
8 };
9 if (next.oclIsKindOf(forkJoinNode)) {

10 next.oclAsType(multiNode).incoming :=next.oclAsType(
multiNode).incoming ->union(a.outgoing);

11 } else {
12 next.oclAsType(activity).incoming :=a.outgoing;
13 }
14
15 };
16
17 }

The helper missingLinks is called for every Activity which has been created, as
can be seen in Listing 6.5, lines 10 - 12. Listing 6.8 only shows the code relevant
for adding outgoing Edges, incoming Edges are created the same way. First, the
helper getNextConnectable, which is described before, is called. After that, a new
Edge is created in lines 5 - 8. The successor ActivityNode is set as the new Edge’s
target node. Finally, the reverse property is set: the successor node’s incoming
Edge is set to the newly created Edge.

6.5 Summary on SmartQVT

Previous versions of SmartQVT (< 0.2.x), which were based on the QVT parser
written in Python, were not all to comfortable to work with. No errors in the
code where indicated during design time. Errors were only detected during
compile time, and some errors, which could not be found by the parser, occurred
at runtime.

In recent version, the Python parser has been replaced by a parser written
in Java. Since version 0.2, error indication during editing is also available, and
most errors in the transformation code are found during design time. These
features considerably improve the development process with SmartQVT, which
is now comparable to Kermeta and ATL.
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Operational QVT itself is a very powerful language including advanced lan-
guage features. Compared to ATL, QVT is somewhat harder to learn, but also
more expressive because of its imperative approach. Kermeta on the other hand,
which also follows the imperative approach, is missing some features which are
very useful and more or less obligatory in a model transformation environment.
For example, tracing support has to be implemented by the developer in Ker-
meta, but is offered out of the box by SmartQVT. In general, it takes some time
to understand and to be able to use QVT’s features, but as soon the developer is
proficient with QVT, many model transformation problems can be solved in an
elegant and efficient way.
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7 Kermeta

7.1 Introduction to Kermeta

Kermeta can be described as a metamodeling language which allows describing
both the structure and the behavior of models [12]. It incorporates several
features and ideas of other technologies in the model driven architecture
domain. Therefore Kermeta is not limited to model transformation. For exam-
ple, it can be used to define metamodels, or add constraints and behavior to them.

Kermeta’s imperative approach to model transformation results in a different
transformation code in comparison to ATL and SmartQVT, which follow mainly
the declarative paradigm. Instead of rules, Kermeta uses operations, which are
basically very similar to operations or methods in object-oriented programming
languages, such as Java.

Listing 7.1: Load and Save a Model using built-in EMF Support

1 operation main() : Void is do
2
3 var oocl: ooclassMM :: ooclassMMContainer
4 var repository : EMFRepository init EMFRepository.new
5 var resource : EMFResource
6
7 // load ooclassMM model via EMF

8 resource ?= repository.createResource("test2.ooclassmm"
, "ooclassMM.ecore")

9 resource.load
10 oocl ?= resource.instances.one
11
12 // instantiate target model

13 var tbl: tableMM :: tableMMContainer
14 tbl:= tableMM :: tableMMContainer.new
15
16 // transformation entry point

17 tbl:= addTables(oocl ,tbl)
18
19 // write output file

20 var out : Resource init repository.createResource("
out.tablemm", "tableMM.ecore")

21 out.instances.add(tbl)
22 out.save()
23
24 end
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It should also be noted that in Kermeta, the input and output of metamodel
and model data has to be taken care of by the programmer. Therefore, every
Kermeta program has to load and save data explicitly by itself. In ATL and
SmartQVT on the other hand, the input and output metamodels and models can
be specified outside the transformation code, using Eclipse Run Configurations.
However, Kermeta supports EMF, which results only in little extra code, as can
be seen in Listing 7.1.

7.2 Core Features

Kermeta’s imperative approach and advanced language features make it nearly as
powerful as conventional programming languages. It offers some features, which
are not available in the other languages evaluated in this thesis, for example,
reflection, genericity, exception handling or aspect orientation [12]. Similar to the
Black-box mechanism in QVT, it is possible to call external Java code. Therefore
nearly all transformation problems can be solved in Kermeta. On the other hand,
some features typical for model transformation languages are missing. Kermeta
has no built-in tracing support, and loading and saving of model files is somewhat
complicated compared to other languages.

7.3 User Interface

Like SmartQVT and ATL, Kermeta is also available as Eclipse plugin. It is well
integrated into the development environment and provides a debugger, syntax
highlighting and error indication during the editing of code.

Figure 7.1: Editing a Kermeta File in Eclipse
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7.4 Sample Transformations

7.4.1 Solution for ooclass2table

The ooclass2table transformation is solved by creating a main method, which
handles loading and saving of the input and outputs models, and starting the
transformation itself. This is done via the operation addTables, which takes an
ooclassMMContainer object as input and returns the transformed tableMMCon-
tainer object as result.

The operation addTables calls two other operations, namely addColumn-
sToTable and createRefCol. These two operation are responsible for creating
the column objects. addColumnsToTable basically only copies the attribute
data over to a newly instantiated column object. Despite being rather simple,
this operation nicely illustrates imperative-style transformations in contrast to
declarative techniques: it is necessary to iterate over a collection of multiple
elements (each statement in Listing 7.2). Furthermore, the target objects have
to be instantiated and added to the parent object. More code has to be written
to accomplish this task, which results in less readable and less concise code, at
least for simple transformations.

Listing 7.2: ooclass2table in Kermeta: Operation addTables

1 operation addTables(cls : ooclassMM :: ooclassMMContainer) :
tableMM :: tableMMContainer is do

2
3 var tbl: tableMM :: tableMMContainer
4 tbl:= tableMM :: tableMMContainer.new
5
6 cls.classes.asBag().each { c|
7 // instantiate new table and store tracing information

8 var table:tableMM :: table init tableMM :: table.new
9

10 // copy name , create direct columns

11 table.name := c.name
12 table := addColumnsToTable(c,table)
13 tbl.tables.add(table)
14
15 // resolve references

16 c.references.asBag ().each { ref|
17 createRefCol(ref ,table)
18 }
19 }
20 result :=tbl
21 end

The operation addColumnsToTable seen in Listing 7.3 is similar to addTables
in the sense, that it also iterates over multiple elements (in this case attributes).
It also instantiates the target model elements and copies data from the source
elements to the target elements.
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Listing 7.3: ooclass2table in Kermeta: Operation addColumnsToTable

1 operation addColumnsToTable(cls : ooclassMM ::ooclass , tbl:
tableMM :: table): tableMM :: table is do

2
3 cls.attributes.asBag().each { a |
4 var col:tableMM :: column init tableMM :: column.new
5
6 col.name:=a.name
7 col.type:= mapType(a.type)
8
9 if a.isId==true then

10 col.isPrimaryKey :=true
11 end
12 tbl.columns.add(col)
13 }
14 result :=tbl
15 end

createRefCol as seen in Listing 7.4 on the other hand makes heavy use of OCL
statements. For this reason, this part of the transformation does not differ a lot
to the implementation using ATL or SmartQVT.

Listing 7.4: ooclass2table in Kermeta: Operation createRefCol

1 operation createRefCol(cls : ooclassMM ::ooclass , tbl:
tableMM :: table): Void is do

2
3 var col:tableMM :: column init tableMM :: column.new
4 col.name:="FK_"+cls.name+"_"+cls.attributes.select{ o | o

.isId==true }.first ().name
5 col.type:= mapType(cls.attributes.select{ o | o.isId==true

}.first ().type)
6 col.isForeignKey :=true
7
8 tbl.columns.add(col)
9

10 end

7.4.2 Solution for epc2ad

The transformation of Event-driven Process Chains to UML Activity Diagrams
in Kermeta consists of considerably more code than the ooclass2table trans-
formation. Again, some parts of the code are needed to cover features, which
are supplied by other model transformation languages, but which are absent in
Kermeta. For the epc2ad transformation, model loading and saving, and tracing
support have to be implemented.

The main operation of the epc2ad transformation seen in Listing 7.5 is very
similar to the main operation in ooclass2table, because the loading and saving of
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the involved models is handled there.

Listing 7.5: epc2ad in Kermeta: Operation mapContainer

1 operation mapContainer(epcContainer: epcMM :: epcMMContainer)
: adMM:: adMMContainer is do

2
3 var res: adMM:: adMMContainer
4 res:=adMM:: adMMContainer.new
5
6 res.name:= epcContainer.name
7
8 epcContainer.contains.select{x|x.isKindOf(epcMM:: funct)}.

each {f|
9 res.contains.add(mapFunction(f.asType(epcMM:: funct)))

10 }
11
12 epcContainer.contains.select{x|x.isKindOf(epcMM::AND)}.

each {l|
13 res.contains.add(mapAND(l.asType(epcMM::AND)))
14 createLinks(l,res)
15 }
16
17 epcContainer.contains.select{x|x.isKindOf(epcMM:: event)}.

each {f|
18 res.contains.add(mapEvent(f.asType(epcMM:: event)))
19 createLinks(f,res)
20 }
21
22 result :=res
23
24 end

Listing 7.5 shows the operation mapContainer, which is responsible for cre-
ating the target model container and calling all additional mapping operations.
First, in lines 3 - 6, the Activity Diagram container element is instantiated, and
its name is set to the source model container’s name. After that, the mapping
operations for Functions, Logical Operators and Events are called and the
thereby created elements are added to the target model container element. In
lines 14 and 19, the helper operation createLinks is called, which creates missing
links for the newly created elements.

Listing 7.6: epc2ad in Kermeta: Operation mapFunction

1 operation mapFunction(fun: epcMM ::funct): adMM:: activity is
do

2
3 var act: adMM:: activity
4 act:=adMM:: activity.new
5
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6 act.name:=fun.name
7
8 tracingLinks.storeTrace(fun ,act)
9

10 result :=act
11
12 end

As shown in Listing 7.6, the mapping of Functions to Activities is relatively
simple. The mapping of Events to Edges and the mapping of Logical Operators
works also exactly the same. The target Activity element is instantiated,
and the source element’s name is copied. The newly created element and its
corresponding source element is stored in the tracing framework. Finally, the
created Activity is returned. No relationships are created in this operation, this
will be handled later on during the transformation.

Listing 7.7: epc2ad in Kermeta: Operation createLinks

1 operation createLinks(it: epcMM ::item , ad:adMM::
adMMContainer) is do

2
3 if it.isKindOf(epcMM:: event) then
4 var ev:epcMM:: event init it.asType(epcMM:: event)
5 var ed:adMM::edge init tracingLinks.getTargetElem(ev).

asType(adMM::edge)
6
7 if ev.incoming !=void then
8 if ev.incoming.sourceConnectable.isKindOf(epcMM::

funct) then
9 ed.source := tracingLinks.getTargetElem(ev.incoming.

sourceConnectable).asType(adMM:: activityNode)
10 ed.source.asType(adMM:: activity).outgoing :=ed
11 else
12 ed.source := tracingLinks.getTargetElem(ev.incoming.

sourceConnectable).asType(adMM:: multiNode)
13 ed.source.asType(adMM:: multiNode).outgoing.add(ed)
14 end
15 end
16 if ev.outgoing !=void then
17 // do the same for outgoing

18 end
19
20 if ev.incoming ==void then
21 var in:adMM:: initialNode init adMM:: initialNode.new
22 ad.contains.add(in)
23 ed.source :=in
24 in.outgoing :=ed
25 end
26 if ev.outgoing ==void then
27 // do the same for outgoing
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28 end
29 end
30
31 if it.isKindOf(epcMM::AND) then
32 var lo:epcMM::AND init it.asType(epcMM::AND)
33 var fjn:adMM:: forkJoinNode init tracingLinks.

getTargetElem(lo).asType(adMM:: forkJoinNode)
34
35 lo.incoming.each {i |
36 var andIncoming:adMM::edge init adMM::edge.new
37 andIncoming.source := tracingLinks.getTargetElem(i.

sourceConnectable).asType(adMM:: activity)
38 andIncoming.source.asType(adMM:: activity).outgoing :=

andIncoming
39 andIncoming.target :=fjn
40 ad.contains.add(andIncoming)
41 fjn.incoming.add(andIncoming)
42 }
43 end
44
45 end

As can be seen in Listing 7.7, the creation of relationships between the model
elements create before is the most complex part of the transformation. For easier
comprehension, similar tasks have been commented out. Basically the operation
differs between Events (lines 3 - 29) and Logical Operators (lines 31 - 43). In the
first case, the edge belonging to the input Event, which has been created by the
operation mapEvent, is retrieved by using the tracing information. After that,
in lines 7 and 16, it is decided whether the originating Event has incoming and
outgoing Control Flows. If this is the case, the Edge’s source and target have to
be set to the corresponding Activity Diagram element of the Events predecessor
and successor elements. In case the predecessor or successor element respectively
is a Function, the reverse property can simply be set to the currently processed
element (lines 8 - 10). If it is a Logical Operator, the newly created edge has
to be added to the corresponding multiNode’s incoming or outgoing collection
(lines 12 - 13). If on the other hand, the current Event has no incoming or
outgoing Control Flow, it is the beginng or ending Event of the Diagram. In this
case an InitialNode or ActivityFinalNode has to be created and its relationships
have to be set (lines 20-25). In lines 31-42, the creation of links in case of a
Logical Operator is impemented. This is basically the same as described before
for Events. However, more than one incoming Control Flow may exist, therefore
it is necessary to iterate over the incoming collection to create all missing links.

7.5 Summary on Kermeta

Kermeta’s model transformation abilities are actually only a subset of what can
be accomplished with the Kermeta language. It is intended as core language
of a model oriented platform [12] and may be used as language for metamodel-
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ing, specifying model constraints and model semantics, and as transformation
language. In this thesis, the focus of the attention lies on Kermeta’s model
transformation support.

Kermeta is best suited as model transformation language, if the transforma-
tion to implement is relatively complex. Because of its imperative approach,
the developer can implement any behavior, especially compared to declarative
approaches. On the downside, many features supported by most other model
transformation languages are not as convenient to use in Kermeta, for example
loading and saving of models, or may be completely missing, such as automatic
tracing support. This results in transformation code, which is usually longer and
harder to read than code written in other model transformation languages.



54

8 ModelMorf

8.1 Introduction to ModelMorf

ModelMorf [34] is an implementation of the Relational QVT standard issued by
OMG [17]. An other implementation of Relational QVT is medini QVT [23].
Tools with support for Triple Graph Grammars, like Fujaba [7] and MOFLON [9]
are also QVT compliant, by implementing relational QVT’s graphical syntax.

Currently, not all features of Relational QVT are supported in ModelMorf.
Most notably, there is no support for [18]:

• Incremental transformation execution

• Transformation extensibility

• Graphical Syntax

8.2 Core Features

The main feature of ModelMorf is its general model transformation approach.
As implementation of the Relational QVT standard, it is purely declarative. For
some transformation problems, a declarative transformation language offers some
advantages over other approaches. For example, if multidirectionality or target
incrementality is mandatory for a particular model transformation setting, Mod-
elMorf is the only choice out of the four transformation languages compared in
this thesis.

8.3 User Interface

ModelMorf offers no development environment or graphical user interface.
Transformation code may be created using any text editor. Transformations are
executed by calling the executable with parameters, as can be seen in Listing
8.1:

Listing 8.1: Executing a ModelMorf Transformation

1 sh /Applications/ModelMorf/modelmorf -m ooclassMM -mf
ooclassMM.xml -m tableMM -mf tableMM.xml -c test.qvt -u
ooclass -f test2.ooclassmm -u table -f out.admm -t
ooclass2table -d table -q enforce



8 ModelMorf 55

The connection between the names of metamodels and their physical represen-
tation in XML files is done using the -m and -mf parameters. The parameter -c
denotes the file, which contains the transformation code. The involved input and
output domains and model files are specified using the parameters -u and f. The
desired direction, in which the transformation has to be executed, is specified
with the parameter -d.

Because no integrated development environment is provided, the development
of transformation code is not as comfortable as in other approaches. Errors in the
code are only detected when the transformation is executed. However, in case of
an error, useful error messages are given.

8.4 Sample Transformations

8.4.1 Solution for ooclass2table

The transformation ooclass2table is relatively simple to implement using a
declarative approach like ModelMorf. First, the transformation header and
several key attributes are defined, as illustrated in Listing 8.2.

Listing 8.2: ooclass2table in ModelMorf: Header and Keys

1 transformation ooclass2table(ooclass: ooclassMM; table:
tableMM)

2 {
3
4 key ooclassMM :: ooclassMMContainer{name};
5 key tableMM :: tableMMContainer{name};
6 key ooclassMM :: ooclass{name};
7 key tableMM :: table{name};
8
9 ...

10 }

The transformation header in line 1 identifies the models used in this trans-
formation. The mapping to the respective metamodel files is established using
command line parameters during the start of the transformation. The key
definitions in lines 4 - 7 denote, which attribute uniquely identifies an instance of
a given class. This is necessary, so that the respective elements are only created
once. If these key definitions were omitted, a separate container element would
be created around every class.

After that, the rules which make up the transformation itself are defined.
Basically, two types of rules, in this case called relations, are used: top relations
and normal relations. Top relations are called at the beginning of the transfor-
mation, whereas other relations have to be called by other rules using the where
or when clauses. In ooclass2table, two top relations are used, which are shown in
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Listings 8.3 and 8.5.

Listing 8.3: ooclass2table in ModelMorf: Container Mapping

1 top relation classCont2tableCont {
2 n:String;
3
4 enforce domain ooclass
5 classCont:ooclassMMContainer {
6 name=n,
7 classes=cl:ooclass {}
8 };
9

10 enforce domain table
11 tableCont:tableMMContainer {
12 name=n,
13 tables=tbl:table{}
14 };
15
16 where {
17 class2table(cl,tbl);
18 }
19 }

The relation classCont2tableCont maps the container elements of both models
involved. In line 2, the String variable n is defined, which is used to hold the
container name, as seen in line 6 and line 12. The lines 4 - 8 describes the
structure of the class container element. First, the membership to the domain
ooclass is established in line 4. They keyword enforce denotes, that during a
transformation from tables to classes, the class domain elements described here
have to be created. In line 7, the variable cl is created, which holds all elements
in the classes relationship. Lines 10 - 14 describe the table model accordingly.
Eventually, the relation class2table is called in the where clause, using the classes
and tables as parameters.

Listing 8.4 shows the mapping rule class2table, which is called by the top
level rule described beforehand. Its basic appearance is very similar to the
relation classCont2tableCont, with the exception that the elements involved are
described nested, according to their relationships to each other as defined in the
metamodels. In lines 9 - 11 and 17 - 19, the attribute/column names of the class
and table accordingly are set. Additionally, in the table domain, the attribute
isForeignKey is set to false. This part nicely illustrates, how transformations in
Relational QVT are defined for multidirectional execution. If a class model is
translated to a table model, the attribute isForeignKey is set to false. On the
other hand, if the transformation is executed from a table model to a class model,
columns are only processed by this rule, if their attribute isForeignKey has the
value false. This relation also is responsible for calling the attr2col relation.
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Listing 8.4: ooclass2table in ModelMorf: Class to Table Mapping

1 relation class2table {
2
3 n:String;
4 a_n:String;
5
6 enforce domain ooclass
7 cl:ooclass {
8 name=n,
9 attributes=attr:attribute{

10 name=a_n
11 }
12 };
13
14 enforce domain table
15 tbl:table {
16 name=n,
17 columns=col:column{
18 name=a_n ,isForeignKey=false
19 }
20 };
21
22 where {
23 attr2col(attr ,col);
24 }
25
26 }

In Listing 8.5, the second top relation, namely ref2col is shown. This rule is
again very similar to the rules discussed before. In this case, the nesting goes
across three levels.

Listing 8.5: ooclass2table in ModelMorf: Mapping of References

1 top relation ref2col {
2
3 n,an:String;
4
5 enforce domain ooclass
6 cl:ooclass {
7 name=n,
8 references=refs:ooclass{
9 attributes=attr:attribute{

10 name=an ,
11 isId=true
12 }
13 }
14
15 };
16
17 enforce domain table
18 tbl:table {
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19 name=n,
20 columns=col:column {
21 name=an ,
22 isForeignKey=true
23 }
24 };
25
26
27 }

8.4.2 Solution for epc2ad

The epc2ad transformation could not be solved completely using ModelMorf.
Only the mapping of the basic elements, namely functions, events, activities
and edges of the metamodels could be implemented. Control flows and the
linking between the model elements on the other hand is much more complex
and very hard to solve using a declarative-only model transformation approach.
However, the epc2ad transformation has been implemented by Altan [1] using
Triple Graph Grammars, which are very similar to Relational QVT.

Listing 8.6: epc2ad in ModelMorf: Mapping of Functions to Activities

1 top relation funct2activity {
2
3 n:String;
4 c_n:String;
5 cf_name:String;
6
7 enforce domain epc
8 f:funct {
9 name=n,

10 contained=ce:epcMMContainer{
11 name=c_n
12 }
13 };
14
15 enforce domain ad
16 a:activity {
17 name=n,
18 contained=ca:adMMContainer{
19 name=c_n
20 }
21 };
22
23 }

Even for the working parts of the transformation, the given metamodels have to
be adjusted. Additionally to the contains relationship, an opposite relationship
is introduced in item, in order to express the containment relationship in QVT



8 ModelMorf 59

rules, as illustrated in Listing 8.6. The elements funct and activity respectively
include the attribute contained, which is the opposite of the contains relationship
in the unmodified metamodels.

Additionally, debugging QVT rules with ModelMorf is hardly possible, because
no insight on the rule execution is given. For example. the rule e2e links, shown
in Listing 8.7 is executed, with no errors reported by ModelMorf, but the
attribute source of the element edge is not created.

Listing 8.7: epc2ad in ModelMorf: Rule e2e links

1 relation e2e_links {
2
3 cf_n:String;
4
5 enforce domain epc
6 ev:event {
7 incoming=cf:controlFlow{
8 sourceConnectable=f:funct{
9 name=cf_n

10 }
11 }
12 };
13
14 enforce domain ad
15 ed:edge {
16 source=a:activity{
17 name=cf_n
18 }
19 };
20
21 }

Although the desired transformation may be completely implemented using
ModelMorf, epc2ad still serves as an example for a particular transformation
which is difficult to solve using a declarative approach.

8.5 Summary on ModelMorf

Both example transformations presented in this thesis illustrate the advantages
and shortcomings of declarative-only approaches, as in this case Relational QVT
implemented by ModelMorf. Simple transformations, such as ooclass2table can
be developed very fast, using elegant and easy to read code. On the other hand,
more complex transformations, like epc2ad are much more difficult to solve
compared to hybrid or strictly imperative transformation approaches.

Before choosing a declarative approach, one should make sure that the trans-
formation to implement is solvable conveniently with a declarative approach. If
this is the case, ModelMorf is a good choice, because the transformation code
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is efficient and easy to read. Also for some specific requirements, such as mul-
tidirectionality and target incrementality, there is hardly tool support in other
languages, which makes ModelMorf very attractive for such situations.
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9 Evaluation

In this chapter, the results of the feature support evaluation for the criteria cata-
logue [5], which has been discussed in Chapter 3, are documented and discussed.

9.1 Transformation Rules

9.1.1 ATL

Considering its hybrid approach, ATL basically supports syntactic separation
of the involved models. This is achieved using the from and to parts of a rule,
where the first applies to the source model elements and the latter to the target
model elements.

ATL supports application conditions using boolean expressions in the from
part. The rule is only executed if the condition specified evaluates to true. In
the example in Listing 9.1, the rule is only executed if the node event has an
incoming and outgoing control flow.

Because ATL includes built-in traceability support, it also uses intermediate
structures.

Listing 9.1: Conditional Rule in ATL

1 rule event2edge extends event2edge_base{
2 from
3 ev:epcMM!event(
4 not ev.incoming.oclIsUndefined () and
5 not ev.outgoing.oclIsUndefined ()
6 )
7 to
8 ed:adMM!edge(
9 source <-ev.incoming.sourceConnectable ,

10 target <-ev.outgoing.targetConnectable
11 )
12
13 }

Domain Features

ATL can use both MOF and Ecore as domain languages for the metamodels
involved in the transformation. As a consequence of the unidirectional rule
execution approach of ATL, domains can only be specified as either input or
output, but not combined. Further, dynamic mode restriction is not supported
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for the very same reason.

ATL uses syntactical typing, based on the types defined in the metamodels in-
volved in the transformation. However, the typing is only performed at run-time,
which means that for example the assignment of a String value to an attribute
of type Integer is not detected during the compilation of the transformation, but
during the execution of the transformation.

ATL uses patterns with term-based structure. Syntax is represented in a
concrete, textual way.

ATL only supports control parameters for parameterization. Additionally,
higher-order rules are supported, because ATL is able to load ATL files as model,
and transform them.

9.1.2 Kermeta

Kermeta does not support syntactic separation. This is a result of the imperative
approach Kermeta is based on. Basically, Kermeta is very similar to traditional
programming languages, therefore the code frequently mixes parts of all model
domains involved. The missing support for multidirectionality is also based on
Kermeta’s imperative approach.

Transformation rules in Kermeta can be interpreted as operations, because the
transformation behavior is specified within them. However, no conditions can be
specified, which have to be fulfilled in order for the operation to be executed.

Kermeta does not maintain intermediate structures. However, it is possible for
the developer to create such structures manually. This can be useful for example
for building a traceability framework. Kermeta also supports both reflection,
which is heavily used by the Kermeta library for reusable transformations (see
Chapter 10), and basic aspect-oriented features.

Domain Features

Kermeta supports Ecore as domain language. Models expressed in Ecore can
be imported to any Kermeta transformation. Also, saving into Ecore models
is possible. Additionally, Kermeta is also a metamodelling language, therefore
metamodels and models can be expressed in Kermeta itself. This can be
achieved by writing classes in Kermeta, which implement the desired metamodel.
However, serialization of models only works with Ecore, Kermeta models and
metamodels can only be created at runtime.

Syntactical typing is used in Kermeta, and is also checked during compile
time. Variables of a specific type can only hold data of this type, otherwise
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the program can not be compiled. This is comparable to statically-typed pro-
gramming languages like Java, which check type correctness also at compile-time.

Like ATL, Kermeta uses term-based structure and a concrete, textual syntax.
Kermeta uses an imperative approach, which results also in imperative assign-
ment of values and explicit element creation. This is illustrated by the operation
mapFunction in Listing 9.2. Lines 2 and 3 explicitly create a new activity object.
In line 6, a value is assigned to the name property of the object created before.
Additionally, in the first line, the parameterization of Kermeta is shown as well:
an object of the type epcMM::funct is passed on to the operation.

Listing 9.2: Kermeta Operation mapFunction

1 operation mapFunction(fun: epcMM ::funct): adMM:: activity is
do

2
3 var act: adMM:: activity
4 act:=adMM:: activity.new
5
6 act.name:=fun.name
7
8 tracingLinks.storeTrace(fun ,act)
9

10 result :=act
11
12 end

9.1.3 SmartQVT

As a mainly imperative approach, SmartQVT does not support clear syntactic
separation. Although basically the left hand side of an expression usually ad-
dresses target elements, with a right hand side based on source model elements,
this is not always the case. For example, the result variable within a QVT
mapping rule refers to the object created by that rule. Multidirectionality is also
not supported in Operational QVT [17].

Listing 9.3: Application conditions in SmartQVT

1 mapping event:: event2edge_{end }():edge
2 when { self.outgoing ==null}
3 where { name <>"Begin" }
4 {
5 name:=self.name;
6
7 }

Application conditions are supported via the when clause, which acts as a
guard conditions. The condition specified in the when clause must evaluate to
true in order for the mapping rule to be executed. Additionally, post-conditions
also exist in the form of the where clause. If the where condition is not true, an
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exception is raised and the program is interupted [38]. The example in Listing
9.3 illustrates the usage of application conditions, more specifically pre- and
postconditions, in SmartQVT.

Intermediate structures are built up by SmartQVT mainly for its tracing sup-
port. It is also possible to add intermediate metamodel elements during run
time.

Domain Features

SmartQVT offers variables and uses a term-based structure. Its basic language
paradigm is imperative. Value specification is achieved using imperative assign-
ments.

As for parameterization, SmartQVT supports simple control parameters.
Generics are not supported. However, SmartQVT is able to load and trans-
form QVT-compliant models, which results in a support for higher-order rules.
It is further possible to load a model conforming to the QVT metamodel, and
then use this model as transformation.

9.1.4 ModelMorf

Relational QVT’s and therefore ModelMorf’s declarative approach enables clear
syntactic separation. Both the input and output model side have separate corre-
sponding parts in the QVT rules. Also, as consequence of the used transforma-
tion language approach, multidirectionality is possible in ModelMorf. There is no
need for separate code for different execution directions, one rule file can be used
to perform a transformation in any direction. Application conditions are also
supported by ModelMorf, via the when and where clauses of QVT rules. Mod-
elMorf also builds up intermediate structures, for example for saving the tracing
information. Reflection and aspect-oriented constructs are not available.

Domain Features

According to its documentation [8], metamodels and models have to be specified
in the XMI format. Static modes are in/out, as consequence of multidirectionality
support. The mode of domains, for example whether a certain domain is input
or output, can only be specified at the start of the transformation execution, but
not inside the transformation code itself. Therefore, dynamic mode restriction is
not possible with ModelMorf.

Similar to most other transformation languages, ModelMorf uses term-based
structure and concrete textual syntax. Its main language paradigm is declarative,
with imperative assignment for value specification, and implicit element creation.
For parameterization features, ModelMorf only supports control parameters, by
which rules can be called with model element variables as parameters. ModelMorf
does not implemented the graphical syntax of Relational QVT.
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9.1.5 Summary

Feature ATL Kermeta SmartQVT ModelMorf
Syntactic Separation Y N N Y
Multidirectionality N N N Y
Application Conditions Y N Y Y
Intermediate Structures Y N Y Y
Reflection N Y Y N
Aspects N Y N N
Domain (see Table 9.2)
Parameterization (see Table 9.4)

Table 9.1: Results for Transformation Rules

Feature ATL Kermeta SmartQVT ModelMorf
Domain

Domain language MOF,Ecore MOF,Ecore Ecore MOF,Ecore
Static Mode separate separate separate in/out
Dynamic Mode N N N N
Restriction
Typing synt. synt. synt. synt.
Body (see Table 9.3)

Table 9.2: Results for Transformation Rules: Domain

Feature ATL Kermeta SmartQVT ModelMorf
Body

Variables Y Y Y Y
Patterns

Structure Term Term Term Term
Syntax

Abstract Y N Y N
Concrete

Textual Y Y Y Y
Graphical N N N N

Logic
Language Paradigm Hybrid Imperative Imperative Declarative
Value Imperative Imperative Imperative Imperative
Specification Assignment Assignment Assignment Assignment
Element Creation Implicit Explicit Explicit Implicit

Table 9.3: Results for Transformation Rules: Domain, Body
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Feature ATL Kermeta SmartQVT ModelMorf
Parameterization

Control Parameters Y Y Y Y
Generics N Y N N
Higher-order Rules Y N Y N

Table 9.4: Results for Transformation Rules: Parameterization

9.2 Rule Application Control

9.2.1 ATL

ATL determines the location of a rule application in a deterministic way. This
happens during the source model elements matching phase (see [20]) of the trans-
formation. Called rules are an exception for this behavior, because they are only
executed when explicitly called in another rule.

9.2.2 Kermeta

Most of the feature support of Kermeta in this section is a consequence of its
imperative approach. Because a rule is interpreted as a operation in Kermeta
terminology, some features would not make sense in this context. The developer
is responsible of which operation is executed at a specific point in the transfor-
mation, therefore no rule application strategy is available.

Features in rule scheduling are also affected by Kermeta’s imperative approach.
The scheduling of the rules is created by the developer, therefore it is explicit.
No rule selection mechanisms exist. However, rules can make use of recursion.

Kermeta does not offer built-in phasing mechanisms, but it is possible for a
developer to organize the transformation process into different phases explicitly.

9.2.3 SmartQVT

Because SmartQVT follows the imperative approach, the rule application is
primarily specified by the developer. Therefore, the rule application strategy
features are not applicable. The execution order of the rules is the execution
flow of the transformation code, which is typical for imperative approaches.

The features included in rule scheduling also reflect SmartQVT’s imperative
approach. A notable feature supported by SmartQVT despite its imperative
approach are the different sections a mapping operation can consist of. This is
marked as the supported feature phasing, although it only works on operations,
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not on whole transformation. The sections of a certain operation are executed in
order when the operation is called. The following three sections are possible [17]:

• init. Code in this section is executed before the declared output elements
are instantiated.

• population. Code in this section is used to populate the output elements.

• end. Code in this section is executed before the operation exits.

9.2.4 ModelMorf

ModelMorf uses a deterministic rule application strategy. First, all top-level rules
are executed, followed by the rules which are specified in the when clauses of the
top-level rules. The rule scheduling may be both implicit and explicit. The
execution order of the top-level rules cannot be specified by the developer, which
makes their execution order implicit. On the other side, any rule can call another
rule in when and where clauses. This enables the developer to explicitly specify
the execution order of these rules. The concurrence of implicit and explicit rule
scheduling form is illustrated in the transformation skeleton in Listing 9.4. The
top-level rules classCont2tableCont and ref2col are executed first, but no order
between these two rules is specified. On the other hand, classCont2tableCont
calls class2table using the where clause, which itself calls attr2col again using the
where clause. In this way the execution order (classCont2tableCont > class2table
> attr2col) is explicitly given by the developer.

Listing 9.4: Implicit and Explicit Execution Order in ModelMorf

1 transformation ooclass2table(ooclass: ooclassMM; table:
tableMM)

2 {
3 top relation classCont2tableCont {
4 ...
5 where { class2table(cl,tbl); }
6 }
7
8 relation class2table {
9 ...

10 where { attr2col(attr ,col); }
11 }
12
13 relation attr2col {
14 ...
15 }
16
17 top relation ref2col {
18 ...
19 }
20 }
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9.2.5 Summary

Feature ATL Kermeta SmartQVT ModelMorf
Rule Application Strategy
Deterministic Y N N Y
Non-Deterministic N N N N

Concurrent
One-Point

Interactive N N N N

Table 9.5: Results for Rule Application Control: Location Determination / Rule
Application Strategy

Feature ATL Kermeta SmartQVT ModelMorf
Rule Scheduling
Form

Implicit Y N N Y
Explicit Y Y Y Y

Rule Selection
Explicit Condition N N N N
Non-deterministic Y N N N
Conflict Resolution N N N N
Interactive N N N N

Rule Iteration recursion recursion recursion
Phasing Y N Y Y

Table 9.6: Results for Rule Application Control: Rule Scheduling

9.3 Rule Organization

9.3.1 ATL

ATL offers several features in the area of rule organization. Often used ATL
helpers can be included in libraries, which then can be used in ATL modules.
Despite the name, modules themselves can not be reused. In ATL terminology,
a module denotes the code for one model-to-model transformation (see [20]).
Within a module, rule inheritance is available, if the 2006 version of the ATL
compiler is used. This is described in Section 5.2.

The organizational structure of ATL modules is loosely based on the structure
of the source metamodel. For one source model element, several target elements
can be specified. However, ATL 2006 adds the ability to define more than one
source element for each rule.
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9.3.2 Kermeta

As full-featured programming language, Kermeta offers features for organizing
code and therefore rules. The transformation can be organized in classes.
Unlike ATL, the transformation code can also be split into several different files.
Kermeta also supports multiple inheritance, which means that one class can be a
subclass of more than one superclass (see [12]). Strictly spoken, the inheritance
feature as found in Kermeta is not rule inheritance, because it acts on classes,
not on operations. However, operations of a class are included in inheritance
relationships. A subclass can therefore take advantage of the operations defined
in the superclass.

The organizational structure of written Kermeta code is bound neither to the
source nor the target metamodel. It lies entirely in the developer’s responsibility
how the transformation is structured.

9.3.3 SmartQVT

In the area of rule organization, SmartQVT offers several features. Modularity
in terms of whole transformations are supported by the access and extend during
the transformation definition, as illustrated in Listing 9.5. They keyword access
in line 2 denotes that the operations available in the referenced transformation
UmlCleaning are also available in this transformation. This is illustrated in line
6, where a new instance of the UmlCleaning transformation is created, and its
transform() operation is called. As can be seen, the access mechanism is similar
to import mechanisms in other programming languages. On the other hand,
the extends mechanism is similar to inheritance in object-oriented programming
languages.

Listing 9.5: Modularity Mechanisms in SmartQVT

1 transformation CompleteUml2Rdbms(in uml:UML ,out rdbms:RDBMS
)

2 access transformation UmlCleaning(inout UML),
3 extends transformation Uml2Rdbms(in UML ,out RDBMS);
4
5 main() {
6
7 var tmp: UML = uml.copy();
8 var retcode := (new UmlCleaning(tmp))->transform (); //

performs the "cleaning"

9 if (not retcode.failed ())
10 uml.objectsOfType(Package)->map packageToSchema ()
11 else raise "UmlModelTransformationFailed";
12
13 }

Additionally, rule inheritance is also supported, which is very similar to rule
inheritance in ATL. The inherited rule’s code is executed first, followed by the
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code of the inheriting rule. Further, merging of rules is also possible. Contrary
to rule inheritance, here the code of the referenced rules is executed after the
merging rule’s code.

In general, the organizational structure of transformation code in SmartQVT
is independent. However, because the mapping operations usually take source
model elements as input parameter and target model element as output values,
therefore the organization of the rules mostly reflects the organizational structure
of the models involved.

9.3.4 ModelMorf

As all other languages, ModelMorf supports basic modularity mechanisms, in
terms of importing rules from different source files. Using the import statement,
another QVT transformation can be imported, and its rules can be used in when
and where clauses. Besides that, no reuse mechanisms, such as rule inheritance
are supported. The organizational structure of a rule file is independent from
both source and target model.

9.3.5 Summary

Feature ATL Kermeta SmartQVT ModelMorf
Modularity Mechanisms Y Y Y Y
Reuse Mechanisms

Inheritance Y Y Y N
Logical Composition N N N N

Organizational source, independent independent independent
Structure independent

Table 9.7: Results for Rule Organization

9.4 Source-Target Relationship

9.4.1 ATL

ATL can write both new target elements or use existing target elements. This
is accomplished by two different execution modes [20]. In default mode, ATL
creates new target elements as specified by the developer. In refining mode, the
source elements are completely copied over to the target model, as long as no rule
exists for the respective source element. This mode is useful for transformations
between very similar metamodels, because the basic copying is done automatically
by ATL.
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9.4.2 Kermeta

Because Kermeta does not offer a mechanism for automatic model element cre-
ation, it does not support any features in this section. The developer has to
allocate and create target elements manually. The missing built-in support for
these features does not imply that such behavior is impossible in Kermeta. In
fact, the developer can implement the desired behavior himself. For example, the
manual creation of target model elements, as described in Section 9.1.2, can be
interpreted as manual implementation of the feature new target. On the other
side, it is also possible that the transformation simply performs changes in a
source model loaded before, and then saves the updated model as output file.

9.4.3 SmartQVT

SmartQVT does not offer the possibility to update already created output models
in any way. Change propagation as described by the features in Table 9.8 is only
a part of the Relational QVT standard [17]. General change propagation only
makes sense in relational transformation approaches, because imperative-based
approaches only describe how a new output model is created from a given input
model in a step-by-step manner. Similar as discussed in Section 9.4.2 for Kermeta,
it may be possible to implement the features listed in Table 9.8 using SmartQVT.

9.4.4 ModelMorf

ModelMorf can create a new target model, but it is also possible to update existing
model files. In-place updates are also supported by ModelMorf, as documented
in the QVT standard [17].

9.4.5 Summary

Feature ATL Kermeta SmartQVT ModelMorf
New Target Y N N Y
Existing Target Y N N Y

Update N N N Y
In-Place Y N N Y

Table 9.8: Results for Source-Target Relationship
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9.5 Incrementality

9.5.1 ATL

ATL does not support any of the features concerning incrementality. During
every transformation run, the whole source model is read, and the target model is
completely recreated. User created changes in the target model are not preserved
if the transformation is run again.

9.5.2 Kermeta

Kermeta also does not offer mechanisms like source- or target incrementality by
default. When loading external files containing model data, Kermeta always loads
the whole file, which makes it impossible to implement source-incrementality.
However, target incrementality could be simulated by loading the existing target
model at the beginning of the transformation, and only update necessary target
elements. The same way, preservation of user edits could be implemented as well.

9.5.3 SmartQVT

SmartQVT does not offer any incrementality features. Similar to Kermeta, some
features may be implemented by the transformation developer by first loading
the existing target model, and then perform the updates as desired.

9.5.4 ModelMorf

ModelMorf is the only transformation language evaluated in this thesis, which
supports any features concerning incrementality. Target incrementality in fact is
a part of the relational QVT standard, therein called change propagation [17].
Source incrementality and preservation of user edits in the target model are not
supported.

9.5.5 Summary

Feature ATL Kermeta SmartQVT ModelMorf
Target-Incrementality N N N Y
Source-Incrementality N N N N
Preservation of User Edits N N N N
in the target

Table 9.9: Results for Incrementality
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9.6 Directionality

9.6.1 ATL

ATL only offers unidirectional transformations.

9.6.2 Kermeta

Kermeta’s extendable imperative approach allows a developer to exactly specify
how a transformation is executed. Therefore it is thinkable that a multidimen-
sional transformation can be implemented in Kermeta. In such case, the trans-
formation has to be specified separately for each transformation direction needed,
which means that multidirectionality is not achieved using exactly one logical set
of transformation rules. In fact, there would be a set of rules for each transfor-
mation direction. Because of this, multidimensional transformations in Kermeta
are not very practical. Although they can be realized, a transformation language
with dedicated support for multidirectionality would be more feasible.

9.6.3 SmartQVT

Because of its imperative approach, SmartQVT basically only supports unidirec-
tional model transformations. SmartQVT transformations specify their input and
output model types in their header, therefore a simulation of a multidirectional
transformation, like in Kermeta, is not possible.

9.6.4 ModelMorf

As an implementation of the OMG Relational QVT standard, multidirectionality
is one of the key features of ModelMorf. As described before, transformations
are defined in a declarative way, which does not contain any information on how
the models involved are transformed in a step-by-step way. Instead, the relations
of the model elements of the source and target models are described. Using this
description, ModelMorf can execute the transformation based on the same rule
file in any direction.

9.6.5 Summary

Feature ATL Kermeta SmartQVT ModelMorf
Directionality uni uni uni multi

(multi)

Table 9.10: Results for Directionality
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9.7 Tracing

9.7.1 ATL

ATL includes dedicated tracing support. The tracing information is created
automatically, as soon as a specific source model element is matched to a specific
target model element. This is documented in the follow listing. In line 7, all
elements in the contains relationship of the source model are copied to their
traced counterparts in the contains relationship in the target model. ATL
automatically resolves the tracing information, as long as the target element is
the default target element in the rule in which it was created. An example for
this behavior is seen in Listing 9.6. The default target element of a rule is always
the first element in the to block of a matched rule (see [20]).

Listing 9.6: ATL Rule using Implicit Tracing

1 rule epcMM2adMM {
2 from
3 e:epcMM!epcMMContainer
4 to
5 a:adMM!adMMContainer (
6 name <-e.name ,
7 contains <-e.contains
8 )
9 }

Additionally, ATL also offers the resolveTemp operation, which returns the
created target model element from a given source model element and its target
pattern name. resolveTemp only has to be used, if the target element wanted is
not the default target element of a rule.

Listing 9.7: Usage of resolveTemp in ATL

1 rule r1 {
2 from
3 a_a:MM1!A
4 to
5 b_b:MM2!B(x<-a.name),
6 b_c:MM2!C(y<-a.size)
7 }
8
9 rule r2 {

10 from
11 f:MM1!F
12 to
13 g:MM2!G(h<-resolveTemp(f.a,b_c))
14 }

Listing 9.7 illustrates the usage of resolveTemp. First, the rule r1 creates two
target elements, which are instances of the classes B and C respectively. The
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default target element of this rule is b b, because it is listed first. The element b c
therefore is a non-default target element. In the rule r2, the attribute h of the
target element g has to be set. Because the needed information for this in the
source model is f.a, an instance of the class A, two target elements for this source
element have been created beforehand. In this case, the second one is needed
(b c, as created in rule r1 ), which is a non-default target element. To access the
tracing information for this, resolveTemp has to be called with the source model
element (f.a) and the target element name in its creation rule (b c).

9.7.2 Kermeta

Kermeta offers no dedicated tracing support, but it is possible to implement it.
Listing 9.8 shows a simple tracing implementation, which is used in the epc2ad
transformation.

Listing 9.8: Simple Tracing Framework in Kermeta

1 require kermeta
2 using kermeta ::utils
3 using kermeta :: standard
4
5 class Tracing <S,T>
6 {
7 reference src2tgt : Hashtable <S,T>
8
9 operation create () is do

10 src2tgt := Hashtable <S,T>.new
11 end
12
13 operation getTargetElem(src : S) : T is do
14 result := src2tgt.getValue(src)
15 end
16
17 operation storeTrace(src : S, tgt : T) is do
18 src2tgt.put(src , tgt)
19 end
20
21 }

This is a very simple implementation. It only supports exactly one target
element for each source element. Also, backwards tracing from a target element
to the corresponding source element is not included. These features could be
implemented as well in a similar manner.

9.7.3 SmartQVT

SmartQVT has dedicated tracing support. The tracing information is built au-
tomatically, based on the input and output elements specified in the header of
a mapping operation. According to the QVT standard [17], tracing information
can be retrieved using one of three different resolving operations:
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• resolveone. Looks for a target object created from a given source object.

• invresolve. Reverse resolve, looks for a source object created from a given
target object.

• resolveIn. Looks for target objects created from a source object by a unique
mapping operation.

Additionally, SmartQVT also supports late resolve, which behaves just like
described above, with the exception that the resolving operation is performed at
the end of the transformation.

9.7.4 ModelMorf

ModelMorf includes dedicated tracing support.

9.7.5 Summary

Feature ATL Kermeta SmartQVT ModelMorf
Dedicated Support Y N Y Y

Creation Automatic Automatic Automatic
Storage Location Separate Separate Separate

Table 9.11: Results for Tracing

9.8 Lessons learned

ATL supports many features listed in this evaluation. This is clearly a result of
its hybrid approach, which incorporates declarative and imperative constructs.
Most features which are needed for an average model transformation are im-
plemented. Besides that, ATL is relatively easy to learn, because it just offers
the most needed model transformation features in a relatively straight-forward
way, and on other hand leaves out more sophisticated features, for example
different rule selection algorithms or QVT-blackbox like mechanisms. In con-
clusion, ATL is able to cover a broad territory of model transformations, but
complex transformations are harder to implement than in SmartQVT or Kermeta.

Kermeta as model transformation language supports a bit less features than
the other languages out of the box. However, most features can be implemented
in Kermeta itself. For larger transformations, Kermeta offers mechanisms for
improved code reuse. Because of its imperative approach, tricky transformation
problems can be solved easier than with ATL or ModelMorf. Also because of
this, Kermeta is easier to learn for most developers compared to declarative
languages. Narrowed down only to transformation languages, there may be
more convenient languages than Kermeta. Because Kermeta is not only a
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transformation language, but a general platform for model driven development,
it may be a good choice for a complete MDE environment nevertheless.

SmartQVT is a very powerful transformation languages. It supports many
features of this evaluation, and also covers mechanisms and techniques, which
are not discussed in this thesis. The QVT blackbox mechanism for example
allows a transformation to call arbitrary external code, which could be used to
incorporate database access into a transformation. Another advanced feature
of SmartQVT is the possibility to dynamically load, modify and execute trans-
formations. As a downside of this, it takes a while for a developer to get used
to SmartQVT. After that learning phase however, a developer can implement
almost any transformation in SmartQVT in an elegant and efficient way.

ModelMorf, as implementation of the Relational QVT standard, follows a
strictly declarative approach. Therefore, developers proficient in imperative
programming, may need more training time compared to the other languages
of this evaluation. ModelMorf’s declarative approach has some advantages.
Transformations can be specified elegantly in a very short time. Also, it is
the only language in this evaluation which supports multidirectional model
transformation. As a downside, more complex transformations, like epc2ad, are
very difficult to implement. Therefore, ModelMorf is suited best for equivalent
representation models which have to be transformed in more than one direction.

In general, no transformation language evaluated in this thesis offers consider-
ably more features than any other language. Also, it would not make any sense
to identify a winning candidate by summing up all features supported, because
some features are more important than others. Other features simply denote the
approach a specific language chooses. For example, Kermeta and SmartQVT do
not support many features in rule scheduling, because of their overall imperative
approach. Different rule selection mechanisms simply do not make sense in an
imperative language.

Additionally, some features are not supported by any language evaluated.
For example, no language supports source incrementality or dynamic mode
restriction. Other features, which are not supported by a language may be
implemented as part of the transformation, if they are necessary to develop the
desired transformation. This is especially the case for Kermeta. Kermeta misses
some typical model transformation language features, most notably support for
tracing, but because of Kermeta’s imperative approach, these features can easily
implemented by the developer.

Despite the fact that no model transformation language is clearly overall better
than another, still some languages are more suitable for a specific task compared
to others. In general, if the transformation to implement includes structurally
similar metamodels, declarative approaches may be a good choice. Most classes
and relationships have directly corresponding model elements in the target
model and can therefore easily be transformed. An example for this is model
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Figure 9.1: Choosing Features on the Language Evaluation Webpage

Figure 9.2: Results
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refactoring, because the source and target metamodels are structurally equiva-
lent. Metamodels which differ structurally, where concepts from one metamodel
do not have direct equivalents in the other metamodel, are more complex to
transform. For such situations, imperative approaches are more suitable, because
they are more expressive than declarative approaches. Language migration (like
transforming Event-driven Process Chains to Activity Diagrams) is an example
usage scenario which is suited well for imperative transformation languages,
because different languages may support certain features in a very different way,
which has to be taken into account for the transformation. Hybrid approaches
on the other hand aim to combine the advantages of imperative and declarative
approaches. Hybrid approaches are therefore most suitable for transformations,
which include a certain amount of structural similarity, but still include concepts
which cannot be mapped to each other directly. For hybrid aproaches, formal
refinement represents a suitable usage scenario, because the metamodels involved
are structurally very similar, but the target model includes additional informa-
tion, which in many cases has to be computed or compiled by the transformation.

In the end, the best model transformation language has to be chosen depending
on the requirements of the given transformation and the infrastructure of the
MDE environment used. In order to support the decision process, a website is
provided [22]. All features evaluated in this thesis can be marked depending on
the requirements, as shown in Figure 9.1. The support for the selected features
in ATL, Kermeta, SmartQVT and ModelMorf is then shown in order to help
picking out the most suited transformation language, which supports most of the
desired features. In this case, the user is interested in a transformation language
offering support for Application Conditions and Multidirectionality, but explicitly
not Aspect-orientation. Other features included in the feature classification may
be chosen on different subpages, as indicated by the Domain Features link seen
in Figure 9.1. Figure 9.2 shows what the result for the query defined before
looks like. A detailed overview of the languages’ respective feature support is
given. Features which are wanted by the user and supported by the language in
question are marked green. If a wanted feature is missing in a transformation
language, the respective field is colored red. If a feature is explicitly unwanted
by the user, the fields indicating the languages’ support is colored green if the
feature is not supported in the respective language and red otherwise. Below the
detailed result table, an overall score is given. For every supported feature, which
is wanted by the user, the language is awarded one point. The points for every
language are summed up. The language awarded the most points offers the best
feature support according to the user’s requirements. In the example shown in
Figures 9.1 and 9.2, ModelMorf has the best coverage of the user’s requirements
because it supports both Application Conditions and Multidirectionality.
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10 KLRT - Kermeta Library for
Reusable Transformations

In this chapter, the Kermeta Library for Reusable Transformation patterns is
explained.

10.1 Motivation

Many problems occurring in model transformation situations are very similar.
For example, the deaggregation of one class in the source model to two classes
with a relationship to each other in the target class is a very often used technique.
Despite the frequency of occurrence of these problems, model transformation
languages do not incorporate built-in support for solving this problems in an
easy and elegant way. Developers have to implement solutions for these common
transformation schemes by themselves, which leads to additional development
effort, error-proneness and incompatibilities across transformations.

Kermeta is chosen as platform for KLRT, because it offers powerful language
features, which are needed to implement such a library. Reflection and genericity
for example are necessary to handle model elements with unknown properties at
compile time. Furthermore, Kermeta is lacking some features, which are found
in most other transformation languages, most notably support for tracing.

The overall goal of KLRT is to simplify model transformation development
with Kermeta. Kermeta code using KLRT aims to be shorter, less verbose, and
easier to understand.

10.2 Recurring Problems in Model Transformation

The transformation problems described here are based on [39], with tracing sup-
port added as additional pattern.

10.2.1 Tracing Support

Kermeta offers no built-in support for tracing. However, most model transforma-
tion problems need support for tracing. As a consequence, a tracing framework
has to be implemented by the developer. Because this framework is most likely
very similar for several transformations, it is very suitable for inclusion in KLRT.
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10.2.2 Aggregation

Aggregation is the process of combining two distinct classes in the source model.
Both classes may also have a relationship to each other. As result, the target
model includes one class, which incorporates features of both source model classes.

Figure 10.1: Aggregation

As shown in Figure 10.1, two classes exist in the source model. The class
PersonB denotes a single person, with its first name as attribute. The other class,
namely Family contains the family’s name as attribute. An instance of PersonB
refers to exactly one instance of Family. These two classes are transformed into
one single class PersonA, which both includes the person’s first name and the
name of the family the person belongs to.

10.2.3 Deaggregation

Contrary to aggregation, deaggregation splits one source model class into two
classes. The two resulting classes may also again have a relationship to each
other.

Figure 10.2 illustrates the idea of deaggregation. One class, in this case Per-
sonA has two attributes. In the target model, this results into two distinct classes,
with one attribute copied from the source class respectively, namely PersonB and
Family. Additionally, the togetherness of the transformed objects is indicated by
the isMemberOf relationship. If multiple PersonA instances belonging to the
same family are to be transformed, the Family object must only be created once.
The different PersonB instances then have to reference the same Family object.
In order to fulfill this requirement, the implementation of the transformation has
to keep track of all transformed objects.

10.2.4 Collapse Hierarchy

A common technique used in object-oriented modeling is the usage of inheritance
hierarchies. Given a specific metamodel which includes an inheritance relation-
ship, another metamodel may specify the information given by the inheritance
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Figure 10.2: Deaggregation

relations as attribute of the mapped super class. In other words, instead of a
super class and several subclasses, a model can contain one single class, with an
attribute which specifies what subtype an instance of this class belongs to.

Figure 10.3: Collapse Hierarchy

Figure 10.3 illustrates the mechanism of collapsing hierarchies. The superclass
A has two subclasses, B and C. In the target model, only the superclass A exists.
The exact type of the object is specified by the attribute type.

10.2.5 Expand Hierarchy

Expanding hierarchies is the reverse operation to collapsing hierarchies. In this
case, a subclass of a superclass is created in the target model, depending on the
value of a certain attribute in the source model.

Figure 10.4 shows how the expanding of hierarchies in model transformations
works. In the source model, the class A has a attribute type. Depending on the
value of this attribute, an object is transformed either to an instance of subclass
B or C during the transformation.
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Figure 10.4: Expand Hierarchy

10.2.6 Reverse Property

Reverse property is another frequently occurring pattern in model transforma-
tions. In this case, the relationship between two model elements in the source
model is reversed in the target model. No reverse operation exists for reverse
property, because the same operation can be applied to opposing metamodel
fragments.

Figure 10.5: Reverse Property

For example, as shown in Figure 10.5, in the source model an object of class
A has a reference to an object of class B, where multiple A’s may reference one
B. In the target model on the other hand, an object of class B itself references
to multiple instances of class A.

10.3 Language Requirements

In order to implement the aforementioned transformation schemes, the model
transformation language of choice must support several language features.

10.3.1 General Support for Implementing Libraries

The chosen transformation language has to offer the possibility to create
user-defined libraries, which can easily be used by different transformations.
Most languages support this feature. For example, in ATL it is possible to
create separate library files including helper rules, which can be called by other
transformations. Other approaches, such as Triple Graph Grammars or QVT
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Relational do not offer such possibilities.

Kermeta supports implementing libraries by importing Kermeta files into other
Kermeta files. This is illustrated by the following example in Listing 10.1.

Listing 10.1: Trivial Kermeta library (File trivlib.kmt)

1 package at:: adore:: kermeta :: trivlib;
2
3 require kermeta
4
5 class t
6 {
7 operation f():Void is do
8 ...
9 end

10 }

Listing 10.2: Using Trivlib in a Transformation

1 package at:: adore:: kermeta ::test;
2
3 require kermeta
4 require "trivlib.kmt"
5
6 using at::adore :: kermeta :: trivlib
7
8
9 class Main

10 {
11 operation main() : Void is do
12
13 var x: t init t.new
14 t.f()
15
16 end
17 }

As can be seen, the file trivlib.kmt defines a package named
at::adore::kermeta::trivlib. The usage of packages in Kermeta is not mandatory,
but recommended, because in this way, the library namespace is clearly separated
from the rest of the transformation. Inside the library package, the class t is
defined, containing the operation f().

A transformation in Kermeta, like the transformation shown in Listing 10.2,
can now access the defined class and its operation by including the Kermeta file
containing the library code, namely trivlib.kmt. Additionally, the package has to
be imported with the using statement. After that, the class t is instantiated and
the operation f() is called on its newly created instance.
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10.3.2 Access to Meta Classes/Reflection

In most cases, the exact metamodel classes used in transformations are not
known at the design time and compile time of the library. Otherwise, it would
not be possible for the same code, namely the library, to operate on different
classes. Therefore, a reflection mechanism is needed which provides access
to meta classes, their attributes and relationships. For example, it might be
necessary to set an attribute value, given only the attribute name as string and
the desired value as generic object.

Genericity as technique is also useful, but in most cases may be substituted
by using reflection meta classes. In general, genericity may be used if already
existing objects of a certain class are passed to an operation, whereas reflection
is useful if a new object has to be instantiated.

10.4 Usage

In order to use KLRT, a transformation has to include the library’s main file and
import its package namespace, as illustrated by Listing 10.3:

Listing 10.3: Importing KLRT into a Transformation

1 package at:: adore:: kermeta :: translib ::test;
2
3 require kermeta
4 require "klrt/klrt.kmt" // require library file

5
6 using at::adore :: kermeta :: translib // import package

7
8
9 class Main

10 {
11 ...
12 }

From the point of view of a transformation developer, the li-
brary is accessed only by instantiating one specific class, namely
at::adore::kermeta::translib::transformations. This class contains all reusable
transformation schemes, which can be used by calling the respective operations.
Because in many cases, more than one result object may be returned, KLRT
uses a OrderSet as result value, which includes multiple objects. The individual
objects can be accessed by using the method at(index). Because the resulting
OrderedSet may only include Objects, the method asType(type) has to be used
in order to cast the result object to the desired type.

Listing 10.4 illustrates how the operation deaggregate can be used in order to
transform a PersonA into a PersonB and a Family. First, the transformation
library and the initial person are instantiated. For PersonA, both a firstname
and lastname are set. After that, the result OrderedSet is instantiated, and the
operation deaggregate is called. The parameters of this operation are as followed:
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Listing 10.4: Calling an operation of KLRT

1 operation f():Void is do
2 // instantiate lib

3 var lib: transformations init transformations.new
4
5 // instantiate a person

6 var x1: PersonA init PersonA.new
7 x1.firstname="Jack"
8 x1.lastname="White"
9

10 // result variable

11 var result1: OrderedSet <Object >
12
13 // call deaggregate

14 result1 :=lib.deaggregate(x1 ,"lastname",PersonB ,"
isMemberOf",Familie ,"name")

15
16 // read results

17 var y1:PersonB init result1.at(0).asType(at:: adore::
kermeta :: translib ::test:: PersonB)

18 var z1:Familie init result1.at(1) asType(at:: adore::
kermeta :: translib ::test:: Familie)

19
20
21 end

• x1. The object, which is to be deaggregated, in this case the PersonA with
both a firstname and lastname.

• lastname. Attribute of the source class, which is copied to a new instance
of the second target class.

• PersonB. The first target class. A new object is created from this class,
which will be the first object in the resulting OrderedSet.

• isMemberOf. A relationship attribute of the first target class which points
to the newly created instance of the second target class.

• Familie. The second target class. A new object ist created from this class,
which will be the second object in the resulting OrderedSet.

• name. The identifying attribute of the second target class. The value of
the second parameter will be copied to this attribute.

10.5 Implementation

In this sections, the implementation of the transformation problems described in
Section10.2 and additional helper operations and classes are explained.
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10.5.1 Helper Operations - helper.kmt

The file helper.kmt includes several operations, which are called by the main
library operations. Its layout is similar to the main library, as it only includes
one class, which then contains the needed operations. The helper functions are
not intended to be called by a user transformation.

Operation getAttrFromClass

In order to get and set a property of an object when the property is only known
at runtime, Kermeta’s reflection features have to be used. Both get and set
operations in Kermeta need the wanted property’s meta-class as parameter, as
illustrated by Listing 10.5.

Listing 10.5: Get and Set Methods of Kermeta [37]

1 method get(~ property : kermeta :: reflection :: Property) :
kermeta :: reflection :: Object from kermeta :: reflection ::
Object

2
3 method ~set(~ property : kermeta :: reflection ::Property ,

element : kermeta :: reflection :: Object) : Void from
kermeta :: reflection :: Object

The tilde character ∼ is used to escape keywords in Kermeta, so they can be
used as operation names or variable names [12].

Listing 10.6: Operation getAttrFromClass

1 operation getAttrFromClass(cl:kermeta :: reflection ::Class ,
attr:String):kermeta :: reflection :: Property is do

2
3 cl.ownedAttribute.each {a|
4 if (a.name.equals(attr)) then
5 result :=a
6 end
7 }
8
9 end

Because KLRT often wants to set properties, which are only known by their
name as String, the operation getAttrFromClass (see Listing 10.6) is provided,
which returns the kermeta::reflection::Property object of a given class and the
property’s name as String value.

The operation steps through all owned attributes of the class cl. If a property
is found, which has the same name as given in the parameter attr, this property
is returned. If no matching property is found, void is returned implicitly. Using
the getAttrFromClass operation, it is easily possible to to call the get and set
methods provided by Kermeta.



10 KLRT - Kermeta Library for Reusable Transformations 88

Operation findObject

KLRT keeps a set of objects, which were already created by the library. This
is necessary to avoid the double creation of elements, especially when using
deaggregation. For example, if two persons of the same family are deaggregated,
they both have to refer to the same newly created family object.

Listing 10.7: Operation findObject

1 operation findObject(cl:kermeta :: reflection ::Class , attr:
String , attrVal:Object , elementSet:Collection <Object >):
Bag <Object > is do

2
3 var b:Bag <Object > init Bag <Object >.new
4 var prop:kermeta :: reflection :: Property init

getAttrFromClass(cl , attr)
5
6 elementSet.select{e|e.getMetaClass ==cl}.each {a|
7
8 if (a.get(prop).getMetaClass.name=="ReflectiveSequence"

) then
9 var rs:kermeta :: standard :: Collection <kermeta ::

reflection ::Object >
10 rs?=a.get(prop)
11
12 rs.each {item|
13 if (item.equals(attrVal) or item== attrVal) then
14 b.add(item)
15 end
16 }
17 else
18 if (a.get(prop)== attrVal or a.get(prop).equals(

attrVal)) then
19 b.add(a)
20 end
21 end
22 }
23
24 result :=b
25
26 end

The operation findObject, as seen in Listing 10.7, looks up the given Collection
of elements for an object of the class cl, with an attribute named attr with the
value attrVal. Additionally, KLRT detects whether the given property to search
is a collection (line 8). In that case, every matching item in this collection is
returned. This behavior is needed by the implementation of reverseProperty.
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Operation getInstance

The operation getInstance (see Listing 10.8) is a wrapper operation, which calls
the aforementioned operation findObject. If no object matching the criteria given
is found, a new object is instantiated. The idea of this mechanism is similar to
singletons, although at a different level. Instead of only one object of a given
class, several objects of the same class are allowed. However, only one object
with a certain attribute value is permitted.

Listing 10.8: Operation getInstance

1 operation getInstance(cl:kermeta :: reflection ::Class , attr:
String , attrVal:Object , elementSet:Collection <Object >):
Object is do

2
3 var b:Bag <Object > init findObject(cl ,attr ,attrVal ,

elementSet)
4 var o:Object
5
6 if (b.size ==0) then
7 o:=cl.new
8 else
9 o:=b.one

10 end
11
12 result :=o
13
14 end

Operation recurseAddToSet

As mentioned before, KLRT keeps a collection of already transformed objects.
The operation recurseAddToSet, as seen in Listing 10.9, is intended to be called
to add newly created elements to the collection of all elements. The operation
recursively follows all referenced objects and adds them to the set.

Listing 10.9: Operation recurseAddToSet

1 operation recurseAddToSet(o:Object , elementSet:Collection <
Object >): Void is do

2
3 if (o!=void) then
4
5 var val:Object
6 if (o.getMetaClass.name=="ReflectiveSequence") then
7 var rs:kermeta :: standard :: Collection <kermeta ::

reflection ::Object >
8 rs?=o
9 rs.each {i|

10 recurseAddToSet(i,elementSet)
11 }
12 end
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13 elementSet.add(o)
14
15 o.getMetaClass.ownedAttribute.each {a|
16 val:=o.get(a)
17
18 if (val!=void) then
19 var type:String init val.getMetaClass.name
20
21 if (type!="String" and type!="Integer" and type!="

Boolean" and not elementSet.contains(val)) then
22 recurseAddToSet(val ,elementSet)
23 end
24 end
25 }
26 end
27
28 end

First, the operation checks, whether the given object is some type of collection,
which can be found out using .getMetaClass.name==”ReflectiveSequence”. If
this is the case, recurseAddToSet is called recursively on all elements contained
in this collection. After that, the special handling of collections is finished and
the object given itself is added to the element collection. After that, all attributes
of the object’s class are iterated over. If the thereby referenced object is not an
instance of a basic class, namely String, Integer, or Boolean, and the object is
not contained in the element collection, the operation is called recursively. The
not-containment of the object in question in the element collection is the main
termination condition of the recursion. However, this also means that elements
with updated references are not searched.

Operation createTracingHelper

Listing 10.10: Operation createTracingHelper and Wrapper Class

1 operation createTracingHelper(b:Bag <Object >):TracingHelper
is do

2 result := TracingHelper.new
3 result.b:=b
4 end
5
6 ...
7
8 class TracingHelper {
9

10 attribute b:Bag <Object >
11
12 }

KLRT uses a simple Hashtable-based tracing framework. Bags are used as
keys and values for the hashtable, where each bag may contain multiple elements.
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In this way, support for m:n tracing information is introduced. Due to a bug in
Kermeta, it is not possible to store Bag objects as hashtable values. Therefore,
KLRT provides a wrapper class, which is actually used for keys and values in
the tracing hashtable. For the convenient creation of wrapper elements, the
operation createTracingHelper (see Listing 10.10) is provided.

As can be seen, the wrapper class TracingHelper only contains one attribute of
the type Bag<Object>. The operation createTracingHelper simply instantiates
a new object of the wrapper class and sets the bag attribute accordingly to the
given parameter.

10.5.2 Main Library - klrt.kmt

Tracing Support

Tracing support in KLRT is implemented in the file klrt.kmt, by the class Tracing,
as shown in Listing 10.11.

Listing 10.11: Class Tracing

1 class Tracing <S,T>
2 {
3 reference src2tgt : Hashtable <S,T>
4
5 operation create () is do
6 src2tgt := Hashtable <S,T>.new
7 end
8
9 operation getTargetElem(src : S) : T is do

10 result := src2tgt.getValue(src)
11 end
12
13
14 operation storeTrace(src : S, tgt : T) is do
15 src2tgt.put(src , tgt)
16 end
17
18 }

This is basically a very simple implementation of tracing facilities. It only
supports exact 1:1 mappings by using a Hashtable. Although this class may
be instantiated and used by transformations, transformation developers are
encouraged to use the wrapper methods provided in the class transformations.
All KLRT operations automatically store their tracing information using the
class described here. The limitation of only be able to store 1:1 mappings is
circumvented by using Bags of objects as keys and values for the Hashtable.
In this way, several objects of both source and target model may corre-
spond to each other. Transformation developers may use the operations resolve
and invresolve of the class transformations in order to access tracing information.
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Listing 10.12 shows the implementation of the operation resolve. The inverse
operation, invresolve is implemented exactly the same way, only keys and values
are swapped in their usage. Notably, the resolving feature of the underlying
tracing framework is not used, because it can not resolve elements inside the key
and value bags. Therefore, resolve directly accesses the tracing hashtable, and
searches every key bag for an object matching to the parameter o. If a match is
found, the whole target bag is returned.

Listing 10.12: Operation resolve

1 operation resolve(o:Object):Bag <Object > is do
2
3 var ht:Hashtable <TracingHelper ,TracingHelper > init

tracingLinks.src2tgt
4 ht.keys.each {i|
5 i.b.each {b|
6 if (b==o) then
7 result :=ht.getValue(i).b
8 end
9 }

10 }
11
12 end

Aggregation

The concept of aggregation is already described in Section 10.2.2. The operation
aggregate implements this behaviour in KLRT (see Listing 10.13). The operation
takes the following parameters:

• fromClass1: A. The first source object, of type A.

• fromAttr1: String. The attribute of class A which is copied to toAttr1 in
the target class.

• fromClass2: B. The first source object, of type B.

• fromAttr2: String. The attribute of class B which is copied to toAttr2 in
the target class.

• toClass: Class. The target class. The operation creates a new instance of
this class.

• toAttr1: String. First target attribute.

• toAttr2: String. Second target attribute.
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Listing 10.13: Implementation of Aggregation

1 operation aggregate <A,B>( fromClass1:A, fromAttr1:String ,
fromClass2:B, fromAttr2:String , toClass:Class , toAttr1:
String , toAttr2:String): OrderedSet <Object > is do

2
3 initialize ()
4
5 var h:helper init helper.new
6
7 var to:Object init toClass.new
8
9 var from_a1:kermeta :: reflection :: Property init h.

getAttrFromClass(A,fromAttr1)
10 var from_a2:kermeta :: reflection :: Property init h.

getAttrFromClass(B,fromAttr2)
11
12 var to_a1:kermeta :: reflection :: Property init h.

getAttrFromClass(toClass ,toAttr1)
13 var to_a2:kermeta :: reflection :: Property init h.

getAttrFromClass(toClass ,toAttr2)
14
15 to.~set(to_a1 ,fromClass1.get(from_a1))
16 to.~set(to_a2 ,fromClass2.get(from_a2))
17
18 h.recurseAddToSet(to,elementSet)
19
20 result := OrderedSet <Object >.new
21 result.add(to)
22
23 end

As with nearly all operations of the main library, first the operation initial-
ize() is called, in order to ensure the element collection of the library has been
instantiated. After that, the helper class is instantiated, because some of its op-
erations are used later on in this operation. In line 7, a new instance of toClass
is created, which will later be filled and returned. In lines 9 to 13, the operation
getAttrFromClass is called to retrieve the property objects, which are needed to
get and set the desired attribute values. Lines 15 and 16 read the from-attribute
values of the from-objects, and set these values accordingly in the target class.
Finally, the created element is added to the library’s element collection, and the
result value is constructed.

Deaggregation

Deaggregation in KLRT is also implemented using both reflection and genericity.
The resulting OrderedSet contains two objects. The operation deaggregate takes
the following parameters:

• fromClass: A. The source object, of generic type A
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• attr: String. Attribute of the source class, which corresponds to the identi-
fying attribute of the second target class

• toClass: Class. First target class

• ref: String. Name of the property of the first target class, which refers to
the second target class

• attrToClass: Class. Second target class. If no instance of this class with the
value contained in the attribute attr of the source object exist, a new in-
stance of this class will be created. Otherwise, the already existing instance
will be referenced and returned.

• attrTo: String. Identifying attribute of the second target class

Listing 10.14: Implementation of Deaggregation

1 operation deaggregate <A>( fromClass:A, attr:String , toClass:
Class , ref:String , attrToClass:Class , attrTo:String):
OrderedSet <Object > is do

2
3 initialize ()
4 var h:helper init helper.new
5 var a:kermeta :: reflection :: Property
6
7 a:= h.getAttrFromClass(A,attr)
8
9 var attrToProp:kermeta :: reflection :: Property init h.

getAttrFromClass(attrToClass ,attrTo)
10 var refProp:kermeta :: reflection :: Property init h.

getAttrFromClass(toClass ,ref)
11
12 var attrToClassInstance:Object init h.getInstance(

attrToClass , attrTo , fromClass.get(a), elementSet)
13
14 var toClassInstance:Object init toClass.new
15
16 toClassInstance .~set(refProp ,attrToClassInstance)
17 attrToClassInstance .~set(attrToProp ,fromClass.get(a))
18
19 h.recurseAddToSet(toClassInstance , elementSet)
20 h.recurseAddToSet(attrToClassInstance , elementSet)
21
22 result := OrderedSet <Object >.new
23 result.add(toClassInstance)
24 result.add(attrToClassInstance)
25
26 end

The implementation of deaggregation is shown in Listing 10.14. Like in all
other main operations of KLRT, the library is ensured to be initialized by calling
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the operation initialize. In lines 5 and 7, the wanted attribute of the source
class is prepared to be read by getting its reflective Property object. In lines 9
and 10, the needed attributes for both target classes are instantiated the same
way. After that, the instance of the second target class is prepared by calling
the helper operation getInstance, and additionally an instance of the first target
class is created. In lines 16 and 17, the reference of the first target class to the
second target class and the identifying attribute of the second target class are set.
Eventually, both created objects are added to the library’s element collection and
the resulting OrderedSet is constructed and returned.

Collapse Hiearchy

Because the collapsing of hierarchies only operates on one specific instance of a
class, it is sufficient that only one transformed object is returned. Therefore, the
return value of the operation simply is Object, and not OrderedSet. The operation
collapseHierarchy takes the following parameters:

• fromObject:Object. The object in the source model.

• toClass:Class. The target class, of which a new instance will be created.

• toAttr:String. The target attribute, which will contain the type.

• classTable:Hashtable<kermeta::reflection::Class,String>. A Hashtable con-
taining the mapping of which source class corresponds to which target at-
tribute String value. If this parameter is void, the target attribute will
contain the source class name as String value.

Listing 10.15: Implementation of Collapse Hierarchy

1 operation collapseHierarchy(fromObject:Object , toClass:
Class , toAttr:String , classTable:Hashtable <kermeta ::
reflection ::Class ,String >): Object is do

2
3 initialize ()
4 var h:helper init helper.new
5
6 var mcl:kermeta :: reflection :: Class init fromObject.

getMetaClass
7 var o:Object init toClass.new
8 var prop:kermeta :: reflection :: Property init h.

getAttrFromClass(toClass , toAttr)
9

10 if (classTable ==void) then
11 o.~set(prop , mcl.name)
12 else
13 o.~set(prop ,classTable.getValue(mcl))
14 end
15 h.recurseAddToSet(o,elementSet)
16 result :=o
17 end
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Listing 10.15 shows the implementation of collapseHierarchy. In lines 3 and
4, the library is initialized, and the helper class is instantiated. Line 6 creates a
variable containg the meta class of the source object, which will be needed later
on. In lines 8 and 9, the target object is instantiated as object of the given target
class. In lines 11 - 15, the target attribute is set, either to the string value of the
source class, or to the corresponding value specified in the Hashtable parameter.

Expand Hierarchy

The operation expandHierarchy performs the opposite to the operation collapse-
Hierarchy. It is implemented using both reflection techniques and genericity. The
parameters are as follows:

• fromObject:A. This is the source object, of the generic type A.

• fromAttr:String. The attribute containg the subtype information.

• classTable:Hashtable<String, Class>. A Hashtable containg the mapping
between the String value of the attribute fromAttr and the corresponding
classes. Contrary to collapseHierarchy this parameter must not be void.

Listing 10.16: Implementation of Expand Hierarchy

1 operation expandHierarchy <A>( fromObject:A, fromAttr:String ,
classTable:Hashtable <String , Class >): Object is do

2
3 initialize ()
4 var h:helper init helper.new
5
6 var prop:kermeta :: reflection :: Property init h.

getAttrFromClass(A,fromAttr)
7
8 if (classTable.containsKey(fromObject.get(prop).toString

())) then
9 var mcl:kermeta :: reflection :: Class init classTable.

getValue(fromObject.get(prop).toString ())
10
11 result :=mcl.new
12 else
13 raise "Attribute "+fromAttr+" not found in matching 

Table"
14 end
15
16 end

Listing 10.16 shows the implementation of the operation expandHierarchy.
Lines 3 and 4 again initialize the library and instantiate the helper class. In Line
6, the property object for the type attribute of the source class is retreived. Line
8 makes sure, that the value of the type attribute has a corresponding class in
the mapping Hashtable. If so, in line 9 an object is created from this class, and
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is set as result value for the operation in line 11.

Contrary to collapseHierarchy, the Hashtable parameter is not optional in ex-
pandHierarchy, because it is not possible to create an instance of a class, which is
only known by its name as String. The reverse operation, getting a classes’ name
as String is easily possible via object.getMetaClass.name.

Reverse Property

The implementation of reverse property uses both reflection and genericity. The
parameters are as follows:

• fromObject:A. Source object, which is referenced by one or more other
source objects of type otherClassSrc.

• fromRef:String. The reference property’s name of class otherClassSrc.

• otherClassSrc:Class. The class, which objects refer to fromObject.

• toClass:Class. Target class corresponding to fromObject.

• toRef:String. The reference property’s name of class toClass.

• otherClassTgt:Class. The class, which objects are refered by the new in-
stance of toClass.

Listing 10.17: Implementation of Reverse Property

1 operation reversePropery <A>( fromObject:A, fromRef:String ,
otherClassSrc:kermeta :: reflection ::Class ,toClass:kermeta
:: reflection ::Class ,toRef:String ,otherClassTgt:kermeta ::
reflection ::Class):OrderedSet <Object > is do

2
3 initialize ()
4 var h:helper init helper.new
5
6 var res:OrderedSet <Object > init OrderedSet <Object >.new
7 var src_bag:Bag <Object > init Bag <Object >.new
8 var tgt_bag:Bag <Object > init Bag <Object >.new
9

10 var ref:kermeta :: reflection :: Property init h.
getAttrFromClass(otherClassSrc ,fromRef)

11
12 var b:Bag <Object > init h.findObject(otherClassSrc ,fromRef

,fromObject ,sourceModel)
13
14 src_bag.add(fromObject)
15 src_bag.add(b)
16 var new1:Object init instantiate(toClass ,fromObject)
17
18 var ref2:kermeta :: reflection :: Property init h.

getAttrFromClass(toClass ,toRef)
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19
20 tgt_bag.add(new1)
21 res.add(new1)
22
23 var revSet:kermeta :: standard :: Collection <kermeta ::

reflection ::Object >
24 revSet ?=new1.get(ref2)
25
26 b.each {item|
27 var new2:Object init instantiate(otherClassTgt ,item)
28 tgt_bag.add(new2)
29 res.add(new2)
30 revSet.add(new2)
31 }
32
33 h.recurseAddToSet(new1 ,elementSet)
34 tracingLinks.storeTrace(h.createTracingHelper(src_bag),

createTracingHelper(tgt_bag))
35 result :=res
36
37 end

In lines 3-8 of Listing 10.17, the library is initialized, the helper class instanti-
ated, and the collection objects for tracing and the operation result are created.
After that, the source reference property object is fetched in line 10. In line 12,
the operation findObject is used to retrieve all objects of the element set, which
point to fromObject via their specified reference property. Tracing information
is built up in lines 14 and 15. The first target object is created in line 16, and
its reference property is fetched after that. In line 21, the newly created target
object is added to the resulting OrderedSet, in order to make sure it is always
the first item of the collection. In lines 23-31, a new instance of otherClassTgt
is created for every item which references to fromObject in the source model. A
reference from the first created object to every secondary object is created in line
30, by adding the newly created element to the collection revSet containing the
referenced objects of the new instance of toClass via the reference toRef. Eventu-
ally, all newly created items are saved in the library’s element set and the created
tracing links are stored.

10.6 KLRT in Action

In order to evaluate how useful KLRT may be in practice, an example transfor-
mation is provided in this section. The metamodels used in this transformation
are seen in Figures 10.6 and 10.7. As can be seen, no real world entities are used
in these metamodels, only placeholder classes. Despite being relatively small, the
transformation from testSource to testTarget uses three of the aforementioned
transformation patterns:

• Aggregation. The classes A and B are aggregated to the class A in the
target model.
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• Collapse hierarchy.The source metamodel uses generalization to distinguish
different types of C ’s, namely the subclasses E and F. In the target meta-
model, only the class C exists. It uses the attribute type in order to identify
different subtypes.

• Reverse property. In the source metamodel, C s may reference to multiple
Ds, whereas in the target metamodel Ds reference C s.

Figure 10.6: Language A Explicit Metamodel

Figure 10.7: Language A Implicit Metamodel

Apart from using the patterns, the transformation requires only little transfor-
mation logic. Only the relationship r3 is not covered by any of the transformation
patterns, although the inspection of tracing information is necessary. Also the
other transformation direction is implemented and discussed, because the reverse
transformation patterns are used.

In the following, the transformation is implemented twice for both directions.
First, plain Kermeta is used to transform testSource to testTarget. After that,
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the same transformation is implemented using KLRT. Additionally, the direction
from testTarget to testSource is also implemented using both Kermeta and KLRT.
Only the transformations themselves are discussed, because loading and saving
of models is done exactly the same way in all variations.

10.6.1 Case Study 1: From Explicit to Implicit Representation

Implementation with Plain Kermeta. Listing 10.18 shows the implementation
of the sample transformation using plain Kermeta. As basic pattern, select and
each is used to iterate over all elements which are transformed the same way.
All new target elements have to be instantiated by the developer. In order to
transform the relationship r2 correctly, tracing information has to be kept. This
is done using a simple Hashtable, because no m:n source-target mappings are
needed in this transformation.

Listing 10.18: Explicit2Implicit: Implementation using plain Kermeta

1 operation transformPlain(src:testSource :: container):
testTarget :: container is do

2
3 var resCont:testTarget :: container init testTarget ::

container.new
4 var ht:Hashtable <Object ,Object > init Hashtable <Object ,

Object >.new
5
6 src.items.select{x|x.isInstanceOf(testSource ::A)}.each {i

|
7 var a:testTarget ::A init testTarget ::A.new
8 a.a1:=i.asType(testSource ::A).a1
9 a.a2:=i.asType(testSource ::A).r1.b1

10 resCont.items.add(a)
11 ht.put(i,a)
12 }
13
14 src.items.select{x|x.isInstanceOf(testSource ::C)}.each {i

|
15 var c:testTarget ::C init testTarget ::C.new
16 c.type:=i.getMetaClass.name
17 resCont.items.add(c)
18 ht.put(i,c)
19 }
20
21 src.items.select{x|x.isInstanceOf(testSource ::D)}.each{i|
22 var d:testTarget ::D init testTarget ::D.new
23 resCont.items.add(d)
24 ht.put(i,d)
25 }
26
27 src.items.select{x|x.isInstanceOf(testSource ::A)}.each{i|
28 var a:testTarget ::A
29 var c:testTarget ::C
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30 a:=ht.getValue(i).asType(testTarget ::A)
31 c:=ht.getValue(i.asType(testSource ::A).r3).asType(

testTarget ::C)
32 a.r3:=c
33 }
34
35 src.items.select{x|x.isInstanceOf(testSource ::C)}.each{i|
36 var d:testTarget ::D
37 var c:testTarget ::C
38 c:=ht.getValue(i).asType(testTarget ::C)
39 d:=ht.getValue(i.asType(testSource ::C).r2.at(0)).asType

(testTarget ::D)
40 d.r1.add(c)
41 }
42
43 result := resCont
44
45 end

Implementation with KLRT. Listing 10.19 shows how the demonstrative trans-
formation may be implemented using KLRT. In lines 3-5, the library and the re-
sult object are instantiated and initialized. The following code blocks illustrate,
how KLRT is typically used. All source elements, which are needed as source ob-
jects for the desired patterns are selected and iterated over (lines 8, 13, 22). After
that, the mapping operation is called, and the created target elements are added
to the target model container. The transformation parts, which are not covered
by any pattern supported by KLRT are executed at the end in lines 29-35. In this
case, the relationship r3 has to be transformed. This is done by iterating over
all As in the source model. For every A, the counterpart A in the target model
is resolved (line 32). The corresponding C at the other end of the relationship r3
is also found by inspecting the tracing information using resolve. At line 34, the
relationship in the target model is set.

Listing 10.19: Explicit2Implicit: Implementation using KLRT

1 operation transform(src:testSource :: container): testTarget
:: container is do

2
3 var lib: transformations init transformations.new
4 var resCont:testTarget :: container init testTarget ::

container.new
5 lib.setSourceModel(src)
6
7 var c:testTarget ::C
8 src.items.select{x|x.isKindOf(testSource ::A)}.each {i|
9 var result1: OrderedSet <Object > init lib.aggregate(i.

asType(testSource ::A),"a1",i.asType(testSource ::A).
r1.asType(testSource ::B),"b1",testTarget ::A,"a1","a2
")

10 resCont.items.add(result1.at(0).asType(testTarget ::A))
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11 }
12
13 src.items.select{x|x.isKindOf(testSource ::E)}.each {i|
14 var result1: Object init lib.collapseHierarchy(i.asType

(testSource ::E),testTarget ::C,"type",void)
15 resCont.items.add(result1.asType(testTarget ::C))
16 }
17
18 src.items.select{x|x.isKindOf(testSource ::F)}.each {i|
19 var result1: Object init lib.collapseHierarchy(i.asType

(testSource ::F),testTarget ::C,"type",void)
20 resCont.items.add(result1.asType(testTarget ::C))
21 }
22 src.items.select{x|x.isInstanceOf(testSource ::D)}.each{i|
23 var res:OrderedSet <Object > init lib.reversePropery(i.

asType(testSource ::D),"r2",testSource ::C,testTarget
::D,"r1",testTarget ::C)

24 res.each{r|
25 resCont.items.add(r.asType(testTarget ::item))
26 }
27 }
28
29 src.items.select{x|x.isInstanceOf(testSource ::A)}.each{i|
30 var a1:testTarget ::A
31 var c1:testTarget ::C
32 a1:=lib.resolve(i).one().asType(testTarget ::A)
33 c1:=lib.resolve(i.asType(testSource ::A).r3).one().

asType(testTarget ::C)
34 a1.r3:=c1
35 }
36
37 result := resCont
38
39 end

10.6.2 Case Study 2: From Implicit to Explicit Representation

Implementation with Plain Kermeta. The reverse sample transformation us-
ing plain Kermeta is shown in Listing 10.20. As can be seen, more lines of code
are needed to accomplish the transformation in this direction. This is mainly be-
cause the patterns in this transformation direction rather expand the model. The
transformation target model contains 6 classes, therefore more code is needed for
instantiation purposes. Additionally, checking whether searched instances of B
already exist and keeping of tracing information has to be done manually.
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Listing 10.20: Implicit2Explicit: Implementation using plain Kermeta

1 operation transformPlainRev(src:testTarget :: container):
testSource :: container is do

2
3 var resCont: testSource :: container init testSource ::

container.new
4 result := resCont
5 var ht:Hashtable <Object ,Object > init Hashtable <Object ,

Object >.new
6
7 var bs:Set <testSource ::B> init Set <testSource ::B>.new
8 src.items.select{x|x.isInstanceOf(testTarget ::A)}.each{i|
9 var a:testSource ::A init testSource ::A.new

10 a.a1:=i.asType(testTarget ::A).a1
11 ht.put(i,a)
12 var b:testSource ::B
13 if (bs.exists{e|e.b1==i.asType(testTarget ::A).a2}) then
14 b:=bs.detect{e|e.b1==i.asType(testTarget ::A).a2}
15 else
16 b:= testSource ::B.new
17 b.b1:=i.asType(testTarget ::A).a2
18 a.r1:=b
19 resCont.items.add(b)
20 end
21 resCont.items.add(a)
22 }
23
24 src.items.select{x|x.isInstanceOf(testTarget ::C)}.each{i|
25 if (i.asType(testTarget ::C).type=="E") then
26 var e:testSource ::E init testSource ::E.new
27 resCont.items.add(e)
28 ht.put(i,e)
29 else
30 var f:testSource ::F init testSource ::F.new
31 resCont.items.add(f)
32 ht.put(i,f)
33 end
34 }
35
36 src.items.select{x|x.isInstanceOf(testTarget ::D)}.each{i|
37 var c1:OrderedSet <testTarget ::C>
38 c1:=i.asType(testTarget ::D).r1
39 c1.each{x|
40 var c:testSource ::C
41 var d:testSource ::D init testSource ::D.new
42 c:=ht.getValue(x).asType(testSource ::C)
43 c.r2.add(d)
44 resCont.items.add(d)
45 }
46 }
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47
48 src.items.select{x|x.isInstanceOf(testTarget ::A)}.each{i|
49 var a1:testSource ::A init ht.getValue(i.asType(

testTarget ::A)).asType(testSource ::A)
50 var c1:testSource ::C init ht.getValue(i.asType(

testTarget ::A).r3).asType(testSource ::C)
51 a1.r3:=c1
52 }
53
54 end

Implementation with KLRT. The reverse transformation using KLRT is illus-
trated in Listing 10.21. The lines of code used is almost exactly the same as in
the source2target direction. Differences only occur in the transformation of C ’s,
where the differentiation of E and F is handled differently. The other patterns
use basically the same code, by only calling the reverse transformation pattern.

Listing 10.21: Implicit2Explicit: Implementation using KLRT

1 operation transformRev(src:testTarget :: container):
testSource :: container is do

2
3 var resCont: testSource :: container init testSource ::

container.new
4 result := resCont
5
6 var lib: transformations init transformations.new
7 lib.setSourceModel(src)
8
9 src.items.select{x|x.isInstanceOf(testTarget ::A)}.each{i|

10 var res:OrderedSet <Object > init lib.deaggregate(i.
asType(testTarget ::A),"a2",testSource ::A,"r1",
testSource ::B,"b1")

11 resCont.items.add(res.at(0).asType(testSource ::A))
12 resCont.items.add(res.at(1).asType(testSource ::B))
13 }
14
15 var ht:Hashtable <String ,kermeta :: language :: structure ::

Class > init Hashtable <String ,kermeta :: language ::
structure ::Class >.new

16 ht.put("E", testSource ::E)
17 ht.put("F", testSource ::F)
18 src.items.select{x|x.isInstanceOf(testTarget ::C)}.each{i|
19 var res:Object init lib.expandHierarchy(i.asType(

testTarget ::C),"type",ht)
20 resCont.items.add(res.asType(testSource ::item))
21
22 var res2:OrderedSet <Object > init lib.reverseProperty(i.

asType(testTarget ::C),"r1",testTarget ::D,testSource
::C,"r2",testSource ::D)
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23 resCont.items.add(res2.at(0).asType(testSource ::item))
24 resCont.items.add(res2.at(1).asType(testSource ::item))
25 }
26
27 src.items.select{x|x.isInstanceOf(testTarget ::A)}.each{i|
28 var a1:testSource ::A
29 var c1:testSource ::C
30 a1:=lib.resolve(i.asType(testTarget ::A)).one().asType(

testSource ::A)
31 c1:=lib.resolve(i.asType(testTarget ::A).r3).one().

asType(testSource ::C)
32 a1.r3:=c1
33 }
34
35 end

10.7 Discussion

KLRT aims to simplify Kermeta transformations by providing support for often
occurring model transformation patterns. In order to make a statement on how
helpful KLRT is in practice, a sample transformation has been implemented
using KLRT and plain Kermeta in the previous section.

Advantages of KLRT are smaller resulting transformation code and automatic
tracing support. On the other hand, transformation code using KLRT is not
easier to read then plain Kermeta code, because many transformation operations
need several parameters, which result in very long code lines.

A comparison of the resulting transformation code shows, that the transfor-
mation using KLRT uses about 10-20% less lines of code. However, the sample
transformation is relatively small (6 classes in the source model, 3 classes in
the target model), and therefore the advantages of using KLRT can not be
proved certainly. It is also notable that patterns which use more output classes
than input classes benefit more of KLRT because less instantiation work has
to be done by the developer. For a more comprehensive conclusion, a more
complex and bigger transformation has to be implemented, preferably with
further transformation patterns supported by KLRT.

As already mentioned, Kermeta code using KLRT is harder to read than con-
ventional Kermeta transformation code, because the pattern operations need sev-
eral parameters in most cases. For more readable code in general, a different ap-
proach to the library implementation would be necessary. For example, a domain
specific language describing the transformation patterns could be designed. How-
ever, this is very hard to do in Kermeta. A possible way of simplifying the API
of KLRT would be the usage of Fluent Interfaces [13], which eases the creation of
objects of an API. Although Fluent Interface is a design pattern, it has similarities
to a domain specific language [13]. Future work may evaluate how the concept of
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KLRT can be implemented in another way, which is more comfortable and easier
to use than KLRT. For example, in [26], Kappel et al. discuss a framework for
building mapping operators for resolving structural heterogeneities.
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11 Conclusion and Outlook

11.1 Conclusion

The main goal of this thesis was to evaluate different model transformation
approaches concerning their support of the features documented in [5]. Four
different transformation languages have been chosen as representation of different
overall transformation approaches: Kermeta is an example for an imperative
model transformation language. SmartQVT also follows the imperative ap-
proach, but offers more built-in model transformation features. ModelMorf, an
implementation of the QVT relational standard, serves as example language for
purely declarative model transformation approaches. ATL on the other hand is
an example for a hybrid model transformation language.

As the results of the evaluation show, imperative model transformation
languages offer generally more powerful features and therefore more flexibil-
ity than other approaches. However, this does not necessarily mean that
they are superior to other transformation approaches. Most notably, trans-
formations in relational transformation approaches are harder to specify for
complex transformations, but on the other hand, only relational approaches offer
multidirectionality, which may by crucial for some model transformation projects.

For every model transformation project, the requirements to be fulfilled by
the transformation language have to be made clear. Choosing a transformation
language without knowing about the requirements may result in inefficient, or
in the worst case impossible to implement transformation problems. The feature
support documented in this thesis, and the corresponding web site help choosing
an appropriate transformation language for transformation projects.

The second part of this thesis is a result of the fact, that although impera-
tive transformation languages are more flexible and powerful than declarative
languages, more code is needed to implemented the desired transformation.
Therefore, a Kermeta library is presented. The goal of this library is to imple-
ment often occurring transformation problems in a generic way. In imperative
languages, it is generally necessary to write more code in order to accomplish the
same tasks, compared to relational transformation languages. In order to reduce
the amount of repetitive code, and to increase code reuse, KLRT implements
several transformation patterns, which may then be used in real transformation
settings. This way, 10-20 % less code is needed to implemented a transformation.

To sum up, imperative and declarative approaches have their advantages and
disadvantages, which have to be addressed when choosing a transformation lan-



11 Conclusion and Outlook 108

guage. In order to increase code reuse when using an imperative language, like
Kermeta, KLRT may be used.

11.2 Outlook

In this thesis, four different model transformation languages have been evaluated.
Concerning future work, additional transformation languages may be evaluated
as well. Further, any transformation language may also be evaluated more
specifically for certain features and additional features not covered in this
thesis. For example, declarative approach languages may be evaluated for their
incrementality and directionality support, which are typical features only found
in declarative languages.

KLRT currently only supports a limited set of transformation patterns. In
future work, more patterns may be implemented in KLRT. Because KLRT code
is harder to maintain than plain Kermeta code, reusable transformation pat-
terns may be implemented using a domain specific language or a fluent interface
based API, which would increase code readability considerably. Because KLRT
is currently only available for Kermeta, an equivalent library to KLRT could be
implemented for another transformation language.
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Appendix A

The CDROM enclosed contains the following:

• eclipse/ : The Eclipse installation used in this thesis, containing all plug-ins
used.

• metamodels/ : The metamodels described in Chapter 4 in Ecore format.

• transformations/ : The source code of the sample transformations in ATL,
SmartQVT, Kermeta and ModelMorf.

• klrt/ : The source code and example code for KLRT.

• readme.txt : Further information concerning the files on the CDROM.


	Introduction
	Motivation and Goal of this Thesis
	Related Work
	Structure of this Thesis

	Introduction to Model Transformation
	Model Transformation as Part of MDA
	Applications for Model Transformation
	Horizontal Model Transformation
	Vertical Model Transformation
	Endogenous Model Transformation
	Exogenous Model Transformation
	Summary of Usage Scenarios

	Classification of Model Transformation Approaches
	Direct-Manipulation
	Imperative
	Declarative
	Hybrid
	Graph Transformation


	Criteria Catalogue
	Transformation Rules
	Syntactic Separation
	Multidirectionality
	Application Condition
	Intermediate Structures
	Reflection
	Aspects
	Domain
	Parameterization

	Rule Application Control
	Form
	Rule Selection
	Rule Iteration
	Phasing

	Rule Organization
	Modularity Mechanisms
	Reuse Mechanisms
	Organizational Structure

	Source-Target Relationship
	New Target
	Existing Target

	Incrementality
	Target-Incrementality
	Source-Incrementality
	Preservation of User Edits in the Target

	Directionality
	Tracing

	Running Model Transformation Examples
	Running Example 1: ooclass2table
	Running Example 2: epc2ad

	ATL - Atlas Transformation Language
	Introduction to ATL
	Core Features
	User Interface
	Sample Transformations
	Solution for ooclass2table
	Solution for epc2ad

	Summary on ATL

	SmartQVT
	Introduction to SmartQVT
	Core Features
	User Interface
	Sample Transformations
	Solution for ooclass2table
	Solution for epc2ad

	Summary on SmartQVT

	Kermeta
	Introduction to Kermeta
	Core Features
	User Interface
	Sample Transformations
	Solution for ooclass2table
	Solution for epc2ad

	Summary on Kermeta

	ModelMorf
	Introduction to ModelMorf
	Core Features
	User Interface
	Sample Transformations
	Solution for ooclass2table
	Solution for epc2ad

	Summary on ModelMorf

	Evaluation
	Transformation Rules
	ATL
	Kermeta
	SmartQVT
	ModelMorf
	Summary

	Rule Application Control
	ATL
	Kermeta
	SmartQVT
	ModelMorf
	Summary

	Rule Organization
	ATL
	Kermeta
	SmartQVT
	ModelMorf
	Summary

	Source-Target Relationship
	ATL
	Kermeta
	SmartQVT
	ModelMorf
	Summary

	Incrementality
	ATL
	Kermeta
	SmartQVT
	ModelMorf
	Summary

	Directionality
	ATL
	Kermeta
	SmartQVT
	ModelMorf
	Summary

	Tracing
	ATL
	Kermeta
	SmartQVT
	ModelMorf
	Summary

	Lessons learned

	KLRT - Kermeta Library for Reusable Transformations
	Motivation
	Recurring Problems in Model Transformation
	Tracing Support
	Aggregation
	Deaggregation
	Collapse Hierarchy
	Expand Hierarchy
	Reverse Property

	Language Requirements
	General Support for Implementing Libraries
	Access to Meta Classes/Reflection

	Usage
	Implementation
	Helper Operations - helper.kmt
	Main Library - klrt.kmt

	KLRT in Action
	Case Study 1: From Explicit to Implicit Representation
	Case Study 2: From Implicit to Explicit Representation

	Discussion

	Conclusion and Outlook
	Conclusion
	Outlook

	List of Figures
	List of Tables
	List of Listings
	Bibliography
	Appendix A

