
TECHNISCHE UNIVERSITÄT WIEN

CENTRO POLITÉCNICO SUPERIOR DE ZARAGOZA,

CPS

Institut für Nachrichtentechnik und Hochfrequenztechnik

Master Thesis

ENCODING OPTIMIZATION OF H.264/AVC SOCCER VIDEO

SEQUENCES

Professor: Markus RUPP

Supervisor: Luca SUPERIORI

Author: Alfredo FONT PEREZ

Contents

Abstract vi

1 Introduction 1

1.1 Motivation . 1

1.2 H.264/AVC Overview . 3

1.2.1 Introducing H.264/AVC . 4

1.2.2 Network Abstraction Layer (NAL) 8

1.2.3 Video Coding Layer (VCL) 9

1.2.4 Profiles and reference software 11

1.3 Previous work . 12

1.4 Main problem and proposed solution 18

1.4.1 Main problem . 18

1.4.2 Proposed solution . 20

1.5 Outline of the thesis . 23

2 Video encoding 25

2.1 Encoding process . 26

2.1.1 Encoding at MB level. 27

2.1.2 Exploiting Skip MB mode, the idea. 30

2.2 Modifying the encoder. 31

2.2.1 Introducing the encoder. 32

2.2.2 Implementing the new encoding method. 37

2.3 Checking the method. 46

ii

Chapter 0 iii

3 Preprocessing 52

3.1 Working of the encoding system . 53

3.2 Preanalyzing the videos with Matlab 54

3.2.1 GMVs Calculation. 55

3.2.2 Borders problem. 57

3.3 Making the system work . 61

3.3.1 Inputting info to the encoder (new modifications). 61

3.3.2 Encoding the borders. 62

4 Appearance of zoom. 68

4.1 Main problem and proposed solution. 69

4.2 State of the art in zoom detection. 72

4.2.1 Methods based on MVs. 72

4.2.2 Method based on the Hough Transform and MVs. 73

4.2.3 Methods based on Decision Trees and MVs. 73

4.3 Zoom detector implementation. 74

5 Results 81

5.1 Objective results. 83

5.1.1 Bit rate. 83

5.1.2 Objective quality (Psnr). 87

5.2 Subjective quality evaluation. 88

6 Conclusions 93

APPENDIX A 95

APPENDIX B 101

Bibliography 103

Abstract

Football video sequences are one of the most streamed contents over internet and

in 3G networks, with special emphasis in mobile applications. Because of this, it is

becoming more important the information compression and therefore the improve-

ment of video standards. This work deals with the compression improvement of

soccer sequences in the standard video H.264/AVC or MPEG-4 Part 10.

The main objective of this work was to optimize the codification efficiency in

soccer video sequences with the H.264/AVC standard. The MBs corresponding to

the audience are encoded with a significant amount of bits because they contain a

very high frequency and they are difficult to predict. Because subjectively we think

the audience is the least important part of a soccer video, we have thought about

modifying its encoding. We have used the FMO slicing strategy in order to (after

segmenting the frames into three different regions: field, players and audience) be

able to encode each region independently and transmitted in different packets.

We have investigated the possibility of modifying its encoding (H.264/AVC

encoder) in order to exploit some characteristics of the audience to be captured

according to the camera. Exploiting the camera movement to predict a ”Global

motion vector”, we can think about sending only one motion vector for the whole

audience indicating the camera movement to copy MBs directly from the previous

image, but shifted.

The first of all, we have studied the working of the encoding mainly at MB

level. We have implemented a new encoding method (modifying functions and

variables) able to encode all the macroblocks (MBs) as skip, but reconstructing

them at the both sides (encoder and decoder) with one GMV (transmitted in the

iv

Chapter 0 v

first MB of the slice) used for the whole audience. In that way we will not send

residuals.

We have worked in a simulated environment, videos have been preanalyzed

previously in Matlab to obtain information to be input to the encoder. We have

obtained the GMVs, border maps and zoom detection for all the videos. When

zoom appears the method cannot be applied, so a zoom detector have been im-

plemented, using the MVs distribution of the audience MBs in order to detect the

zoom.

Some effects as the zoom detection reliability have to be taken into consider-

ation. But, in general, after the application of the new encoding method, some

significant bit rate results have been obtained. The PSNR as a static parameter

does not reflect the perceived quality. Because of that we have prepared a sub-

jective quality test (MOS) in a typical UMTS device in order to evaluate it. The

results have denoted the viewers do not pay much attention to the audience, even

the quality used decreases.

This method can be used in different applications in the future. In this work we

have used the Visual C++ program to work with the encoder and the mathematical

program Matlab to preanalyze the videos, to obtain parameters and to analyze the

final results.

List of Figures

1.1 Interlaced and progressive frame. 5

1.2 4:2:0 subsampling. 7

1.3 Scope of video coding standardization. 7

1.4 Structure of H.264/AVC video encoder. 8

1.5 Slicing Strategies. 9

1.6 Basic structure of H.264 for a macroblock. 11

1.7 Original and encoded frame with reduced bit rate. 13

1.8 Different types of FMO. 15

1.9 Frame segmentation in three zones with Matlab. 16

1.10 Reordering macrolocks into slices. 17

1.11 Amount of bits sent for each MB. 18

1.12 Allocation map vs amount of bits sent. 19

1.13 MV concept, encoding a MB. 21

1.14 Motion vectors’ audience histogram. 21

1.15 Example of the proposed method. 22

2.1 Different encoding levels. 27

2.2 MB partitions for motion estimation and compensation. 28

2.3 Part of a MB bitstream and its resulting segmentation. 29

2.4 Data transmitted. 31

2.5 Main encoding in hierarchical order. 33

2.6 Coding function at MB level. 38

2.7 Checking 16x16 mode. 41

vi

Chapter 0 vii

2.8 PartitionMotionSearch function. 42

2.9 Trace file method with simulated GMV = 0. 47

2.10 Video captures with simulated GMV = 0 separated 20 frames. . . . 47

2.11 Trace file after forcing GMV to be 4. 48

2.12 Video captures between 16 frames forcing GMV to be 4. 49

2.13 Video captures between 16 frames forcing GMV to be 2. 50

3.1 Working of the system. 53

3.2 Directions according to the MVs. 55

3.3 GMVs Calculation process. 56

3.4 Borders problem. 58

3.5 Solving Borders problem. 60

3.6 Mean border Psnr vs mean Psnr. 63

3.7 Mean border Size vs mean Size. 64

3.8 Mean border Psnr different options. 65

3.9 Mean border Size different options. 66

4.1 Camera operations. 68

4.2 Zoom in example. 70

4.3 MV patterns resulting from various camera operations. 70

4.4 Histograms ”no zoom” and ”zoom”. 71

4.5 Zoom detector scheme. 76

4.6 No zoom and zoom MVs distribution examples. 77

4.7 Zoom detector example. 79

5.1 Zoom detection calculation for sequence 2. 84

5.2 Zoom detection result for sequence 2. 85

5.3 Bits per frame sent with and without our encoding method for seq. 2. 86

5.4 Bits percentage per zone with and without our encoding method for seq. 2. 86

5.5 Mean MB bits size in each zone. 87

5.6 Audience MBs mean Psnr with and without our encoding method for seq. 2. 88

Chapter 0 viii

5.7 MOS test pattern. 90

5.8 MOS test results. 91

List of Tables

1.1 Most common resolutions for mobile video. 6

3.1 Influence of border threshold. 61

3.2 Influence of refresh time. 67

4.1 Influence of window and threshold in the zoom. 78

5.1 Test set employed. 82

5.2 Bit rate statistics. 84

ix

Chapter 1

Introduction

1.1 Motivation

In the last years, multimedia transmissions have become more and more popular,

until the point that nowadays we can watch a video live from our mobile phone.

With the previous 2G systems, defined by the Global System for Mobile commu-

nications (GSM) [1], nobody could have imagined watching videos in the mobile

phone was possible, but now it has become a reality. Since the appearance of the

third mobile generation a few years ago, with the Universal Mobile Telecommuni-

cations System (UMTS) [2] as a successor of GSM in Europe, the mobile phone

concept has changed radically. The three main characteristics of GSM were: mul-

timedia capability, a good internet connection enabling high rates of audio and

video transmission and a high quality voice transmission comparable with fixed

telephony. Instead of being a simple communication device, the mobile phone has

become a multimedia device with multiple capabilities for the leisure time due

to the big amount of applications offered. Nowadays we have the possibility of

a wide range of applications in our mobile phones, such video streaming, being

a one-way quasi real time application, which requires a considerable amount of

available bandwidth to be sent.

The amount of possible applications offered and the development of new ser-

vices like multimedia transmissions, specially football video transmissions due to

1

Chapter 1 2

its popularity, require a very high bandwidth needed to be sent due to the high

volume of data to represent them. Because of that and because of the huge de-

mand for these kinds of services sharing the limited radio bandwidth, the efficiency

of the data transmission and the compression of the data sent is becoming very

important. The development of new video standards continues being done con-

stantly.

Due to the limited capacity, an essential thing to let multimedia transmissions

work is to use efficient video standards to compress the video. A video codec is a

device or software that enables video compression and/or decompression for digital

video, an imperative necessity since digital communications have grown so fast in

the last decade. Efficient but also lossy compression codecs are used, inducing

quality degradation. One of the codecs used nowadays, which has a significant

reduction in the bit rate, compared to the other standards for the similar degree of

quality, is the H.264/AVC standard, that will be the standard used in this thesis.

This project addresses the possibility of exploiting some characteristics of the

football video sequences to modify the encoding of H.264/AVC standard in order to

decrease the amount of data sent. It presents the implementation of a new encoding

method of one particular region of a football video sequence after using FMO

(Flexible Macroblock Ordering), a slicing strategy from standard H.264/AVC, to

segment the video in different zones. We will explain the objectives of the project

in the section 1.4 after having explained the main working of the H.264 standard

and the previous work made [14], in order to make easier the comprehension of

the scopes.

This project requires modifications of the encoding of H.264/AVC codec mak-

ing it understandable for the standard H.264/AVC decoder. It deals with the

transmission of CIF (352x288 pixels resolution) football videos encoded with the

H.264/AVC codec within a simulated environment. In the present project the

videos will be preanalyzed with Matlab, a mathematical program, in order to

obtain information to exploit the possibilities of the encoder.

Chapter 1 3

1.2 H.264/AVC Overview

Before diving into the project, it is useful to know how video coding is performed.

Readers that are already well versed in this subject may skip this particular section

and go directly to section 1.3, in which the origin and previous work of this thesis

is explained. Although this overview will be explained supposing a minimum

video coding knowledge from the reader, it is recommended to read some previous

concepts of prior H.264/AVC video standards, that will be commented right now.

Video standards have been developed with the objective of comprising a wide

variety of applications, from digital storage to multimedia transmission. Video

standards achieve a high compression using several methods that exploit the tem-

poral and spatial redundancy. Moving Pictures Expert Group (MPEG) is the

expert group of the International Organization for Standardization (ISO/IEC)

charged of the development of video and audio codification. From the 90’s, the

video coding expert group (VCEG) of the international telecommunication union -

telecommunication sector (ITU-T) and the MPEG of ISO/IEC, already mentioned

before, focused their investigations in different video coding techniques for sev-

eral applications. These two groups have started their deployments with different

objectives, while VCEG developed the H.261 standard [3] for video-conferencing

applications, MPEG developed the MPEG-1 standard [4] for video storage. Al-

though MPEG is a lossy video standard usually MPEG videos have a higher quality

than other formats because the lost suffered is usually imperceptive to the human

eye, that recognizes much better the luminance (white and black levels) than the

chrominance (colour level), so the perceived quality depends strongly on the first

one, and that information is exploited by this standard.

After the creation of MPEG-2 standard [5] (main standard used for most of

TV standards, including NTSC, satellite TV and cable TV) as an extension of

MPEG-1, the ITU-T adopted it also as standard H.262 [6]. Due to the necessity

of comprising a wider range of applications, the MPEG developed the standard

MPEG-4 part 2 [7] including the possible segmentation of video objects. At the

Chapter 1 4

same time the VCEG developed the standard H.263 [8] for video mobile applica-

tions, compatible with MPEG-4 part 2. At that point, the two groups decided

to join their efforts to create an overall group together called joint video team

(JVT) to work in a new and better video standard. As a result of the deployment

emerged the standard H.264 or MPEG-4 part 10 [9], providing a better integra-

tion to protocols and architectures, which will be the standard used in the present

project.

Each new improvement usually requires more computational capability to en-

code, but at the same time, offers more possibilities to encode videos in differ-

ent ways and more compression capability and error concealment. For low-rate

video streaming a very high compression rate has to be used. The standard

H.264/MPEG-4 part 10, is not only efficient for video storage, but also provides

a high performance in terms of compression and is more robust against errors

than the previous MPEG standards, as mainly MPEG-2, H.263 and MPEG-4

Part 2, standards used in multimedia transmission. This standard improves the

rate-distortion efficiency relative to prior standards and provides reduction in the

bit rate up to 50% compared with other standards.

H.264 has the same main conceptual blocks that the prior MPEG standards.

In this present section 1.2 we are going to see a general overview of the standard

H.264 including some technical features and we will describe the coding algorithm

focusing the more relevant parts related with this project, we are going to introduce

the standard step by step.

1.2.1 Introducing H.264/AVC

The video is the result of the process of capturing, recording, storing and recon-

structing a sequence of consecutive images that, properly visualized, create a mo-

tion perception. These images are called frames in technical video language. The

video can be interlaced or progressive depending on the encoding of the frames, in-

terlaced frames or progressive frames. Generally, a frame is partitioned into rows,

Chapter 1 5

a video contains two interleaved fields, the top field containing the even rows and

the bottom field containing the odd rows. If the fields of the frame have been

captured at the same instant, the frame is called progressive (these frames have

been captured in a frame period), otherwise the two fields have been captured

separated in time by a field period (half of a frame period) and the frame is called

interlaced. In the interlaced case the fields can be considered frames with half of

the information of a normal frame and with a half capturing time also. We can

see both cases in Figure 1.1. In this present thesis we will work with progressive

video.

Figure 1.1: Interlaced and progressive frame.

Each frame is sampled with a fixed resolution, that determines the number of

pixels in which is divided the capture. The more samples the video capture have,

the more reliable is, but of course more bits have to be sent. In this project we

will work with CIF resolution,in Table 1.1 the most common resolutions for mobile

video are presented:

Chapter 1 6

Abbreviation Size Description

VGA 640x480 Video Graphics Array

QVGA 320x240 Quarter Video Graphics Array,

called also Standard Interchange Format (SIF)

Q2VGA 160x120

CIF 352x288 Common Intermediate Format

(quarter of resolution 704x576 used in PAL)

QCIF 176x144 Quarter Common Intermediate Format

Table 1.1: Most common resolutions for mobile video.

Since the human visual system is more sensitive to luminance than to color,

a new system appeared to replace the RGB (Red, Green, Blue) color model to

represent the pixels, the YUV color model. Instead of representing each pixel with

three color components with RGB, the signal is divided into luminance (denoted

as Y) and two color difference components (denoted as U and V). We are not

going to show the conversion equations here, but this can be seen in: [10]. With

YUV, we have also three components, but as we told before, the human eye is less

sensitive to chroma than to luminance, so this can be exploited by the encoder. The

accuracy of the luminance (brightness)has far more impact on the image discerned

than that of the other two. Exploiting this human shortcoming, the codec can

reduce the amount of data consumed by the chrominance considerably reducing

the bandwidth. Therefore, the resulting U and V signals can be compressed. There

are several modes to sample the video, originally each sample was encoded for each

pixel, but nowadays the most common way of subsampling is called 4:2:0. Instead

of encoding as said before, it is reduced the number of chroma samples (U and V)

in both the horizontal and vertical dimensions by a factor of 2, that means each 4

luma samples, 2 chroma samples are encoded(one of each type). We will use this

subsampling in the present project, we can see it graphically in Figure 1.2:

Chapter 1 7

Figure 1.2: 4:2:0 subsampling.

As said in [11], the main goals of this standardization effort are to develop a

simple and straightforward video coding design, with enhanced compression perfor-

mance, and to provide a ”network-friendly” video representation which addresses

”conversational” (video telephony) and ”non-conversational” (storage, broadcast

or streaming) applications.

The scope of the standardization is shown in Figure 1.3, where we can observe

the typical video encoding/decoding scheme. As in prior similar standards, only

the central decoder is standardized (imposing conditions in the bitstream and syn-

tax). Therefore several changes in the encoder can be done in order to optimize

some characteristics in several applications (inducing a higher flexibility), always

taking into consideration that the decoder has to be able to understand the in-

coming bitstream obtaining as a result the same video than in the encoder if there

have not been errors in the data transport.

Figure 1.3: Scope of video coding standardization.

The H.264/AVC design comprises a Video Coding Layer (VCL), charged of

efficiently represent the video content, and a Network Abstraction Layer (NAL),

which has the objective of arranging the VCL representation of the video and pro-

Chapter 1 8

viding proper headers in order to conform the bitstream according to the transport

layer. We can see the scheme in Figure 1.4:

Figure 1.4: Structure of H.264/AVC video encoder.

In the next sections we are going to see the structure of the NAL briefly, the

main characteristics of VCL (in details because the most relevant part in our

project), the profiles and the software used.

1.2.2 Network Abstraction Layer (NAL)

The NAL is designed to provide ”network friendliness” to adapt in a simple and

effective way the use of VCL for a huge variety of systems. The NAL maps

H.264/AVC data to transport layers as RTP/IP, H.32X or MPEG-2.

The smallest unit of NAL is the NAL unit, consisting of a packet containing an

integer number of bytes. NAL units have proper headers concerning information

contained in its payload. There are different NAL units, VCL and Non-VCL NAL

units. VCL NAL units contain the data representing the values of the samples

in the video pictures, and Non-VCL contain additional information as parameter

sets, that can change the decoding of the bitstream sent in the VCL NAL units.

A set of NAL units in a specified way is an access unit (its decoding results in

one decoded picture or frame), and a set of access units compose a coded video

sequence. The access units are sequencial in the bitstream. Within the bitstream

the NAL can vary the composition of the parameters in order to improve and make

more efficient the transport and specially the error detection.

Chapter 1 9

1.2.3 Video Coding Layer (VCL)

We are not going to go into details here in technical characteristics of the standard,

but a general overview of the working of the most important part of the standard

will be explained, for more detailed information, [12] can be seen.

The VCL consists of a hybrid of temporal and spatial prediction, in conjunction

with transform coding. Each picture is partitioned in rectangular blocks of 16x16

pixels called macroblocks (and denoted as MB), and these macroblocks are encoded

with the associated luma and chroma samples. All these samples will be either

spatially or temporally predicted, and the resulting prediction residual will be sent

after the application of transform coding and quantization.

The macroblocks within a picture are grouped in slices, a picture maybe split

into one or several slices. Each slice is encoded and decoded independently, that

means that a slice does not use the data of other slices within the picture to be

decoded and reconstructed, and is racket separately. Normally, the macroblocks

are grouped in slices in raster scan order as shown in Figure 1.5 left side, but

multiple options of Flexible Macroblock Ordering (FMO), a slicing strategy, can be

used to divide a picture into slices. An example of FMO can be seen in Figure 1.5

right side. At this point we only have to know that macroblocks’ encoding does not

have to be in a fixed way, but we can exploit this characteristic to send particular

macroblocks with different parameters. We will focus in the FMO in the section

1.3.

Figure 1.5: Slicing Strategies.

Each picture in the H.264/AVC standard can be predicted with spatial pre-

diction, temporal prediction or both of them. When Intra prediction is used the

Chapter 1 10

spatial dependencies are exploited, and when Inter prediction is used the temporal

dependencies are exploited. We will explain briefly both cases:

• Intra prediction (spatial prediction), each Block in an Intra frame is

predicted using spatially neighbouring samples of previous encoded blocks

in the present picture only. The encoder chooses in this case the best MB

to make the prediction, and this prediction is sent together with the resid-

ual. Images encoded with intra prediction require much more bits to be

transmitted than the ones encoded with inter prediction, but the quality is

higher. Obviously the first image of a sequence has to be encoded with intra

prediction.

• Inter prediction (temporal prediction), this prediction exploits the

temporal statistical dependencies. Each sample in an Inter frame is predicted

using previous encoded frames without using data from the present picture.

The encoding process (motion estimation) in this case consists of choosing

motion data, comprising the reference picture, and a spatial displacement

that will be applied to the samples corresponding to the MB. In the chapter

2 we will focus more deeply in this topic.

The residual of the prediction (Intra or Inter), being the difference between the

real and predicted block will be sent together with the corresponding additional

information. Within a frame encoded with Inter prediction, some macroblocks

with Intra prediction can be encoded. Within a MB, more sub-partitions can be

done, the more partitions there are, the more information has to be transmitted.

This standard supports five different coding types: I and SI (intra prediction)

and P, B and SP (inter prediction). The simplest ones are P and I (corresponding

to the baseline profile), B is used for biprediction (a picture referred to two previous

pictures instead of one only) and SI and SP work as I and P frames but specified

for efficient switching bitstreams encoded at various bit-rates. In this project we

will work only with the baseline profile since it is the only profile reccomended by

Chapter 1 11

3GPP, that means that we will work only with I and P frames, and we will exploit

the characteristics of P frames only.

We can see the basic coding structure of H.264/AVC for a MB in the Figure 1.6,

we can observe that within the encoder there is an implemented decoder in order

to conduct prediction for the next blocks of pixels of the next picture having the

same reference both at the encoder as well as at the decoder:

Figure 1.6: Basic structure of H.264 for a macroblock.

After having transformed (with a separable integer transform with basically

the same properties as Discrete Cosine Transform(DCT)) and quantified the mac-

roblocks’ samples in the specified order, two different methods of entropy coding

can be used: a method called Context-Adaptive Variable Length Coding (CAVLC)

and a sophisticated method called Context-Adaptive Binary Arithmetic Coding

(CABAC). In our case the simplest option (since we are working with the baseline

profile), CAVLC, will be used.

1.2.4 Profiles and reference software

Due to the quantity of applications covered by the standard, a few profiles have

been designed to avoid the implementation of all possible stream structures, in

that way it is made easier the interoperability between similar applications. A

profile is a subset of features, it defines a set of coding tools that can be used

to conform a particular bitstream. In H.264/AVC three profiles were defined at

Chapter 1 12

the beginning comprising all the possibilities: the Baseline, Main and Extended

Profile. Nowadays the range of profiles have been extended to seven, but they will

not be commented. These are the main characteristics of the three main profiles

of the standard:

• Baseline Profile: designed for low complexity and low rate applications,

widely used in video conferencing and mobile applications, it is the primest

of all profiles, containing the common parts of all profiles: I slices, P slices

and CAVLC, and some particular features like Flexible Macroblock Ordering

(FMO), that will be explained in the next chapter.

• Main Profile: designed for Digital Storage Media and TV Broadcasting, it

supports B slices, weighted prediction, CABAC, field coding and MB adap-

tive switching between frame and field coding.

• Extended Profile: designed for more error prone environments due to its

robustness and server stream switching, including SP and SI slices.

In this project we will use the baseline profile since we are working with a

mobile low rate application.

Reference software

In this thesis we are working with the H.264/AVC encoder reference software de-

veloped by JVT for testing, the Joint Model reference software(JM) [13] version

12.2 (FRExt). We are modifying this encoder’s software in order to achieve the

objectives that will be described in the next chapter. We will exploit the possibil-

ities of the standard and we will explain the modifications made in the functions

along the thesis (deeply in the chapter 3).

1.3 Previous work

This present project have been made in the ”Institut für Nachrichtentechnik und

Hochfrequenztechnik” in the Vienna University of technology, with the supervision

Chapter 1 13

of Luca Superiori and professor Markus Rupp. I have carried on with the main

objective of previous works completed, the encoding optimization of soccer video

sequences, specially with the one seen at [14], that will be overviewed now. It is

exploited the subjective importance of the regions composing the soccer videos,

in order to, taking into consideration the perceived quality by the user, apply

and exploit some characteristics to reduce the quantity of bits transmitted. In

this chapter we are going to see the previous work made, which has caused the

possibility of researching the topic of this project.

Due to the known problems of screen size (small resolution), blurring effect

due to reduced frame rate and need of high compression, the outcoming result

of soccer video encoding is an unsatisfactory quality percieved by the users in a

mobile phone video streaming scenario. Because of that it becomes necessary the

research of new methods and possibilities to improve that. An example can be

seen in Figure 1.7, it can be observed the original video and the resulting video

after being encoded with a reduced bit rate with H.264/AVC standard without

the use of any kind of slicing strategy:

Figure 1.7: Original and encoded frame with reduced bit rate.

Because no kind of slicing strategy has been used, the bits containing the ball,

the players and the other information are delivered in the same packets. That

means all the samples (or macroblocks) are encoded with the same quality (or with

the same quantization parameter (QP), explained later). Observing the encoded

video, the objects cannot be discerned very well (specially the ball), but the field

can be perfectly recognized. It can be supposed that a lot of bits are necessary to

encode properly the ball because it is a very small object moving all the time in

Chapter 1 14

random directions, whereas the field does not change a lot from one picture to the

next one.

The main idea of the investigation is the subjective importance of the regions

of video soccer frames. It can be imagined which regions are really important

from the observer point of view, the most important parts are the ball, the players

and the lines, whereas the field (only has to not to be affected by blockyness) and

the audience (is not relevant for the understanding of the match) will not be so

important. These characteristics can be exploited to transmit the most important

parts using more data rate and the least important parts with less data rate. Mak-

ing use of the possibilities in the standard to perform data partitioning, Flexible

Macroblock Ordering (FMO), commented previously, can be used to encode dif-

ferent group (slices) of macroblocks with different characteristics. The target of

this investigation is to obtain a segmentation at macroblock level.

One of the characteristics of the new H.264/AVC Standard is the possibility of

splitting a picture in regions called slices. Each slice contains macroblocks encoded

sequentially in raster scan order (from left to right and from up to down). Each

slice can be decoded always independently. FMO consists of deciding to which slice

each MB in the picture corresponds. Each MB is assigned to a slice according to a

MBAmap (macroblocks’ situation map) consisting of an identification number for

each MB in the picture specifying the slice. The number of the slices is limited to

8. Without FMO, images consist of one only slice with the encoded macroblocks

in scan order and the same encoding properties. The use of FMO allows error

recovering exploiting the spatial redundance of the pictures, specially using type

1 in Figure 1.8. If one slice is lost in the transmission, is easer to reconstruct

the neighbouring blocks, due to that the use of FMO is proper for error prone

environments.

Chapter 1 15

Figure 1.8: Different types of FMO.

The MBAmap indicates the slice corresponding to each MB, this map is already

known at the decoder without the necessity of sending it because there are some

patterns already created. Only some short parameters have to be sent to indicate

the number of macroblocks contained in each slice, excepting in the seventh type.

FMO has seven different types, from type 0 to type 6, the first six types (from 0

to 5) contain a certain pattern as can be seen in the previous Figure 1.8:

The last type has to be input to the encoder by means of a file, and in this case

the MBAmap will have to be transmitted entirely. This case is the most flexible,

but has the disadvantage of sending a map for each picture. This, in conjunction

with the additional data in the headers, increase the data to be transmitted, but

improves the objective and subjective quality (SNR o MSE) as said before and

allows to encode macroblocks with different quality within the same picture. This

explicit type of FMO is used in this previous project to encode the different zones

of a football frame in a different way (and also will be used in this project), for

Chapter 1 16

more information about FMO, [15] can be seen.

To obtain the maps that are going to be input explicitly to the encoder, the

video has to be preanalysed with MATLAB to segment the video in three zones

at macroblock level. It was thought to segment each frame in 3 zones: the field

(zone 0), the players, ball and lines (zone 1) and the audience (zone 2). Applying

recognizing methods like ball detection and motion vectors distribution each frame

is partitioned into three zones as can be seen in Figure 1.9:

Figure 1.9: Frame segmentation in three zones with Matlab.

The explicit allocation map has to be input to the encoder in order to use the

FMO type 6, in such a way that the encoder is able to encode the different slices

with different characteristics. A file indicating the position of each MB is input to

the encoder for each picture, it can be seen graphically in the Figure 1.10. After

performing the data partitioning, it is necessary to adapt the ”distribution” of the

bits to the relative relevance of each region. They can be ordered for importance:

from the subjective quality point of view the most important zone is the zone 1

obviously, and the other two are less important.

Chapter 1 17

Figure 1.10: Reordering macrolocks into slices.

After inputing the maps to the encoder, it is necessary to optimize the encoding

and find the optimal rate-distortion model for the different regions. Each slice is

transmitted independently in packets, containing information in the headers about

the decoding (it has to be considered that the pictures used as reference are equal

in the encoder and in the decoder).

A standard decoder uses a single QP for all the MBs; without breaking the

standard, the simplest way to decrease the bit rate for a slice is varying its Quan-

tization Parameter (QP), the QP can be modified in order to compress more the

least important zones of the video frames. The QP is used for determining the

quantization of transform coefficients in the encoder, the quantized transformed

coefficients are scanned in a zig-zag fashion and transmitted using entropy coding

methods. The QP can take 52 values (from 0 to 51), when QP increases, more

compression is applied (many HF components are lost and a worse quality at the

decoder side is measured). The three slices containing three different zones can

be encoded with different QP, in that way less bits will be used to encode the

least important parts. To encode with different QPs the three slices, the standard

encoder was modified to vary the QP according to the slice being encoded.

To encode the videos, the first frame was encoded as I frame with a low QP

(because the reference frame should contain as much detail as possible) and the

following as P frames. The results obtained have shown a good improvement in

terms of bit rate saved and a better perceived quality using the same bit rate.

Chapter 1 18

1.4 Main problem and proposed solution

In this subsection we are going to explain the origin of the thesis, and later we

will try to explain the proposed solution without going into very technical details,

because it will be explained along the memory.

1.4.1 Main problem

As we have seen in the previous subsection, now we dispose of the possibility

of encoding the macroblocks within a picture in different ways, according to the

slice they belonging to. Soccer frames can be partitioned into three zones and

encoded with different qualities (QP), the example that we are going to visualize

was encoded with the standard encoder (that means without using the previous

method) with a QP equal to 26. We are going to see a graph indicating the amount

of information sent for each MB in a frame, we see the Figure 1.11. In that way

we will know how much each region affect the coding efficiency.

Figure 1.11: Amount of bits sent for each MB.

In this picture we can see the size associated to each encoded MB, red colour

means small size, green means medium size and blue means big size. We can

observe how the macroblocks of the audience are encoded with more bits than

the most of the others. Being this region not so important from a subjective

Chapter 1 19

point of view, it results to be suboptimal in terms of making the best use of

bandwidth. It can be said the soccer encoding is not too efficient from this point

of view. Partitioning (with Matlab) the frame as seen before into three different

zones with the previous work, we obtain the allocation map. If we observe the

resulting allocation map, compared with the previous Figure 1.11, we can observe

how macroblocks corresponding to the audience contain more bits, we see the

comparison in the Figure 1.12:

Figure 1.12: Allocation map vs amount of bits sent.

We can put the question: ”Why are the MB associated to the audience so

big?”. The answer is because these macroblocks contain high frequence patterns

and they are quite hard predictable from previous frames (the temporal prediction

doesn’t work efficiently). The encoder exploits the fact that videos contain much

more information in low frequencies, and because of that high frequencies are more

compressed. If the QP increases more compression is applied and therefore more

information is bypassed.

The video frame has been divided into three regions, that have different char-

acteristics, we are going to analyze them:

• The field only contains low frequency, so it’s very easy to predict.

• The players are very hard to predict, because their movements are unpre-

dictable. Because of that so many bits are necessary to encode them.

Chapter 1 20

• The audience can be considered ”static background”.

The main problem is the wasting of bandwidth in a considerable way in soccer

encoding, specially in the parts where audience is encoded. Taking into consid-

eration that the audience can be contemplated as the least important part of the

soccer encoding, we can think about improving or modifying its codification.

1.4.2 Proposed solution

This project continues with the main objective of reducing the bit rate used to

transmit soccer video sequences, we want now to optimize the encoding. Because

more bits (respecting the other regions) are used to transmit the audience and it

can be considered as the least important part in a soccer video, we are going to

propose a possibility to encode it differently.

At this point it is important to comment an important concept that will be

explained later deeply, but a very short idea about it has to be known to understand

the proposed solution. We talk about the Motion Vector (denoted as MV). The

prediction signal for each macroblock is obtained by displacing an area of the

corresponding reference picture, which is specified by a translational motion vector

and a picture reference index.

To make easier the understanding, we show a graphical example in Figure 1.13,

we imagine we are encoding a MB in the frame N (P frame), we encode the MB

containing the beginning of the pink advertisement (rounded with a black circle).

The encoder finds the best MB to predict in the previous frame N-1, and then

it calculates the MV (in green). This MV will be sent together with information

about the encoding of the MB and the residual (difference between the real and

predicted MB). For each encoded MB, the MV, some encoding information and

the residual are transmitted.

Chapter 1 21

Figure 1.13: MV concept, encoding a MB.

An important thing to consider at this point is the information that can be

obtained with the analysis of the MVs. In the previous example, the MV was

pointing to the right, and we know that camera is moving to the right. This be-

haviour is due to the characteristic of the audience of depending on the movement

of the camera, because people at the audience are not going to move, and camera

movement does not depend on them. Because of that, the value of the MV of the

MBs at the audience can give us a idea of the movement of the play due to its

”static background” characteristic, thing that we are going to exploit, as we are

going to see later.

We are going to see the motion vectors distribution for the audience in the

whole sequence. In the Figure 1.14 we can see that the distribution presents a

visible peak and that there are not tails:

Figure 1.14: Motion vectors’ audience histogram.

Chapter 1 22

This fact demonstrates that motion vectors are concentred in a small region,

that means that most of them point in the same direction. Therefore we can predict

the camera movement observing the average of the motion vectors associated to the

audience and exploit the camera movement to predict a ”Global Motion Vector”

(denoted as GMV).

Since the audience can be considered ”static background”, our proposal is to

exploit the property of the audience to be static. We can think about sending

only one motion vector for the whole audience indicating the camera movement

to copy macroblocks directly from the previous image, but shifted. H.264/AVC

supports multi-picture motion-compensated prediction. That means, more than

one previous picture can be used to predict the mv, but as we are thinking about

using the information of the previous picture, we will use only the previous one.

We can see a simulated example of the idea we want to apply in the Figure 1.15.

We have used for this example two encoded consecutive frames, and the part

marked with a black rectangle would be the part copied and shifted in our future

encoding method.

Figure 1.15: Example of the proposed method.

To sum up, we realize the next tasks:

• Implement in standard H.264 codec (JM) a global motion compensation for

the whole slice containing the audience.

• Modify functions and normal working of the encoding, paying attention to

Chapter 1 23

the new macroblocks appearing at the border (problem that will be explained

later in the chapter 3), in order to create of a new encoding method for the

audience slice.

• Implement a ”zoom detector” in Matlab, the proposed method does not work

if there is zoom. When zoom happens, the size of the image associated to

each object changes, and it is not possible to represent a image with the

information of the previous one. It will be widely explained in chapter 4,

dedicated to this topic.

• Investigate the possibility of extracting the global motion vector from the

field.

• Investigate the rate-distortion of the proposed method, taking into consider-

ation that we know the PSNR (objective quality) will decrease considerably

due to we are not going to transmit residual, but keeping the trust of the

subjective (perceived) quality will not be bad.

1.5 Outline of the thesis

The aim of this thesis is the research of a new possible encoding strategy for the

audience in soccer video sequences. We work with with the H.264/AVC in baseline

profile, in a video streaming context over UMTS networks, but in a simulated

scenario because the videos have to be preanalysed with matlab. We work mainly

with P frames using the special slicing strategy FMO type 6 (explicit map).

Throughout this diploma thesis, we are going to explain the steps done in the

thesis in chronologic order. We summarize the contents of the chapters in this

subsection. The present thesis is organized as follows:

• In Chapter 2, we will study the specific encoding of a P frame (paying spe-

cial attention to the Skip mode selection) and its decoding in order to try

to find the manner to use a GMV for the whole audience as said before.

Chapter 1 24

Afterwards we are going to implement the new encoding method modifying

some functions of the software given in [13], in Visual C++.

• In Chapter 3, we are going to preanalyze the soccer videos with matlab in

order to obtain information about the videos. We will extract the move-

ment of the camera, that will be used in the encoder to shift the audience

each frame. The camera movement will be also used to address the borders

problem (it will be presented and solved later).

• In Chapter 4, we are facing one of the main obstacle of the encoding method:

the zoom. When there is zoom the method cannot work properly, because the

size of the macroblocks changes and makes it impossible (not impossible but

yes very annoying) copying directly information from the previous picture.

Some state of the art of zoom detection will be presented. Afterwards the

zoom detector made for this project is presented.

• In Chapter 5, we analyze the results obtained after the encoding (after having

analyzed the videos to detect zoom and provided proper information to the

encoder). We compare objectively and subjectively (by means of a subjective

quality test) the encoding results in terms of bit rate and quality obtained.

We will have to pay attention to the perceived quality of the videos, because

as we have commented before, we know the objective quality is going to

decrease.

• In Chapter 6, we will discuss the conclusions, as well as the limitations of

the project, its scope and some future steps to do.

Chapter 2

Video encoding

In this chapter we are going to see the encoding process of a frame in the H.264/AVC

standard, in order to investigate the possibility of modifying the encoder to achieve

our objective, that is using only one Gmv for all the macroblocks containing the

audience for each frame. We will pay special attention to the encoding inter frame

mode called skip, used mainly in videoconference applications because we will

exploit it. From now, we are working with progressive video, and P(inter predic-

tion) frames within the baseline profile, therefore, when we will have to comment

something of the functions of the software, we can bypass the functions useless

regarding to this project.

We are going to see the different levels passed through by a frame to be encoded.

We are focusing in the MB level (the smallest one) explaining the amount of

different characteristics that can be used to encode a MB within a P frame, focusing

as said before in the Skip mode. After that, a main scheme of the encoding at MB

level will be shown. To study the variables in the JM software that have to be

modified, and when, how and where have to be modified. It will be tried to not to

show explicit code (unless it was imperative) in this chapter because it would be

very annoying for the reader. Instead of that, concepts will be explained by means

of schemes and diagrams visually, together with explanations of course.

25

Chapter 2 26

2.1 Encoding process

The H.264/AVC standard contains a lot of possibilities to encode differently the

video. Mainly the principal parameters and characteristics have to be set by means

of a text file at the beginning of the video encoding. Very different things are set

like the percentage of intra frames used per inter frames, the profile and complexity

used to encode, the availability of special features, compression level (QP), etc.

These parameters affect the encoding at different encoding levels, for example the

QP affects the level compression of all the images, and another parameters affect

the encoding of a MB within a P frame. So we encode within a hierarchical order

in different levels, image level, slice level and finally MB level.

While encoding, information about the codification has to be transmitted in

order to indicate the decoder the way to decode properly. This information is con-

tained at the three levels, some information is directly explicit headers and other

is self-contained in the encoding process. At image level some headers called Se-

quence Parameter Set (SPS) and Picture Parameter Set (PPS), are sent containing

information about the characteristics enabled and used in the present encoding.

SPS are set for a long sequence of pictures, and PPS are set for individual pictures,

they are sent in separated packets. Some special characteristics like FMO (explicit

map for each picture in case of explicit mode), explained in the last chapter, are

set in the PPS. Also headers called Slice Header (SH), are transmitted in order to

indicate information about the slice. Of course the information sent in the PPS,

SPS and SH affect the macroblocks encoding. We are focusing in this project and

specially in this chapter into the MB level, the idea is studying the encoding pro-

cess to modify its working. We will focus later in the encoding of the slice number

2 (corresponding to the audience according to section 1.3) to modify the code, we

are not going to modify parameters in the other two levels. We can see a general

scheme of the different encoding levels commented before in the Figure 2.1, we can

see our objective is modifying the part marked with a discontinuous line:

Chapter 2 27

Figure 2.1: Different encoding levels.

Now we are going to explain how a MB is encoded within a P frame and the

information that has to be transmitted, without paying attention to I frames.

Generally the first picture in a sequence is encoded as I frame because does not

exist any previous picture obviously, also in this case the first picture will be

encoded in that way, but no encoding modifications will be made.

2.1.1 Encoding at MB level.

The VCL design follows the so-called block-based hybrid video approach, because

of that, after subdividing the image into 16x16 pixel blocks, the encoding is made at

MB level. At this level, each MB with its associated luma and chroma components

are encoded. There are several coding types supported by the standard (each of

them corresponding to a particular partition of the MB). A MB can be partitioned

into smaller sub-blocks, until a maximum of 16 4x4 sub-blocks for MB. According

to the slice type and the parameters set in the SPS, PPS and SH, some coding

types are available to be selected and used. In our case, two Intra coding types

are allowed, exactly 16x16 Intra type and 4x4 Intra type, and all the Inter coding

types. We can see the possible Inter coding types (and consequently possible

segmentations) in Figure 2.2, each MB can be split into four 8x8 sub-blocks, and

Chapter 2 28

then each of them can be also partitioned into four 4x4 sub-blocks.

Figure 2.2: MB partitions for motion estimation and compensation.

Focusing in the inter prediction modes, each predictive-coded MxN block (4x4,

8x8 or 16x16 according to the encoding decision) is obtained by displacing an

area of the corresponding reference picture specified by a motion vector (explained

before), which together with the residual, will be sent. As a MB can be parti-

tioned into 16 4x4 sub-blocks, a maximum of sixteen motion vectors (explained

previously) may be transmitted for a single P MB.

When encoding, several options (types) are available to encode. As it can be

supposed, the more information has to be sent, more difficult is to predict properly

the MB, and more partitions have to be done. If a MB is partitioned into 16 4x4

sub-blocks, more bits are transmitted. To summarize, this information has to be

transmitted for each MB:

• MB coding type selected.

• From 0 to 16 (or 32 if we consider the two horizontal and vertical compo-

nents), motion vectors residuals (differences between real and predicted mv)

depending on the selected encoding type.

• Luma and chroma residual for each sub-block, the amount of information

here depends on the number of sub-blocks and on the QP with is encoded

Chapter 2 29

the MB.

We can see an example of a encoded MB quantified with QP equal to 26 in

the Figure 2.3, we can see a trace file giving information of the encoding, the

real data sent are the bits at the right side of the figure, and the information

on the left side is for complaining what it is being sent. In this case, as we can

see at the right side of the figure, it has been selected partitioning the 16x16

MB into 4 8x8, and after that, the first 2 8x8 sub-blocks have been partitioned

into 4 4x4 sub-blocks, the third one into 2 8x4 sub-blocks and the last 8x8 has

not been partitioned. Therefore, 11 motion vectors (horizontal and vertical) have

been predicted and transmitted with its corresponding luma and chroma residual,

the amount of residual sent depends on the QP. We do not show all the residual

because it is very long.

Figure 2.3: Part of a MB bitstream and its resulting segmentation.

In addition to the Inter modes described already, there is one more possibility

to encode a P MB, the called Skip mode. The skip mode, as itself suggests, means

not sending any information. This type was created for situations where no change

or constant motion vector happens. In those cases, a very few bits it would be

Chapter 2 30

necessary, but with the skip mode, even less. For this coding type, neither mv

residual, nor luma and chroma residual are transmitted. Instead of sending coding

type equal to Inter 16x16, mv residual equal to 0 and luma and chroma residual

equal to 0, that would mean a lot of bits, nothing is transmitted. In that way,

the signal is reconstructed using as motion vector the predicted mv in the decoder

(equal to the mv predicted in the encoder).

2.1.2 Exploiting Skip MB mode, the idea.

As we already know, the objective of this project is reducing the bit rate for the

audience exploiting the property of the audience to be static (or unless depending

on the camera movement). We think about copying (and shifting) the macroblocks

containing the audience directly from the previous image but without sending any

information, and detecting the camera movement to predict and transmit only one

GMV that will be used for all the macroblocks. At this point we can think about

exploiting the Skip mode, this coding type allows the decoder reconstruct the MB

without the necessity of sending information.

The main idea is sending one GMV once in the first MB (without skip mode

obviously) forcing the MB to be 16x16, the GMV to be the one we want and

without residual, and forcing the other macroblocks of the audience to be skip,

but at the same time, reconstructing them at the decoder with that GMV (taking

into consideration that the decoder is the standard one). To do that we will have

to find some manner to make that the predicted MVs in the Skip MBs are equal

to the GMV. We can see in the Figure 2.4 the scheme of the data we want to

transmit for the audience compared with the standard encoding.

Chapter 2 31

Figure 2.4: Data transmitted.

Obviously we will check later if the system can work, because we have to

create some technic or trick to make the encoder and decoder reconstruct the skip

macroblocks as we want (with the GMV). At this point, we have to think about

how to implement the new possible encoding system. Because of that, the first

thing it is necessary to do is diving deeply into the encoding of the P macroblocks

in order to be able to implement the solution we are proposing. We will have to

study where, how and when are evaluated and set the variables and functions that

are charged of the encoding in order to modify the encoding properly.

2.2 Modifying the encoder.

We are going to modify the H.264/AVC encoder reference software developed by

JVT for testing, the Joint Model reference software(JM)[13] version 12.2 (FRExt),

implemented in C++. We will use Visual C++ program to work with.

An important thing to consider at this point is that the decoder is already

standardized, because of that all the modifications that we are going to do in

the encoding process in the JM reference software have to generate a H.264/AVC

Chapter 2 32

file with a correct syntax and perfectly understandable and decodificable by the

decoder at the receiver side. The modifications that will be shown in this chapter

are the result of a very hard work, although they are going to be explained in the

easiest possible way.

In this project some lines of the code have been modified at different levels and

with different objectives. In this chapter we will comment the modifications made

at MB level affecting the encoding. Along this document other modifications will

be commented.

As we have to be able to modify some part of the code making it decodificable,

before that, we have to take a look to the standard encoding. In this section we

are going to see the encoding from the point of view of the encoder, that means

that we are going deep into the software in order to understand what variables,

pointers and functions are charged of the encoding (specially at MB level), and

when, where and how we have to modify the behaviour or working of those things.

2.2.1 Introducing the encoder.

The encoding, as said before, is implemented at different levels, there are a lot

of functions called in hierarchical order from the main encoding function, called

lencod, which is called from the command line. We will use this command line to

indicate the encoder the video and the characteristics of the encoding by means of

a txt file. The standard H.264/AVC generates a H.264 file (only understandable

by a decoder), together with a yuv file (video format) representing the output

obtained, and the called trace file indicating the information finally encoded and

transmitted in the H.264 file, but with its corresponding labels in order to comprise

the information sent for each element (as seen in the ??). All these files are

created step by step during the encoding, and because of that there are several

variables and pointers used for all of them, and others specific. We will have to

take into consideration that when we will change some function, pointer or variable

to modify something, this change has to affect the three files in the same way.

Chapter 2 33

As we want to modify the working of the macroblocks’ encoding of a particular

slice within the P pictures, we will have to add some conditions in order to make

the encoder works in a different way. Because of that, we are going to see in the

Figure 2.5, a summary showing some of the main functions passed through until

reaching the encoding at MB level (function encode one macroblock). We show

only the main functions used in our encoding case, that means frame encoding

(and not field), low complexity(baseline profile used), etc,. We will comment the

corresponding assignments to know where are set the main encoding parameters.

In that way we will know where to add some conditions to indicate the encoder

how to change the encoding.

Figure 2.5: Main encoding in hierarchical order.

We will comment the assignments of each function marked in darker:

• lencod, main function called from the command line. Several functions not

commented are called to make the next tasks. Initializing the global variables

and pointers after reading the txt file (configfile) given. It generates the SPS

and PPS, opening output files. For all the frames, it calculates the frame

number, sets the image type and prepares the parameters and pointers to

Chapter 2 34

encode the image. After, it calls the function Encode-one-frame per each

frame. And finally, after all the frames have been encoded, it terminates the

sequence, closes all the files and finishes the encoding liberating the resources

used.

• Encode-one-frame, encodes one I or P frame. It sets the pointers to the

frame structures and initializes local frame variables, in this function it is

distinguished between frame and field encoding, this function calls frame-

picture in our case.

• Frame-picture, it prepares the pointers to a frame-picture (and not field)

and calls code-a-picture.

• Code-a-picture, this is the main picture coding loop, it is called after the

image elements have been set up. FMO is established before coding the first

MB, the allocation map indicates the macroblocks corresponding to each

slice, the QP is set, from here is calles the function encode-one-slice, which

is charged of encoding one slice.

• Encode-one-slice, sets slice headers and parameters, and for all the mac-

roblocks contained in the slice, it initializes, encodes, writes and terminates

the macroblocks.

• Encode-one-macroblock, main encoding function at MB level, that will

be studied in detail later.

Now we know where we could change some global parameter to change the

working of the encoder, we can propound some way to implement the new encoding

method. We want to change the encoding of a determined part, because of that,

we will have to make the encoder knows in which situations the new encoding

method has to work.

We are working with the encoder from the command line, that means that

we indicate the encoder the starting of the encoding according to an order. This

Chapter 2 35

order is analyzed in the function configure, just at the beginning of the main

function lencod. An example of that is: ”lencod -f encoder.cfg -q 30 26 30”, where

encoder.cfg will contain all the information about the encoding, and ”-q 30 26 30”

is used to indicate the encoder the different QP levels that have to be used for the

three zones.

We can modify the code of the function configure to include the possibility of

adding some additional parameters to activate or not a global variable, which will

be checked by the encoder in order to use or not the new future encoding method

(used to encode differently the audience slices within the P frames). Of course we

have to define the global variable in the function global also. From now, we will use

from the command line ”lencod -f encoder.cfg -q 30 26 30 -b”, indicating we want

to use our method with the parameter ”-b”. We can see the added code in the

line 210 of the function configure where enable border map is the global variable

that has been created and that will be used to indicate the use of the method:

else if (0 == strncmp(av[CLcount],”-b”,2))

{

enable border map = 1;

CLcount += 1;

}

After that, we have to include some code in the functions at image level (in

case of P image) and slice level (in case of 2nd slice) to work differently according

to the variable already mentioned enable border map. We are going to add some

code to the function code a picture, which is the main picture coding loop. After

being read the allocation map indicating the macroblocks corresponding to the

three zones, each slice is encoded independently.

Our objective now is indicating the encoder to encode differently in case of

the global variable is activated and we are encoding the audience within a P

frame. There is a loop in which each slice is encoded by means of the function

encode one slice. So just before that, we will check if we are encoding the audi-

ence within a P frame and the global variable is activated, and in that case we

Chapter 2 36

will activate another new global variable called audience skip (also defined in the

global function), that will be checked at MB level later to make the encoder work

differently or not. We can see here the code:

if ((SliceGroup==2)&&(enable border map==1)&&(img->number != 0))

audience skip=1;

else

audience skip=0;

Along the working of the thesis, the mentioned code added were modified

several times to include new possibilities and to solve some limitations, so, as we

want to explain the steps made little by little, modifications will be shown along

the writing of this present thesis. For example, as we have commented already, if

there is zoom the method does not work. Now we do not include this possibility

in the code because we have not reached this problem yet, it will be seen later.

We show the added or modified lines here, but if someone wants to get deeper in

the code, more details can be seen in the Appendix.

From now, we have to investigate the possibility of implementing the already

mentioned new encoding method, modifying the decisions of the encoder and

modes selected in order to send less amount of bits. Until now, we have explained

we have the possibility of dividing each soccer frame into three zones according to

a incoming map from matlab to encode differently each of them. And we are go-

ing to exploit the characteristic of the audience to depend strongly on the camera

movement. Because of that dependence we want to exploit the skip mode together

with the prediction possibilities of the standard to use that characteristic to not

sending almost information using one GMV for the whole audience in each frame.

To use a GMV for the audience in each frame, we have to preanalyze the video

with matlab making a mean of all the motion vectors.

After having read the txt file indicating the encoding parameters for the video

and having set the variables and pointers properly through all the already seen

functions to prepare the encoding, we reach the encoding of each MB. And at this

point we are only investigating how implement the method, but without using the

Chapter 2 37

real GMV (that will be calculated in the chapter 3 and used later). Because of that

we will use fixed GMV simulating we are using the real ones only to implement

the method and check if the method works properly. We are going to get into the

encoding at MB level, we are going to see the main encoding function at MB level

encode one macroblock.

2.2.2 Implementing the new encoding method.

Now we are going to see the encoding at MB level, really here at this level is where

the hybrid basic source-coding algorithm is implemented, making use of temporal

and spatial prediction. We are supposing we are modifying the encoding of the

macroblocks of the second slice of each picture. We have to see where, when and

how are set the encoding decisions to be able to modify them.

Of course all the modifications we are going to make only will be used when

the global variable audience skip is activated, if not, the standard working will be

kept. We are going to see the function encode one macroblock.

Mainly, this function is charged of analyzing one MB (all MB are evaluated in

this function), and after having analyzed all the encoding possibilities supported,

it decides which of all the available coding types will be used to encode the MB.

After initializing parameters and pointers, all the possibilities are evaluated, and

the best option is set according to the cost. After outcoming this function, the

H.264 file, trace file and yuv file are created according to the values set before.

We can see in the Figure 2.6, a scheme showing the main structure in the

coding decision at MB level without getting into details and without naming the

functions called.

Chapter 2 38

Figure 2.6: Coding function at MB level.

Each MB is prepared to be transmitted in one of several coding types according

to the variable enc mb valid. As we have said before, there are several possibilities

to divide one MB into sub-blocks. These are the 15 possible modes contained in

enc mb valid, at the right part we can see if in our case the mode is allowed or

not:

0 == !Intra (Skip) Allowed

1 == ! Intra & Inter 16x16 Allowed

2 == ! Intra & Inter 16x8 Allowed

3 == ! Intra & Inter 8x16 Allowed

4 == ! Intra & Inter 8x8 Allowed

5 == ! Intra & Inter 8x4 Allowed

6 == ! Intra & Inter 4x8 Allowed

7 == ! Intra & Inter 4x4 Allowed

8 == mode 4, 5, 6 or 7 (general) Allowed

9 == Intra 4x4 Allowed

10 == Intra 16x16 Allowed

Chapter 2 39

11 == IBlock Not allowed

12 == SI Slice Not allowed

13 == Intra 8x8 Not allowed

14 == IPCM Allowed

The mode 8 includes the modes 4, 5, 6 and 7 because really when mode 8 is

selected, each 8x8 sub-block can be partitioned into 4 4x4 sub-blocks, that will be

indicated of course.

Our first objective is to force a MB to be skip, coding mode equal to 0. The

Skip mode is checked just at the end of the function, this is because really the skip

mode is not a coding mode by itself. Really the Skip mode was created to avoid

sending unnecessary information with the Inter 16x16 mode, actually these are the

conditions that have to be discharged to select the Skip mode automatically by

the encoder:

• Inter 16x16 mode selection.

• Not sending residual in the motion vectors, that means the predicted and

the real motion vectors are equal.

• The Luma and Chroma residual has to be equal to 0.

In that way, instead of sending a few bits with Inter 16x16 mode, when Skip

mode is selected, nothing is transmitted. The first idea that we can imagine to

force a MB to be Skip, as the condition is evaluated at the end of the function,

is changing the values of the variables at the end to make the encoder choose the

Skip mode. We can see here the code analyzed to check Skip mode:

//===== check for SKIP mode =====

if ((pslice) && best mode==1 && currMB->cbp==0 &&

enc picture->ref idx[LIST 0][img->block y][img->block x] == 0 &&

enc picture->mv [LIST 0][img->block y][img->block x][0] == allmvs[0] &&

enc picture->mv [LIST 0][img->block y][img->block x][1] == allmvs[1])

{

Chapter 2 40

currMB-mb type = currMB-b8mode[0] = currMB-b8mode[1] = currMB-b8mode[2]

= currMB-b8mode[3] = 0;

currMB-luma transform size 8x8 flag = 0;

}

Some conditions are checked to set the Skip mode, the frame has to be a P

frame, the Inter 16x16 mode has to be selected (previously), the cbp indicating the

amount of residual has to be equal to 0, the image selected to be used as reference

has to be the previous one, and the predicted and real MVs have to be equal. After

modifying these lines to force these conditions to be true (or simply forcing the

mode to be 0), we have achieved to change the trace file, but not the H.264 file and

yuv file in the same way. It could be thought that after the decision, that MB will

be encoded consequently, but not. This is because really the parameters charged

of the encoding (that will be implemented afterwards) are calculated before, and

this is only to set some final parameters. That means that really at the end of the

function the Skip mode is checked to write properly only the trace file, but the

values of the variables and pointers of the Skip mode to represent the video are

set before, at the checking of the Inter 16x16 mode obviously. Because of that we

have to get deeper in the codification of the Inter 16x16 mode to be able to change

the code to force the MB to be skip.

We have to make changes to force these conditions to be true, but when they

are being calculated. To skip a MB, the best mode chosen has to be the mode

1, because of that we are going to analyze the function step by step observing all

the called subfunctions when mode 1 (Inter 16x16 mode) is being evaluated. The

first objective is forcing the best mode to be the mode 1. Paying attention to the

loop where is evaluated the mode 1, we can observe the next subfunctions in the

Figure 2.7:

Chapter 2 41

Figure 2.7: Checking 16x16 mode.

The really important function in terms of encoding is the PartitionMotion-

Search, which calculates the motion vectors and the Luma and chroma. After the

analysis of each mode, the cost given is compared with the previous one, and the

smallest one is maintained. So, we add some code to this function to force the

given cost to be 0, in that way we force the MB to be encoded as Inter 16x16, even

if the encoder had chosen another one. We see the added code to the function

encode one macroblock just in the line 222:

if ((mode==1)&&(audience skip==1))

{ cost=0; }

Before going into the next function, we have to take into consideration that

there are some main big data structures like:

Img, containing all the information concerning about the image, its current

parameters and its current encoding.

Enc picture, containing information about the encoding to create the H.264

file.

Enc frame picture, containing information about the encoding to represent the

yuv file.

All these commented structures are very big and contain very similar informa-

tion, they have different commitments, and we are working with them. Globally

they work together to make possible a so difficult encoding.

Until now, we have forced the MB to be encoded with the mode Inter 16x16.

Chapter 2 42

Our next objective is to know where and how are set the motion vectors, and the

variables used, to modify them to force the predicted mv to be equal to the real

one, another condition to skip a MB. To do that we have to go into the function

PartitionMotionSearch in depth, let’s see in the Figure 2.8:

Figure 2.8: PartitionMotionSearch function.

Really are shown only the most relevant functions without going into details.

We summarize the concepts shown because otherwise if would be very hard and

long to explain the concepts here. Actually the calculation of motion vectors is

more confusing and it is obtained continuously along the function PartitionMo-

tionSearch, but the schemes act as summaries to make easier the understanding.

To force the real and predicted motion vectors to be equal we have to modify at

the end of the outcoming functions some code lines. We can think about modifying

the values of the real and predicted motion vectors to be 0 (we start for the easiest

case obviously), that would mean no movement. We add these conditions at the

end of the functions:

In SetMotionVectorPredictor, where are calculated the predicted motion vec-

tors:

if (audience skip==1)

pmv[hv]=0;

Chapter 2 43

In SubPelBlockMotionSearch, where are calculated the real ones:

if (audience skip==1)

{

*mv x=0;

*mv y=0;

}

Where mv x and mv y represent the real motion vectors associated to the In-

ter 16x16 mode, and pmv[0]and pmv[1] represent the predicted ones. Those values

will be copied and set properly at the end of the function BlockMotionSearch, and

later at the end of the function PartitionMotionSearch, reaching to the main en-

coding function encode one macroblock, where it will be set and analyzed. They

will be copied from some local variables to another global variables to finish being

placed in img, enc picture and enc frame picture.

After changing these lines, we check what we have realized until now. We have

got to set the MB coding mode to be Inter16x16 and to force the real and precicted

motion vectors to be equal, that means no motion vector residual will be sent. We

must have in mind our objective, that is forcing the macroblocks to be skipped,

but encoding them with one GMV(equal in all the macroblocks at the audience).

We have researched about MB encoding, specially about Inter 16x16 mode.

Before forcing the predicted and real motion vectors to be equal, we have have

observed the working of the motion vectors prediction. We have seen that when

a MB is encoded as Inter 16x16 MB, its predicted mv is equal to the real mv of

the previous MB in case of also has been encoded as Inter 16x16 MB (as is our

case). In case of being the first MB, as there is no previous encoded MB, the

predicted mv es equal to 0, and the residual sent to the decoder is equal to the real

one(residual=real-predicted). The decoder reconstructs the image using the real

mv, it predicts the mv in the same way than the encoder, and with the residual,

it obtains the real one to reconstruct. Because of that it has no sense to force the

prediction in the encoder because the decoder will predict another one.

The best solution we can make is exploiting the characteristic of the mv pre-

Chapter 2 44

diction. As we know that the first MB (encoded as 16x16 of course) will predict

the mv as 0 because it does not have reference. We can force only the real mv to

be the one we want (the GMV), in that case the residual in the first MB always

will be the GMV. In that way, the next predicted motion vector will be the GMV

(the real of the first MB), and forcing the real motion vector to be the GMV again,

no residual will be sent anymore, but we will decode it with the GMV. We have

achieved our objective, forcing the real and predicted motion vectors to be equal

(except the first MB), and making a system to encode all the macroblocks with

one GMV. The solution then is only forcing the real MVs to be the ones we want.

Now, the MB is forced to be Inter 16x16 with the real mv to be 0, to com-

plete all the conditions to skip the MB, we have to force the residuals not to be

sent, that means forcing the luma and chroma residual to be 0. We go back to

the main encoding function encode one macroblock. After the analysis of all the

modes, where we have made the encoder decide to encode all the macroblocks as

Inter 16x16 macroblocks, now we reach the setting of the final MB parameters,

that means, according to the best mode, prepares all the structures and fields

fullfilled to encode consequently after outcoming the function. One of those com-

mitments is setting the Luma and chroma, that will be used to encode the H.264

file, video file and trace file.

The Luma and Chroma are evaluated in the functions LumaResidualCoding

and ChromaResidualCoding. To avoid talking about unnecessary additional code

we only say that tese functions are called just before checking the Skip mode

condition.

When Luma is encoded, some parameters are transmitted:

• Coded block pattern (only one per MB), It specifies which of the

six 8x8 blocks - luma and chroma - contain non-zero transform coefficient

levels. For macroblocks with prediction mode not equal to Intra 16x16,

coded block pattern is present in the bitstream with the variables Coded-

BlockPatternLuma and CodedBlockPatternChroma.

Chapter 2 45

• Luma # c & tr. 1s, this element shows us the number of the coefficients

and the number of the trailing ones different from zero.

• Luma trailing ones sign, the signs of the trailing ones are fixed length

encoded and do not influence any of the following parameters.

• Luma totalrun, this element specifies the total number of zeros before the

last non-zero coefficient.

In order not to send residual, we have to set all these parameters equal to 0,

the cbp and the non zero coefficients. We have added these lines just after the real

calculation of the Luma (line 1430) in the LumaResidualCoding function:

if (audience skip==1)

{

sum cnt nonz=0;

currMB->cbp=0;

currMB->cbp blk=0;

}

In that way, no Luma residual is set. We add also this code (line 1915) at the

end of the function ChromaResidualCoding:

if (audience skip==1)

img->mb data[img->current mb nr].cbp=0;

and this one (line 1834) at the beginning:

if (audience skip==1)

skipped=1;

This last modification at the beginning of that function was possible because

we searched which variable was charged of containing the values of the Chroma to

be encoded when writing the video, and we have investigated where this variable

was set, and the search took us to this condition.

The modifications that have been done and shown here are the product of

a very hard investigation, because it has been necessary to deal with different

subfunctions, data structures containing the data, etc. The modifications made

Chapter 2 46

until this moment in the code are not the final ones, because we explain the project

as has been made, in that way, it will be easier to understand. Some little variables

will be added later when we use the GMV and another video preanalysis results.

2.3 Checking the method.

Since we have reached finally the main objective, skipping the macroblocks at

the audience finding some manner to encode all the macroblocks as skip, but

reconstructing them at the both sides (encoder and decoder) with one GMV (fixed

by the moment by us), that is transmitted in the first MB, but used for the whole

audience. This is the moment of analyzing the working of our encoding method

with simulated GMVs. The encoder has a H.264 syntax, used to create the H.264

file, but at the same time it outputs a text file showing the meaning of the bitstream

and a video file simulating the resulting decoding at the decoder side. We have

to check if the H.264 file has been created with a correct syntax (understandable

by the decoder) and if the other two files are consequently modified with the

modifications that we have made.

We are going to see an example of a video where we use the method forcing

the real mv to be zero, it means the audience will not move. We are going to see

the trace file, the video file and the video resulting of the decoder with the H.264

file. We start with the trace file. In this case, as we fixed the GMV to be equal to

zero, and we force the real mv of the first MB to be zero, no residual is sent, we

can observe a part of the coded macroblocks at the audience in the Figure 2.9:

Chapter 2 47

Figure 2.9: Trace file method with simulated GMV = 0.

We can observe that we do not send information at all, but this is because

not even the residual for the first MB has to be sent, and then nothing is sent

because the mv that will be used to decode will be zero, that means there has

been no movement. Now we are going to see the resulting video, we can see in

the Figure 2.10 two video captures separated by 20 frames, we can see how the

audience remains static all the time.

Figure 2.10: Video captures with simulated GMV = 0 separated 20 frames.

After decoding the H.264 file obtained with the decoder, we obtain the same

Chapter 2 48

video file as the encoder (comparing the two videos with a Matlab function are

exactly equal), that means the modifications made are correct. This is very impor-

tant, because the decoder is already standardized, and with this check, we notice

the system works properly.

Until now, we have forced the GMV to be fixed and equal to zero, that means

that we have checked the easiest option. But as we know, the system has to work

with different GMVs, so we are going to test the encoding method with values

different to zero, always being an integer. The accuracy of motion compensation

is in units of one quarter of the distance between luma samples, that means that

a mv equal to four indicates the movement of one pixel.

We are going to check the method forcing the fixed GMV to be four instead of

zero as before, we only set to four the horizontal MV, the behaviour of the system

in case of the vertical MV is changed is the same. We see the trace file in the

Figure 2.11:

Figure 2.11: Trace file after forcing GMV to be 4.

We can observe how in the first MB the GMV is transmitted (in this case four),

Chapter 2 49

and in the next ones the residual is zero because the real and predicted motion

vectors are equal. We can observe that five bits per MB are sent even when Skip

mode is set, this is because the macroblocks contained in the first row or column

of the image require some bits more because they have no MB reference at their

left part, nevertheless the improvement in terms of size is amazing. The rest of

the macroblocks do not require the sending of bits at all.

We are going to see now the resulting video. As the GMV is equal to four each

frame, we displace the image one pixel per frame. That means after 16 frames we

will have move 16 pixels of movement, that means one MB. We are going to see

two captures separated 16 frames in the Figure 2.12:

Figure 2.12: Video captures between 16 frames forcing GMV to be 4.

We can observe how we have moved the whole audience directly to the right

little by little until having displaced it 16 pixels in 16 frames, this of course is only

to check the method, in reality in each frame the GMV used would be different. But

there is a problem, how to encode the new information appearing at the border.

The macroblocks appearing at the border have no reference in the previous picture

to be predicted because that information is completely new. Because of that, we

have to preanalyze the video in Matlab to detect the movement of the camera,

and when new macroblocks appear at the border (at the left, right or up) we will

have to encode these macroblocks with the standard encoding instead of skipping

them. To do that a movement detector will me made, that will be seen in the next

chapter.

Chapter 2 50

We have checked all is working with zero and four, but we have to check the

rest of the values to be completely sure. If we check the encoding method with

a fixed GMV of two we can observe some problems. The trace file is equal to

the previous checking with four, but it is transmitted two instead of four. The

really important file to observe is the video file, if we look the Figure 2.13, we can

observe how the quality of the audience is getting worse very fast after 16 frames,

becoming blurry.

Figure 2.13: Video captures between 16 frames forcing GMV to be 2.

The same thing happens with all the GMVs not multiple of four, this is because

of the working of the sampling. If the mv points to an exact sample position,

the predicted sample will be that one, but otherwise the corresponding sample is

obtained using interpolation to generate the sample. And when we do not send

residual along some consecutive frames, as the system is not used to do that, the

image starts to get worse. This is for the Luma, but even is worse for the chroma,

because the prediction values for the chroma component are always obtained by

bilinear interpolation, whatever the motion vectors are.

Because of we are forcing the macroblocks to be Skip along some consecutive

frames, the Skip mode is set when no residual has to be sent and the Skip mode

has not been created to be forced obviously, together with the characteristic of the

sampling, the best thing we can do is using only GMVs multiple of four.

We have achieved to get a new encoding method able to not sending informa-

tion, but at the same time using one only GMV to reconstruct the image for the

Chapter 2 51

audience exploiting the prediction system of the standard and the Skip prediction

mode. Now we have to face the problem of the borders and to obtain the real

GMVs preanalyzing the videos with Matlab, in that way we will able to shift the

audience to the proper direction according to the values obtained previously.

Chapter 3

Preprocessing

From now, we dispose of a new encoding method able to encode a determined slice

using one GMV for all the MBs sending a very few bits. Now, we have to make it

work, because until now, we have simply used simulated GMVs (equal for all the

frames in each case) as a checking of the proper working of the method.

In this chapter we are going to see how to encode videos with the proposed

method. To be able to apply a global motion compensation with GMVs, as ex-

plained in the previous chapter, we need to have the values of those GMVs. Ac-

cording to the movement in the video, a different GMV will be applied to encode

each frame, because of that, a preanalysis of the video has to be done before the

application of the new encoding method.

Different video movement detection techniques could be applied, but we have

thought about using the information of the movement outcoming of the standar

encoding of the videos. In that way, as we can dispose of all the encoding informa-

tion (including the MVs obviously) by means of the trace file, we can calculate the

GMVs as a mean of the MVs of the MBs at the audience in each frame. We are go-

ing to preanalyze the videos with the mathematical program Matlab, in that way,

it will be easier to measure how much movement it is necessary to be applied, and

even in a possible future work, that system of preanalysis could be implemented

in the encoder. It could have been directly implemented within the encoder, but

the complexity of the project would have been incremented substantially.

52

Chapter 3 53

Also a motion estimation will be calculated according to the GMVs along

consecutive frames in order to address the ourself-called borders problem. That

means, how to encode the new information appearing at the borders (because that

information is completely new). To solve the borders problem, it will be necessary

to include some new modifications in the code of the encoder software, that will

be also commented. After applying the method, the real problem of this kind of

encoding will be seen, the zoom (explained in details later). First of all, we are

going to see the working of the system with we are going to work.

3.1 Working of the encoding system

We are going to see a global idea of the working of the system, since we have a

new encoding method, we have to calculate the motion information of the camera

movement to input that information in the encoder to use it. In the Figure 3.1 we

can see the working of the system that we are going to use.

Figure 3.1: Working of the system.

First of all, we are going to encode the video with the normal standard, in that

way, we will obtain the trace file containing all the encoding information, being

Chapter 3 54

specially important for us the MVs of the MBs corresponding to the audience

according to our allocation Map (already obtained). After that, we are going to

input the trace file to Matlab, where the information will be treated. Different

kind of information is obtained, about the type of encoding selected, about the

global size, the amount of Luma and Chroma transmitted, etc. But at this point

we are interested in the motion. We are storing information about the MVs along

the video in a variable, which will be used to obtain the global movement of each

picture, the shifting applied, the direction, etc.

The first and easiest thing that we have to calculate are the GMVs (one per

frame), afterwards we are going to see how to face the borders problem. The

main idea is that, depending on the movement detected (camera movement), it is

possible to know where is going to appear the new information along the frames.

And, modifying shortly the encoder (encode one macroblock), we can let some

determined MBs when enough movement happens (inputting information to the

encoder together with the GMVs) to be encoded with the standard encoding in-

stead of skipping them (applying the GMV).

3.2 Preanalyzing the videos with Matlab

After encoding and obtaining the trace file of the video with the encoder in Visual

C, we have to make use of Matlab (the popular mathematical program), therefore,

we are going to treat all the information of the encoding in an easy way. The trace

file is a text file containing wide information about the encoding. Each encoded

MB has its coding type, its MVs and its residual, so information about the size,

quality and other specifications can be obtained.

We are not going to show the explicit functions and variables of Matlab here,

some details about them can be seen in the Appendix, although they will not be

explicitly shown. We have modified those functions several times, but only the

final versions remain. We will show schemes of the scope of those functions, or

only we will comment the tasks made.

Chapter 3 55

3.2.1 GMVs Calculation.

We commence the analysis of the video calculating the allocation map correspond-

ing to each frame indicating the correspondence of each MB to the slices. After

that, we analyze the trace file and we obtain and store information about the MVs.

We are working with videos in CIF resolution, as we have said in the intro-

ducting chapter, that means that we encode each frame with 352x288 (width and

height) pixels, so the frames are composed of 22x18 MBs (a MB contains 16x16

pixels). The allocation maps informing of the number of MBs corresponding to

the audience and their locations vary in each frame. We store the MVs of the

MBs corresponding to each slice along the frames of the video, in that way, we

can work with the MVs of the audience. From 0 to a maximum of 16 MVs can

be encoded per MB due to the flexibility of the standard. A MV consists of two

values, horizontal and vertical (both integer numbers), each value can be positive

or negative indicating the direction of the MV. We can see in the Figure 3.2 some

possible directions according to the values of the MVs.

Figure 3.2: Directions according to the MVs.

As commented previously, the resolution of the MVs is a quarter of a pixel,

that means a MV equal to 4 means 1 pixel of movement. As seen in chapter 2,

according with our investigations and due to the characteristics of the sampling

system (interpolation to obtain samples), we only will use GMVs multiple of 4.

Chapter 3 56

The main idea is obtaining the mean of all the MVs contained in the MBs of the

audience in each frame to obtain the GMV according to the calculation process

(seen in the Figure 3.3), the GMVs cannot be simply the mean of the MBs.

Figure 3.3: GMVs Calculation process.

As we can only use GMVs multiple of 4, we have to round them to be the

closest multiple of 4. To avoid to lose fidelity, a delta parameter is used to make

more reliable the real values of the GMVs, so the movement that should have been

applied is taken into consideration in the next GMVs. In that way the restriction

of using only multiple of 4 is not so corruptible. We can observe the worst case

that can happen, we can see an example of two consecutive frames in which the

camera is moving to the right:

.

Frame N: Mean = 1.9; delta=0; ⇒ accumulate = mean + delta= 1.9

temp = mod(accumulate,4) = 1.9

temp ≤ 2 ⇒ GMV(N) = accumulate - temp = 1.9 -1.9 = 0

delta = accumulate - GMV(N) = 1.9 - 0 = 1.9

.

Frame (N+1): Mean= 5.7; delta=1.9; ⇒ accumulate= mean + delta = 7.6

temp = mod(accumulate,4) = 3.6

temp > 2 ⇒ GMV(N+1) = accumulate - temp + 4 = 7.6 - 3.6 + 4 = 8

delta = accumulate - GMV(N+1) = 7.6 - 8 = -0.4

Chapter 3 57

...

If we had not taken into consideration the movement that should have been

applied in this case, GMVs would have been 0 and 4 (closest multiples of 4 of 1.9

and 5.7), and therefore it would not be very reliable (because the accumulated

movement should be 1.9 + 5.7 = 7.6). In that way, one GMV (horizontal and

vertical) per frame will be calculated and stored in a text file to be after input to

the encoder to be read and applied with the encoding method.

3.2.2 Borders problem.

The fact of encoding a frame using inter prediction implies that if some movement

happens, the new samples appearing will not have any kind of previous references

to be predicted, because of that we think about predicting the movement continu-

ally to be able to encode these MBs differently. In our system, we are shifting the

content of the audience according to a GMV, but obviously we do not have in the

previous picture information about the new one appearing at the border because

it is completely new. As there is no reference in the previous picture in order to

predict the new samples appearing, the residuals are bigger and contain more high

frequency (because the differences between the predicted and the real samples are

bigger), that will be bypassed or partially erased. Due to that, depending on the

amount of movement happened, normally these MBs at the border need more bits

to be encoded and have a worse quality.

According to the direction of the camera movement, the new information ap-

pears at the right or left (and up and down also) side of the image. We are going to

see the problem that we have to face. We can see an example in the Figure 3.4 of a

video moving to the right without taking into consideration the borders problem.

Chapter 3 58

Figure 3.4: Borders problem.

We can observe that, making use of the new characteristic of this standard, the

samples in the last MBs at the right border that point over the picture boundaries,

are obtained extrapolating the reference picture (replicating the samples of the

last pixel at the border). In this case has been shifted the audience 16 pixels (64

MV units), the movement corresponding to a MB. To avoid that annoying visual

artifact, it can be thought about encoding all the MBs at he border (according to

the movement direction) along the frames with the standard encoding instead of

skipping them. To do that we would have to modify the encoder to determine the

encoding method. If we made that procedure, and taking into consideration that

our main objective is reducing the bit rate, we would not exploit all the possibilities

and we would transmit redundant information.

We can think about taking advantage of the preanalysis of the video, as we

have to preanalyze the video and input information to the encoder, we dispose of

the possibility of inputting the parameters we want to the encoder to influence the

encoding decisions. The main objective of our proposal is to reduce the amount of

bits sent for the audience. Because of that, we can think about instead of encoding

all the MBs at the respective border along all the frames, encoding only those MBs

when enough new information should have been encoded in these MBs.

We are going to detect the amount of movement happened in the video along

Chapter 3 59

the frames with the GMVs, we will calculate the addition of consecutive GMVs,

and if that addition (in MV units) is higher than a variable threshold, explained

later, we will indicate the encoder by means of a text file (also denoted as map)

the MBs that have to be encoded normally. To do that, we are going to make a

movement detector, a system calculating the motion happened along the frames.

The objective of encoding in that way instead of encoding always the MBs at

the border is reducing the bit rate even more, but we have to take into account

that the visual artifacts that we will see at the borders do not have to annoy the

viewer. So a deal between bit rate reduction and perceived quality has to be done.

We are working, as said before, with CIF resolution, that means 22x18 MBs

per frame. As we have to differenciate the encoding of the MBs according with

the global movement, we are going to create arrays (one per frame) such large

how MBs there are in one frame. These maps will indicate the encoder to use or

not our new encoding method in each MB. These MBs maps will be input to the

encoder by means of a text file together with the GMVs. Initially these maps will

contain values of 0, indicating our encoding method (or 1 indicating the standard

encoding).

In the borders maps calculation, a GMVs accumulated addition is calculated

continuously in order to control how much new information should have appeared.

We compare that addition in each frame with a fixed threshold determined at the

beginning. When the accumulated movement reaches that threshold, we encode

the MBs at the border normally and we reset the addition, in that way we do not

notice too much the annoying border, making the refreshing of the MBs almost

unperceptible. The threshold range is between 0 and 64, the range of 16 pixels

contained in a MB.

We are going to see an example (with the method implemented already in the

encoder, that will be seen later) with a video moving fast to the right using real

GMVs with a threshold of 32 (a half of a MB in MV units) in the Figure 3.5.

Chapter 3 60

Figure 3.5: Solving Borders problem.

We can see the encoded MB at the right border along some frames and their

respective GMVs and accumulated additions. When the annoying information

crosses the threshold, we encode those MBs normally (as seen in the frame n+4),

and the process starts again. If the movement is fast, that limit is reached in a

few frames, and the refreshing is unperciptible, but when slow movement happens

along the frames, the annoying border can be noticed, as if during some frames

remains the visual effect seen in frame (n+3). Because of that, we detect the

situation in which the visual artifact starts to be perciptible and the threshold has

not been reached yet. In those situations, when along some frames the accumulated

addition remains in a range between the threshold and the threshold divided by

two, we encode the border with the standard encoding. If not even the threshold

divided by two is reached by the accumulated addition, nothing happens visually

(for the visual quality) because that means that only some part of the border of

the last MBs are being ”bad encoded”.

A deal between bit rate and perceived quality has to be reached to define the

Chapter 3 61

threshold. We can see in the Table 3.1 how that threshold affects each factor.

After some tests, we have decided that the best option is using a threshold of 32.

In that way, when the border starts to be annoying, it is refreshed, without causing

perceptible visual artifacts.

Threshold ↑ Threshold ↓

Bit rate ↓ (smaller) ↑ (bigger)

Quality ↓ (worse) ↑ (better)

Table 3.1: Influence of border threshold.

Summarizing, depending on the values of GMVs (indicating the camera move-

ment), more or less new information appears at the respective border. According

to the amount of movement happened and the quantity of frames accumulated,

and making use of a threshold, the MBs at the border are encoded with the stan-

dar encoding each some frames, in that way, we reduce the amount of bits sent

considerably.

Now, we are going to show how we have input these parameters to the encoder,

and specially the modifications that we have made in the encoder to act as we have

said.

3.3 Making the system work

3.3.1 Inputting info to the encoder (new modifications).

We have already obtained the tools to make the encoding system works. Now,

modifying shortly the encoder we can force the MBs to be encoded with the mode

we want, in that way we can (inputting information to the encoder together with

the GMVs) encode only the new MBs appearing at the border with the standard

encoding.

The first of all, we comment the new variables we have to create, until now,

we have created two variables, the variable allowing the encoding method works

Chapter 3 62

and the variable activating the MBs (in case image is P and slice is the audi-

ence) to be encoded with the method. We need two variables for the horizontal

and vertical GMV, called global motion vector[2]. And an array of 22x18 val-

ues, called border map[396], indicating the use of the method or not. We input

the GMVs and the maps indicating the encoding of the borders. That infor-

mation will be read at the beginning of the encoding of each frame, and will

be stored in the variables that we have commented with the new created func-

tion called read borders and global motion vectors and zoom detection (for more

information about the modifications see the Appendix).

After having read and assigned those values, we set the real GMVs in the

position they should be placed. In these positions we have set before (chapter 2)

fixed values in order to test the behaviour of the method. Also we add a new

condition to differenciate if the method has to be used or not depending on the

border map:

if ((audience skip==1)&&(border map[img->current mb nr]==0))

{

*mv x= global motion vector[0];

*mv y= global motion vector[0];

}

We add in all the lines we have changed at MB level (seen in the previous

chapter) the condition of the border map, in that way, if the input border map

indicates the standar encoding (with a 1), then all the conditions will be not true,

and the MB will be encoded normally.

3.3.2 Encoding the borders.

As we said before, if there is movement, the MBs at the border need more bits

to be transmitted and the quality decreases, we can observe an example of this.

We see in the Figure 3.6 the result in terms of quality of a standard encoding,

comparing the mean quality of the MBs at the border with the mean of all the

Chapter 3 63

MBs. We have made a movement direction detector in Matlab, we can see the

discontinuous line with its right vertical axis indicating values above 0 (movement

to the right) and below 0 (movement to the left) in units of pixel movement per

frame, if the line has a value of 0 means that there is no movement. It can be seen

how when movement happens the borders mean quality is below the mean quality.

Figure 3.6: Mean border Psnr vs mean Psnr.

The same analysis can be made for the mean size in the Figure 3.7, we can

observe how depending on the camera movement the size associated to the MBs

at the border is bigger.

Chapter 3 64

Figure 3.7: Mean border Size vs mean Size.

When inter prediction is used, the MBs at the border (in the direction of the

movement of course) require more bits to be sent. Therefore, the idea of encoding

those MBs with the standard encoding only sometimes according to the movement,

as has been explained before is a good idea to improve substantially the bit rate.

As we are changing the normal working of the encoder, and taking into consid-

eration that we are using inter prediction and we can influence the decisions of the

encoding, we can think about the possibility of encoding the MBs at the border as

I MBs within the P slice instead of encoding them as P MBs. Usually the I MBs

need more bits to be sent (and have more quality), but as we have modified the

working of the system, we will have to corroborate it. Also we can think about

encoding those MBs at the border with a lower QP, that means a better quality.

Within the encoding at MB level, these two possible modifications can be done.

Within the MB level, all the possible encoding modes are analyzed, and the

costs associated to each of them are compared between them in order to select the

best mode. We can force the cost of the mode we want to be equal to 0 to make

the encoder chooses it. In that way, we can think about adding these lines after

Chapter 3 65

the calculation of Intra 4x4 mode, so the MB will be encoded as I MB.

if ((!intra)&&(border map[img->current mb nr]==1)&&(audience skip==1))

cost = 0;

Also at MB level, the quality can be increased changing the variable new qp.

We are going to see the results of encoding the borders as I MBs and with a

different quality. We are going to do some tests to measure the quality and size

obtained to decide which is the best option to encode the MBs at the border. We

will encode the borders with the standard encoding, with the standard encoding

with a better QP, forcing them to be I MBs and finally forcing them to be I MBs

with a better QP. We obtain these graphs (Figure 3.8 and Figure 3.9) indicating

the mean Psnr and the mean size of the MBs at the border (according to the

direction) along the frames.

Figure 3.8: Mean border Psnr different options.

Chapter 3 66

Figure 3.9: Mean border Size different options.

We can observe how the mean Psnr for the standard border and I border options

is similar and the same happens for the better QP and I and better QP options.

That indicates us that the selection of I encoding does not affect almost the Psnr.

The fact of decreasing the QP makes the Psnr increase obviously, but if we observe

the size, we can observe how it is considerably increased, because of that we can

discard these options. If we observe the size associated to the I border option, we

can notice it is bigger than the standard one. So, taking into consideration that

we are more interested in reducing the bit rate and the size increasing the QP

becomes very big, we decide to encode the MBs at the border without forcing any

kind of encoding and without using a better QP, that means choosing the standard

option.

We erase the new lines we have added to the encoder to make the tests, ex-

cepting the addition of the condition of the border map in the old modifications

to make the system works. In that way, when the encoder reads the map of the

borders and it indicates to not to use the method, the encoder will work normally,

knowing that the residual sent will be higher than in a normal situation of course.

After having decided how to encode the MBs at the border, we can encode with

our method the videos after having input the GMVs and the border maps. At this

point we are going to analyze if the system would work or not. To complete the

Chapter 3 67

system we have to see how much time can be used the same reference to predict the

next picture. It is to say, we are just shifting the audience according to a GMV,

and when new information appears at the border we encode it as new information,

but the rest of the picture continues being the same than the beginning but shifted.

As we are using GMV multiple of 4 (explained in chapter 2), the sampling used

by the encoder for the luma component does not use interpolation to generate the

sample. But, the predicted values for the chroma component are always obtained

by bilinear interpolation, whatever are the MVs. Because of that, and because

of we are forcing the same MBs locations to be skip along the frames, the colour

loses quality step by step, and a refresh has to be done, that means, encoding the

audience with the standard encoding each some frames. This refresh implies of

course sending more bits, but has to be made. Depending on the refresh time (in

terms of frames, not seconds), the encoding will be more or less efficient and the

perceived quality. We can see the Table 3.2 indicating how affects the refresh time

to each factor.

Refresh time ↑ Refresh time ↓

Bit rate ↓ (smaller) ↑ (bigger)

Quality ↓ (worse) ↑ (better)

Table 3.2: Influence of refresh time.

After some tests, we have decided to fix a refresh time of 25 frames, that means,

without taking into consideration if there has been movement or not, that we will

encode normally the audience each 25 frames to update the real audience, that

will be shifted later.

At this point we are going to see the big problem we will have to face the next,

the appearance of the zoom. As we are going to see in the next chapter, this

method does not work if there is zoom, so we will have to detect it, to instead of

using our special method, using the standard one.

Chapter 4

Appearance of zoom.

The possibilities of video capturing allow us to use different cameras with different

features. Soccer videos can contain very different contents. They contain various

scene changes, fast and slow motion scenes, zooming (in and out) and wide angle

panning sequences. Different camera operations can be used as explained in [16].

We can see in the Figure 4.1 these possible camera operations.

Figure 4.1: Camera operations.

Although different cameras are used, in order to have a general view of the

play, normally the sequences in the case of soccer videos are taken with a wide

angle camera with the already commented possible operations. Within a soccer

68

Chapter 4 69

match, each scene is composed of a succession of shots related semantically, that

means, a sequence of related pictures captured between scene cuts. Along this

thesis we are going to work with wide angle sequences without camera changes, in

which zoom is included, which is going to be the object of our investigation.

The zoom is the function or utility that allows capturing pictures from a distant

view to a more close-up view (zoom in) and vice versa (zoom out), making the

objects appear closer or more distant respectively. Video sequences are captured

with digital video cameras including this feature, the optical zoom, using lens with

the ability to vary its focal length (and thus angle of view) without losing quality.

The zoom was created to allow us capturing a far object with a very high

resolution, bringing a far object nearer. This feature was used for the first time in

photography, but it has been extended to be utilized in video capturing for many

applications. In the context of sport video capturing, it has been used specially

in soccer videos. The play in a soccer video in that way can be seen from a far

wide angle point of view or in a more details way making the effect of the camera

moving toward some subject.

4.1 Main problem and proposed solution.

The appearance of the zoom is one of the limitations of this encoding method. If

there is no zoom, the position of the objects in the audience changes according

to the movement of the camera (one of the fundamentals of this project) and the

whole audience can be considered a static background. But when the zoom is

applied, the size of the objects increases or decreases depending on the kind of

zoom (it does not matter if there is also movement or not), and therefore the

method cannot work properly. If the size associated to each object in a frame

changes, it cannot be represented just shifting them as we are doing until now.

Therefore, our encoding method can be applied only if the camera movement

does not include zoom. We can see graphically what happens when a zoom appears

in the Figure 4.2 after having encoded the video with the standard encoding.

Chapter 4 70

Figure 4.2: Zoom in example.

If we pay attention to the advertisement contained in the audience marked with

a discontinuous line, we observe how its size (pixels assigned for its representation)

has increased considerably after the zoom along some frames. We can imagine that

if we use our encoding method to shift the audience, it would be impossible to

represent properly the new audience with the information of the previous picture

and the use of one GMV for the whole audience would not be effective.

This encoding method is based on the property of the audience to move to-

ward a direction depending on the camera movement; being the mean size of the

MVs an indicator of how fast the overall movement happens. The MVs in the

horizontal and vertical directions are tipically parallel and their magnitudes are

approximately the same (as seen at the left side of the Figure 4.3), in these cases

our system works properly. But if we take a look to the MVs in the case of zoom-

ing the MVs do not point in the same direction (as seen at the right side of the

Figure 4.3).

Figure 4.3: MV patterns resulting from various camera operations.

Chapter 4 71

This fact can be checked observing the MVs distribution of the audience. All

the MVs are concentred in a region, that means that most of them point in the

same direction with similar length, we can see it at the left side of the Figure 4.4.

But if we observe the MVs distribution of a frame in which the zoom has been

applied, we can observe how the distribution changes. We can see it at the right

side of the Figure 4.4 , we can observe how some tails have appeared. That means

that all the MVs are not pointing in the same direction, and their values are not

concentred in a region.

Figure 4.4: Histograms ”no zoom” and ”zoom”.

As the method cannot be applied if zoom appears, we have to propose a solution

to avoid to use the encoding method in these cases. We solved this problem

realizing a zoom detector. It is able to indicate to the encoder to use the encoding

method or not depending on the MVs distribution. As we are preanalyzing the

videos with Matlab, we are going to implement a ”zoom detector” in Matlab also.

As we have said before, we are using information outcoming from the standard

encoder. In that way, it could be easier implementing all the preanalysis that we

are doing within the encoder in a possible future work if the results were amazing.

Along this chapter, we are going to see the state of the art of zoom detection,

to afterwards implement our zoom detector, and investigate the parameters that

influence the process.

Chapter 4 72

4.2 State of the art in zoom detection.

Several techniques of video zoom detection have been proposed in literature so

far. Motion estimation is the main principal of these techniques, widely studied to

improve the tracking of objects and effective analysis. We are going to comment

different methods based on MVs analysis. As we have seen at the beginning of this

chapter, there are several camera operations, that can influence the capture and

therefore the distribution of the MVs. Because of that, zoom detection becomes

more difficult when it is used at the same time than panning or tilting.

4.2.1 Methods based on MVs.

When zoom happens, there is an extension or contraction of the MBs samples.

As we can observe in the right side of the Figure 4.3, the MVs of the MBs of the

bottom rows and the top rows have opposite signs. The same happens with the

columns at the left and right part. These characteristics are exploited to detect

the zoom by Zhang et al [17]. Horizontal MVs (in case of left and right columns)

and vertical MVs (in case of top and bottom rows) are analyzed in those MBs,

and when the both next conditions happen, zoom is declared.

|vtop
k − vbottom

k | ≥ max(|vtop
k |, |vbottom

k |) (4.1)

|uleft
k − uright

k | ≥ max(|uleft
k |, |uright

k |), (4.2)

where v means the vertical component and u the horizontal of the MVs.

Another method was investigated and implemented by Dumitras [18],in this

case each picture is partitioned into 8x8 blocks to obtain the MVs. Then, according

to the orientation of the MVs, the MBs are grouped in regions of angles. The

biggest and second biggest regions (according to the percentage of MBs contained)

and the standard deviation of the biggest one are used to determine if there is zoom

or not, comparing them with fixed thresholds.

Chapter 4 73

4.2.2 Method based on the Hough Transform and MVs.

This method is based mainly in the Hough Transform [19]. As shown in [20], after

the application of the Hough transform together with MVs analysis, different pat-

terns can be obtained, and each pattern can be associated to a camera operation.

After obtaining the MVs, they are mapped to a polar coordinate space by the

Hough Transform. A group of lines with point of convergence/divergence (x0, y0)

is represented by the curve ρ = x0∗sin(φ) + y0∗cos(φ) in the Hough space. The

least squares method is then employed to fit the transformed MVs to the curve.

Finally, if the pattern is sinusoidal, there is zoom.

4.2.3 Methods based on Decision Trees and MVs.

To differenciate camera operations, a simple, popular and developed technique is

the Decision Trees (DTs) method, developed by Patel and Sethi [21]. For shot

detection, they suggest a scheme consisting of comparing intensity, row, and col-

umn histograms of successive I frames of MPEG video. For the characterization

of those segmented shots, they address the problem of classifying shot motion into

different categories using a set of features derived from MVs of P and B frames.

The central component of the proposed shot motion characterization scheme is a

decision tree classifier built through a process of supervised learning. To build a

decision tree, a recursive splitting procedure is applied to the set of training ex-

amples so that the classification error is reduced. For more information see [21]

and [22].

Anyway, all the methods, beside being sensitive to the noise, do not work

properly when zoom and pan happen at the same time, making it very difficult to

predict.

Chapter 4 74

4.3 Zoom detector implementation.

Our approach consists of a zoom detector based on the analysis of the MVs of the

audience. The detection of the zoom in a sequence depends on the characteristics

of each frame individually. We are going to detect if there is zoom or not observing

the distribution of the MVs. We will group the MVs contained in the audience

to know if they point in the same direction and have a similar length. In that

way we will declare zoom depending on some parameters. We are going to explain

the zoom detector working in details below at conceptual level. The final zoom

detection function is borders and zoom detection and mvs calculation3.m, where

are calculated the GMVs, the border maps and the zoom decision at the same

time.

First of all, it would be necessary to encode the video to obtain the trace file

in order to obtain information about the MVs, but that part is already available

because we are preanalyzing the videos. After inputting the trace file to Matlab,

all the MVs values of each frame are stored in data structures. With the help of

the allocation map indicating the correspondence of the MBs to each slice we are

able to differenciate the MVs contained in the audience from the others, because

we know the MVs of the audience have the property of indicating the camera

movement (if there is no zoom).

We make use of the zoom detector at frame level, in each frame is determined

if there is zoom or not depending on the MVs values of the audience. As we have

seen previously we are going to group the MVs into regions with the help of an

histogram to observe the distribution. The main idea is that, after obtaining the

distribution, we have to decide if the MVs values are very dispersed or not to

determine the use or not of our encoding method, and the difficulty of the process

will be mainly how to make the decision. To do that, we will make use of some

parameters in order to obtain the best result.

To obtain the histogram, we cannot group all the MVs in regions with fixed

lengths because it could happen that a ”no zoom” could be considered as zoom

Chapter 4 75

(being a false positive) and vice versa (failed detection) depending on the distri-

bution. For example with fixed region lengths, although most of the MVs are

grouped in a range of 6 pixels, if one region contained the half of them, and the

next one the half also, zoom would be detected, and we would lose effectiveness

and reliability.

To detect properly the zoom we act in this way. We take all the MVs contained

in the audience, we consider the maximum and minimum values, and we calculate

the range, as the difference between both values. With that range, we make the

MVs histogram of the whole range, as we can see in the Figure 4.5. In that way, we

have available the amount of MVs associated to each value. Now, we have to make

a tool charged to make the decision. To do that we make use of a sliding window

in MVs units, that sliding window calculates the quantity of MVs contained in the

region that is being covered by it. The window is displaced along the whole range,

from the very beginning to the end, obtaining the quantity of MVs contained in

each position. In each position, with the results obtained, a percentage respect

the total MVs is calculated and stored in an array.

We can observe the position in which the sliding window contains the most

of the MVs, the position that contains the highest percentage. We take that

maximum percentage, and we compare it with a fixed threshold in order to decide

if zoom is declared or not. We can see the method visually in the Figure 4.5. In this

example we are analyzing the distribution of the horizontal MVs of a frame with

a sliding window length of 4 (that means a movement of 1 pixel) and a threshold

of 80% (in which zoom is not detected).

Chapter 4 76

Figure 4.5: Zoom detector scheme.

We are working with MVs, that means that we consider horizontal and vertical

components. Because of that we make the analysis that we have shown before

for both components, and when some of the two analysis indicates that there is

zoom, zoom is declared. Therefore in each frame these two conditions have to be

evaluated and satisfied to not to declare zoom.

(max(
i+w∑

i

h MV s,
i+1+w∑

i+1

h MV s, ...,
i+n+w∑

i+n

h MV s)/no.ofMV s) > thr (4.3)

(max(
i+w∑

i

v MV s,

i+1+w∑
i+1

v MV s, ...,

i+n+w∑
i+n

v MV s)/no.ofMV s) > thr (4.4)

, where n denotes the number of windows, h denotes the horizontal component,

v the vertical component, w the window length, thr the threshold and i the index

of the histogram (starting by the beginning obviously).

We are going to see both examples of distribution (both for horizontal MVs),

the one at the left side of the Figure 4.6 is an example of no zoom and the one at

the right side is an example of a situation in which zoom has been detected.

Chapter 4 77

Figure 4.6: No zoom and zoom MVs distribution examples.

We are using a zoom detector based on the cartesian coordinates, although we

have also tested a polar zoom detector. In that case, we transform the cartesian

coordinates to polar coordinates obtaining modules and angles to work with. We

compare the modules and the angles with two different parameters, the first (for

the module) similar to the commented sliding window, and for the angles we use

a circular sliding window containing a range of degrees. This zoom detector has

limitations. When the MVs are concentred near the zero, the values of the angles

are very dispersed making impossible its comparison with any threshold. And the

module is not so sensitive to variations as the Cartesian coordinates are. Therefore

we have decided to use a cartesian zoom detector because the zoom results are more

consistant.

We have to fix the values of the two parameters, the sliding window in MVs

units and the threshold in percentage. These values influence hardly the decision

of the zoom. The zoom searchs the region of dimension ”window” in the histogram

which contains the maximum percentage of MVs, and then it is compared with

the supposed threshold to declare or not the zoom. The threshold indicates the

minimum percentage of MVs that should contain the window in a video frame to

not declare zoom.

The parameters setting is very difficult because a video capture may provide

fixed or variable levels of zoom. The zoom can be progressive or not, slow or

fast, it can happen at the same time than panning, etc., and depending on these

Chapter 4 78

characteristics the distribution varies and parameters should be different. And,

moreover, not the all kind of videos would work with the same parameters.

Therefore, we can make the detector works more restrictively or less according

to the values of the parameters. If there is no zoom and it is declared as zoom the

case is called a ”false positive” and the opposite case is called ”failed detection”.

We are going to show in the Table 4.1 how the zoom affects normally the two

parameters.

window ↑ window ↓ threshold ↑ threshold ↓

False positive prob ↓ (better) ↑ (worse) ↓ (better) ↑ (worse)

Failed detection prob ↑ (worse) ↓ (better) ↑ (worse) ↓ (better)

Table 4.1: Influence of window and threshold in the zoom.

So, a compromise has to be reached in order to obtain the best possible detec-

tion. At this point we have to think the effect that would have encoding with our

encoding method a frame in which zoom has been applied and the detector has

considered as ”no zoom”. In this case, the audience would appear incongruent in

the video. And, as we refresh the video each 25 frames (in case no zoom is de-

tected), the refresh would be very annoying and unnatural for the viewer because

suddenly the audience contains would change considerably causing a terrible visual

impact.

The more zoom the video has, the less bits we will save, obviously. But the

visual impact of not detecting the zoom would be even worse. Due to that, we

should give priority to detect the zoom restrictively because for the final result

is better having more false positives than failed detections. The zoom happens

along some frames, not only in one only frame, so normally we have to detect

zoom bursts. Therefore, when the detection of the zoom along the frames are

inconsistant, that means that the zoom decisions fluctuate between zoom and no

zoom consecutively, we will declare zoom.

As there is no a generic tool to know where the zoom is applied, we cannot

Chapter 4 79

evaluate objectively where the zoom detection is properly working. First of all,

we analyze video sequences which do not contain zoom, in those situations, the

MVs are concentred in a very narrow range. After making some analysis, we have

observed that when no zoom is applied most of the MVs are concentred in a range

of 4 MVs (1 pixel of movement). To know the threshold that we have to use

to make the comparison, we are going to pay attention to the video that we are

working with in order to perceive in which frames the zoom is applied. We are

working with video captures with different levels of zooming, so that even if a very

light zoom is applied, we suppose zoom should be detected.

After previsualizing the videos to know where zoom should be detected, sev-

eral tests have been done with the zoom detector applying different thresholds and

sliding windows. We have decided to set a fixed threshold of 80 % with a sliding

window of length 4. That means we are considering zoom if the 80 % of the hori-

zontal or the vertical MVs are not concentred in a range of one pixel of movement.

We are going to see an example of a zoom detection with these parameters in the

Figure 4.7.

Figure 4.7: Zoom detector example.

We are obtaining the zoom decision for all the frames in the videos, these

decisions will be input to the encoder to let our encoding method works in the

Chapter 4 80

respective frames. These decisions will be input to the encoder together with the

GMVs and the border maps by means of a text file. They will be read at the same

time than the other variables in the same function. A global variable is created to

store the decision called ”no zoom”, that will be checked at slice level. These are

the lines in which the zoom is checked.

if ((SliceGroup==2)&&(enable border map==1)&&(img->number != 0)&&(no zoom==1))

audience skip=1;

else

audience skip=0;

For our objective, the reduction of the bandwidth used for the video transmis-

sion, the best can happen is that there is no zoom in the whole video sequence.

In that way all the time (except the refresh each 25 frames) our method would be

in use, reducing considerably the bit rate. In the next chapter we are going to see

the results obtained.

Chapter 5

Results

The video test set employed in our experiments consists of seven soccer video se-

quences with different lengths obtained from a soccer match in which zooming is

included. The videos are represented in YUV format in CIF resolution and the

frame rate is equal to 25 frames per second (fps) for all of them. The sequences do

not contain cuts and they are captured with wide angle camera with different cam-

era operations. Video sequences are preanalyzed as explained previously, obtaining

the correspondent GMVs, border maps and zoom detection for all the frames in

order to make use of our method. Some already commented factors influence the

preanalysis, they have been identified experimentally as explained in the previous

chapters. The border threshold has been set to 32, the sliding window length to 4,

the zoom threshold to 80 % and the refresh time (in frames) to 25. These values

have been maintained constant for all the sequences. In the next Table 5.1 we can

see the characteristics of the sequences.

81

Chapter 5 82

No Seq. name Frame size No. frames

1 m 1 352x288 pix 150

2 m 2 352x288 pix 169

3 m 3 352x288 pix 127

4 m 4 352x288 pix 148

5 m 5 352x288 pix 324

6 m 6 352x288 pix 263

7 m 7 352x288 pix 275

Table 5.1: Test set employed.

As we have explained in the previous chapter, we are working with zoom de-

tector parameters that minimize the probability of failed detections because the

effect of not detecting the zoom would be very annoying for the viewer using our

encoding method. But as we are working with soccer video sequences captured

with different camera operations, different levels of zooming are used, and as our

zoom detector determines the zoom observing the MVs (comparing consecutive

frames), not all the zooms have the same behaviour. When a big zoom happens,

it is detected clearly, but the more progressive the zoom is, the more complicated

will be the detection. Moreover, when different camera operations like panning

and zooming are applied at the same time, the distribution changes, making the

detection more difficult.

The traditional manners of analyzing video quality are calculation of mean

square error (MSE) and peak signal to noise ratio (Psnr) between the original video

and the outcoming encoded video. In this project we are going to use the Psnr

to do that. Because we are just shifting the audience without sending residuals,

we know that the Psnr is going to decrease considerably. Because of that we can

think about measure the perceived quality. Our objective is evaluating the videos

in terms of subjective perceptual quality [23]. The Psnr alone is not enough to

measure the perceived quality, so we will use a MOS scale, seen in [24].

Chapter 5 83

We have encoded the test sequences with QPs equal to 26 for the players, lines,

ball, etc. and 30 for the audience and field. The outcoming videos (together with

the trace file) have been analyzed with Matlab to obtain the Bit rate obtained and

the objective quality in terms of Psnr. Along this chapter we will see the objective

and subjective results as well as its association with the zoom detected.

5.1 Objective results.

First of all, we are going to see the objective results, the bit rate saved and the

Psnr obtained in comparison to the original sequences.

5.1.1 Bit rate.

The main objective of this project is reducing the bit rate applying an alternative

method to encode the least important parts (in terms of subjective importance)

of video soccer sequences without causing lost of quality perception.

The bit rate saved depends on the amount of zoom detected and on the per-

centage of MBs correspondent to the audience in each frame. If a sequence does

not contain zoom, the method will be applied along the whole sequence (except the

refresh each 25 frames) and therefore more bit rate will be saved. On the opposite,

if zoom is detected in all the frames, our encoding method would not be used, and

no bit rate would be saved. In the other hand, we apply only the encoding method

to the MBs contained at the audience, so depending on the number of MBs at the

audience, the bit rate saved will be smaller or bigger. Also when the borders are

encoded with the standard encoding, more bits are transmitted and the bit rate

saved decreases.

We are going to evaluate the effectiveness of the proposed method in terms of

bit rate saved. To do that we are going to see the in the Table 5.2 the percentage of

zoom detected in each video sequence, the mean percentage of MBs at the audience

and the percentage of bit rate saved (comparing the bit rate obtained with our

encoding method with the bit rate obtained without using it for the same quality).

Chapter 5 84

No % zoom detected % MBs at the auience % bit rate saved

1 31 17 14

2 0.6 22 50

3 21.6 28 40

4 14.9 23 38

5 24.1 28 40

6 35.9 36 29

7 46.7 26 21

Table 5.2: Bit rate statistics.

As we can see at the table, the bit rate saved is proportional to the audience

MBs percentage and inversely proportional to the zoom detected percentage. We

are going to see some graphs obtained as an example. We are going to analyze the

results of the sequence number 2, in which zoom has been detected in one only

frame. We are going to see the zoom detection graphs (Figure 5.1 and Figure 5.2),

the first of them, its calculation, and the second, the definitive zoom decision.

Figure 5.1: Zoom detection calculation for sequence 2.

Chapter 5 85

Figure 5.2: Zoom detection result for sequence 2.

Even if no zoom is detected, we refresh the audience each 25 frames, inducing a

smaller amount of bits saved. So, although in only one frame has been declared the

zoom, we will refresh the audience each 25 frames. Now we are going to analyze the

bits transmitted comparing the encoding with and without the application of our

method for the same sequence (in which it has been reached a bit rate saved of 50

%). We can see in the upper side of the Figure 5.3 the bits transmitted per frame

for the standard encoding (using the method of three slices of course) , and below

we can see the bits transmitted with our method. We have represented the bits

transmitted for the three regions. The region at the bottom represents the field,

the part in the middle represents the players and the part on top represents the

audience. We can observe how the amount of bits corresponding to the audience

has been considerably reduced. If we pay attention to the peaks appearing, we

can think the biggest ones represent the refresh and the smallest ones the borders

standard encoding.

Chapter 5 86

Figure 5.3: Bits per frame sent with and without our encoding method for seq. 2.

In order to have a magnitude of the percentage of the bits transmitted for each

zone, we can observe the Figure 5.4. It represents the same information than the

previous picture, but normalized.

Figure 5.4: Bits percentage per zone with and without our encoding method for

seq. 2.

Chapter 5 87

We can also take a look to the mean size of the MBs in each zone. We can

observe how with the standard encoding the audience MBs size is even bigger than

the players MBs (seen at the upper side of the Figure 5.5), and with our method,

we have decreased considerably the assigned size of the audience MBs (seen at the

bottom part of the Figure 5.5).

Figure 5.5: Mean MB bits size in each zone.

In the case no zoom is detected, we have achieved to get an improvement in

the bit rate around the 50 %, a considerable score. Of course it depends also on

the number of MBs of the audience and other factors, but the results in terms of

bit rate are amazing. Now we are going to take a look to the quality.

5.1.2 Objective quality (Psnr).

We are going to see the objective quality obtained with our encoding method. We

are going to use the Psnr as indicator. As we have said before, as we are not

sending any kind of residual, and we are using the same picture reference along

consecutive frames, it can be thought that Psnr is going to decrease clearly.

The main idea of this project is based on the fact that the audience is the least

important part of a video soccer sequence and the part that consumes most part

of the bandwidth due to its nature (very high frequency). We analyze the Psnr

Chapter 5 88

for the sequence number 2 and we obtain the next Figure 5.6

Figure 5.6: Audience MBs mean Psnr with and without our encoding method for

seq. 2.

After visualizing the result we can check the fact that we already knew, the

Psnr decreases considerably. This has sense because along the frames no updating

is being done and we are just shifting the samples. When refresh happens, the

Psnr increases, but in a few frames it decreases again. Obviously if there is zoom,

the method would not be used and the quality would increase. At this point we

can think that the Psnr as a static parameter does not reflect the perceived quality,

and because of that we have thought about making a subjective video quality test.

5.2 Subjective quality evaluation.

As we want to evaluate the quality perceived, we are going to prepare a quality

subjective test using the methodology described in [24]. We want to reproduce a

real UMTS video streaming scenario. We are going to simulate an environment in

which soccer video sequences will be displayed in a typical UMTS device in CIF

resolution.

To prepare the test, we make use of the seven encoded sequences. The sequences

which we are working with are representative because they contain different levels

Chapter 5 89

of zooming, zoom detection results and therefore different bit rate saved. With

our method we are saving a considerable amount of bit rate. Because of that, if

we want to evaluate the subjective quality of our method, we have to compare

our outcoming videos with the videos that could be obtained encoding with that

reduced bit rate. Therefore, as the standard encoded sequences will require less

bits to be encoded, they will be encoded with a higher QP (worse quality) and the

comparison will have sense.

First of all, we obtain the reduced bit rates after the application of our encoding

method for all the sequences using QPs equal to 30 26 30. Now, with those bit rates,

we are going to encode each sequence with a correspondent worse quality according

to the bit rate saved. We are working with FMO, (seen at the first chapter),

partitioning the frames into three slices, and this is not the standard encoding.

Due to that, we are going to obtain and visualize two sequences. The first of

them will be encoded using FMO increasing the QP of the slice correspondent

to the audience, and the second one (without partitioning using one only QP)

will be encoded increasing the general QP. So, for each sequence we have the

original sequence, the sequence of the method, the standard FMO sequence and

the standard no FMO sequence.

After having obtained all the encoded sequences, we are going to prepare the

test. We are going to show in the test the 4 different versions of each sequence.

So, the test consists of 28 soccer video sequences. It is not recommended a long

test duration because the viewer could not pay attention to the sequences, because

the duration of our test is approximately 6 minutes.

All the sequences are displayed one time and in arbitrary order. The sequences

are visualized in a UMTS Smartphone Vodafone VPA IV in CIF resolution. After

visualizing each sequence, the subjects are asked to rate the video. They have 5

seconds to rate the video until the next sequence appears. The rating scale consists

of 5 levels: 5 (excellent), 4 (good), 3 (fair), 2 (poor) and 1 (bad). We can see the

pattern of the test in the Figure 5.7.

Chapter 5 90

Figure 5.7: MOS test pattern.

The tests have been done by 12 unpaid volunteers. They were women and men

with different interests and in a range of age between 18 and 35 years. They have

been given a test paper which has been filled up. The videos appear in arbitrary

order but we know of course the order in which they have been ordered to evaluate

afterwards the results. As it can be supposed, the original sequence should have a

high score. And the two standard encoded sequences (FMO and no FMO) should

have a different score depending on the bit rate used to encode them. For example,

the standard sequences correspondent to the case in which 50 % of bit rate has

been saved are supposed to have a low score because they have been encoded with

less bits.

We are going to see the results of the video quality survey. We have obtained

the mean MOS for each sequence, and we have compared the 4 mean MOS of each

sequence separately. We can see in the Figure 5.8.

Chapter 5 91

Figure 5.8: MOS test results.

We can see how most of the mean MOS are contained in the range between 4

and 5, that means that the quality perceived is very similar in all the cases. Really,

the two standard encoded sequences that were supposed to have a worse perceived

quality (because they have been encoded with the reduced bit rate) have been

encoded decreasing the quality of the audience. And because really the viewer

does not pay attention to the audience details the quality perceived is similar.

This fact agrees with the main idea of the project, that is the audience is the least

important part, that cannot requires so much bandwidth.

As we have said before, different zooming levels are applied to the sequences.

And the more progressive the zoom is, more difficult is the detection. When a zoom

is not detected (failed detection) using our encoding method the refresh causes in

the viewer annoying artifacts because a big change occurs from one frame to the

next one. These artifacts appear in some frames of the test set when gradual zoom

is employed, as the case of sequences no. 3 and 5, in which the mean MOS for the

second bar appears to be a little bit smaller than the other values.

Some conclusions can be obtained after these results. The test makers do not

pay attention to the audience in a soccer sequence, they pay attention to the

Chapter 5 92

play. Only when some artifacts appear at the audience (due to the not efficient

detection of zoom) they observe something annoying is happening in the audience

encoding. If only sequences without zoom were employed, the zoom would not be

a problem and the results would be better. Also the fact of making the tests in a

UMTS device with the real resolution makes the viewer to not detect properly if

the audience is well represented or not because it has a lot of details, and only the

artifacts are noticed.

Chapter 6

Conclusions

The objective of this project was to investigate the possibility of modifying the

encoding of the audience in soccer video sequences exploiting its characteristic

of depending on the camera movement. We have implemented a new encoding

method able to encode all the macroblocks (MBs) as skip, but reconstructing them

at the both sides (encoder and decoder) with one Global Motion Vector (GMV)

transmitted in the first MB of the slice and used for the whole audience. In that

way, we have created a method that does not send residuals, but it applies motion

compensation.

It can be concluded that it is possible to reduce considerably the bit rate

by skipping the MBs of the audience using this method. On the other hand,

the objective quality, measured by PSNR, decreases in the MBs of the audience

because nothing has been sent. We are only shifting the audience available in the

reference picture.

Some effects have to be considered, the encoding of the borders (because the

new information appearing has not previous reference), the blurriness (GMVs mul-

tiple of 4) and specially the zoom detection. As the method cannot work if there is

zoom, we have proposed and implemented a zoom detector in Matlab working with

fixed thresholds and parameters. Because of that when gradual zoom happens, its

working is not so reliable as it should be. The soccer sequences that have been

used in our tests contain different zooming levels, and this makes more difficult

93

Chapter 6 94

the zoom detection. The more progressive is the zoom, the more difficult becomes

its detection.

As the PSNR as a static parameter is not enough to measure the quality per-

ceived, it has been necessary to make a subjective quality test displayed in a typical

UMTS device. The carried out surveys results have evidenced the fact that the

viewers do not pay much attention to the audience (being the least important part

of a soccer sequence) because they pay more attention to the play. Only when

the zoom detection has not been successfully performed, some visual annoying

artifacts happen in the audience due to sudden noticeable refreshments.

Regarding the idea of extracting a GMV from the field, we have observed that

the motion vectors (MVs) of the MBs contained in the field are not so similar

as the MVs of the audience are, being more reliable a GMV extracted from the

audience. And the application of the method to the MBs of the field could not

be realizable because some artifacts would be noticed in the field (where the play

happens), being very annoying for the viewer. Moreover the field MB mean size

is very low, and its application would not imply major improvements in terms of

bit rate.

A limitation of the method is that it can only be used in soccer sequences

which do not contain neither logo nor timer in the audience, because they would

be shifted along the frames. The next steps to do could be implementing all

the things that we have implemented in Matlab directly within the encoder. In

that way no preanalysis would be necessary since the whole processing would be

performed by the encoder.

To conclude, we can say we have achieved to apply a global motion compensa-

tion exploiting the possibilities of the H.264/AVC standard, reducing considerably

the bit rate, and obtaining interesting results. This methodology could be applied

to other fields of video encoding in the future.

APPENDIX A

Along this thesis we are working with the H.264/AVC encoder refer-

ence software developed by JVT for testing, the Joint Model reference

software(JM) [13] version 12.2 (FRExt). The description at functions

level has been done previously. In this appendix we are going to show

only the lines modified in our project, not the overall code.

Encoder modifications.

• global.h

Brief: global definitions for H.264 encoder.

void read borders and global motion vectors and zoom detection(void);

extern int border map[396];

extern int enable border map;

extern int audience skip;

extern int global motion vector[2];

extern int no zoom;

• void Configure (within configfile.c)

Brief: Parse the command line parameters and read the config files.

else if (0 == strncmp(av[CLcount],”-b”,2))

{ enable border map = 1;

95

96

CLcount += 1;

}

• void read borders and global motion vectors and zoom detection (within

configfile.c)

Brief: Read border maps, GMVs and zoom detection for each frame.

void read borders and global motion vectors and zoom detection(void)

{ FILE ∗ sgfile=NULL;

int i;

int ret;

int tmp;

int frame mb only;

int mb width, mb height, mapunit height;

char NewSliceGroupConfigFileName[FILE NAME SIZE];

char file name[FILE NAME SIZE] = ”\0”;

char borders[FILE NAME SIZE] = ”\0”;

char global mvs[FILE NAME SIZE] = ”\0”;

if ((input->slice group map type != 0) && (input->slice group map type != 2) &&

(input->slice group map type != 6))

{

// nothing to do

return;

}

strncpy(file name, input->infile, strlen(input->infile) - 4);

sprintf(borders,”./%s/%s border %d.map”,file name,file name,img->number);

sgfile = fopen(borders,”r”);

if (NULL==sgfile)

{

snprintf(errortext, ET SIZE, ”Error opening slice group file %s”,

97

NewSliceGroupConfigFileName);

error (errortext, 500);

}

frame mb only = !(input->PicInterlace || input->MbInterlace);

mb width= (input->img width+img->auto crop right)>>4;

mb height= (input->img height+img->auto crop bottom)>>4;

mapunit height=mb height/(2-frame mb only);

// each line contains slice group id for one Macroblock

for (i=0;i<mapunit height∗mb width;i++)

{

ret = fscanf(sgfile,”%d”, &tmp);

border map[i] = (byte) tmp;

// input->slice group id[i]= (byte) tmp;

if (1!=ret)

{

fclose(sgfile);

snprintf(errortext, ET SIZE, ”Error while reading slice group config file (line %d)”

, i + 1);

error (errortext, 500);

}

fscanf(sgfile,”%∗[^\n]”);

}

// close file again

fclose(sgfile);

sprintf(global mvs,”./%s/%s zoom and global mvs %d.map”,file name,file name

,img->number);

sgfile = fopen(global mvs,”r”);

if (NULL==sgfile)

{

snprintf(errortext, ET SIZE, ”Error opening slice group file %s”

98

, NewSliceGroupConfigFileName);

error (errortext, 500);

}

//We store zoom condition

ret= fscanf(sgfile,”%d”,&tmp);

no zoom = tmp;

fscanf(sgfile,”%∗[^\n]”);

//we store global motion vectors

for (i=0;i<2;i++)

{

ret = fscanf(sgfile,”%d”, &tmp);

global motion vector[i] = tmp;

if (1!=ret)

{

fclose(sgfile);

snprintf(errortext, ET SIZE, ”Error while reading slice group config file (line %d)”

, i + 1);

error (errortext, 500);

}

fscanf(sgfile,”%∗[^\n]”);

}

// close file again

fclose(sgfile);

}

• int main (within lencod.c)

Brief: Main function for H.264/AVC encoder.

int border map[396];

int enable border map;

99

int audience skip;

int global motion vector[2];

int no zoom;

if ((img->number != 0) && (enable border map==1))

read borders and global motion vectors and zoom detection();

• void code a picture (within image.c)

Brief: Code one image/slice.

if ((SliceGroup==2)&&(enable border map==1)&&(img->number != 0)&&

(no zoom==1))

audience skip=1;

else

audience skip=0;

• void encode one macroblock low (within md low.c)

Brief: Mode Decision for a macroblock.

if ((mode==1)&&(audience skip==1)&&(border map[img->current mb nr]==0))

{

cost=0;

}

• int SubPelBlockMotionSearch(within me fullsearch.c)

Brief: Sub pixel block motion search.

if ((audience skip==1)&&(border map[img->current mb nr]==0))

{

∗mv x=global motion vector[0];

∗mv y=global motion vector[1];

}

100

• void LumaResidualCoding (within macroblock.c)

Brief: Residual Coding of a Luma macroblock (not for intra).

if ((audience skip==1)&&(border map[img->current mb nr]==0))

{

sum cnt nonz=0;

currMB->cbp=0;

currMB->cbp blk=0;

}

• void ChromaResidualCoding (within macroblock.c)

Brief: Chroma residual coding for an macroblock.

if ((audience skip==1)&&(border map[img->current mb nr]==0))

skipped=1;

if ((audience skip==1)&&(border map[img->current mb nr]==0))

img->mb data[img->current mb nr].cbp=0;

APPENDIX B

Along the realization of the thesis, some functions have been created

in order to be used to preanalyze the videos and to evaluate the results,

but only the final versions remain. Now we are going to see the main

working of the function charged of preanalyzing the videos, obtaining

in that way the GMVs, border maps and zoom detection. We are going

to take a look in general to other interesting functions.

Main Matlab functions.

borders and zoom detection and mvs calculation3.m

This function is the main function charged of the preanalysis. This function is

called with 6 parameters: file name, frame nr, res, window, threshold border and

threshold zoom, being the parameter cif the resolution, the window the length that

will be applied to the sliding window, and the thresholds for the border maps and

zoom, already explained along this document.

At the beginning of the function, according with the resolution, the width and

height are set. All the structures are prepared to be used. A data base is loaded

(being the corresponding data already obtained) containing information about the

MVs along the sequence and about the allocation maps. After that, a first frame nr

length loop is passed through, in this first loop, is made the zoom detection as has

been explained in the chapter 3. The function eval zone mv is called in order to

obtain the mean of the audience MVs. After the horizontal and vertical MVs have

been analyzed, the decision zoom is declared according to their individual results.

101

102

The zoom decision is saved in an array with a length equal to frame nr obviously

called no zoom. Also if the number of MBs corresponding to the audience varies

considerably from one frame to the next zoom is declared because that behaviour

is not usual.

After obtaining the zoom decision. A second frame nr length loop is passed

through. The zoom decision is analyzed in this loop, as well as the calculation

of the GMVs and the border maps. In this loop is taken into consideration that

if along some frames the zoom decision is very changing, the most probable is

happening is that zoom is appearing. The GMVs (being only multiple of 4) and

border maps are obtained as told in the chapter 3. All the parameters obtained

are saved in text files inside a folder with the same name than the video file in

order to be directly copied to the bin encoder’s folder.

Other functions charged of the evaluation of the results could be also com-

mented in this appendix, but it would not be interesting from because they are

simply tools to obtain results.

Other functions.

Other interesting functions could be:

• calculate psnr mb It calculates the psnr of a sequence in comparison with

the original, giving the mean psnr per MB in 352x288 format and in 22x18

format.

• cam mov It gives the camera movement according to the GMVs values.

• quality vs size It outputs results in terms of bit rate saved and quality.

• border and zoom detection polares It calculates the zoom detection

with results less amazing than the cartesian detector.

Bibliography

[1] John Scourias. ”Overview of GSM: The Global System for Mobile Commu-

nications” Published by John Scourias, University of Waterloo, March 13,

1996.

[2] H.Holma, A. Toscala. ”WCDMA for UMTS: radio Access For Third Genera-

tion Mobile Communication” Third Edition, John Wiley & Sons, Ltd., 2004.

[3] ITU-T H.261, Series H: Audiovisual and multimedia systems, ”Video codec

for audiovisual services at p x 64 kbit/s” Mar. 1993.

[4] ISO/IEC-11172-3, ”Coding of moving pictures and associated audio for digital

storage media at up to about 1,5 Mbit/s” ,1993.

[5] ISO/IEC-13818-1, ”Information Technology-Generic coding of moving pic-

tures and associated audio information: Systems” ,2000.

[6] ITU-T H.262, Series H: Audiovisual and multimedia systems-Information

technology, ”Generic coding of moving pictures and associated audio infor-

mation: Video” Feb. 2000.

[7] ISO/IEC-14496-2, ”Coding of Audio-Visual Objects”, part 2: visual, 2001.

[8] ITU-T H.263, Series H: Audiovisual and multimedia systems, Infraestructure

of audiovisual services-coding of moving video, ”Video coding for low bit rate

communication” Jan. 2005.

103

104

[9] ITU-T H.264, Series H: Audiovisual and multimedia systems, Infraestructure

of audiovisual services-coding of moving video, ”Advanced video coding for

generic audiovisual services” , Mar. 2005.

[10] http://en.wikipedia.org/wiki/YUV

[11] R. Schäfer, T. Wiegand and H. Schwarz ”The emerging H.264/AVC standard”

, EBU Technical Review, Heinrich Hertz Institute, Berlin, Germany, Jan.

2003.

[12] T. Wiegand, Gary J. Sullivan, Senior Member, IEEE, Gisle Bjontegaard, and

Ajay Luthra, Senior Member, IEEE ”Overview of the H.264/AVC Video Cod-

ing Standard” , IEEE Transactions on circuits and systems for video technol-

ogy, vol.13, No.7, Jul 2003

[13] H.264/AVC Software Coordination ”Joint Model Software” , ver.12.2.

[14] L. Superiori, M. Rupp, ”Encoding optimization of soccer sequences for trans-

mission over UMTS networks”, International Conference on Multimedia and

Expo ICME 2008, Hannover, Jun. 2008.

[15] Yves Dhondt, Peter Lambert. ”Flexible Macroblock Ordering, an error re-

silience tool in H.264/AVC”, Fifth FTW Phd Symposium, Faculty of Engi-

neering, Ghent University, 1st December 2004 - paper nr.106

[16] Koprinska, I. Carrato, S., ”Segmentation: A Survey, Signal Processing: Image

Communication”, 16(5), Elsevier Science, 2001, pp. 477 - 500

[17] H.J. Zhang, C.Y. Low, Y.H. Gong, S.W. Smoliar, ”Video parsing using com-

pressed data”, in: Proc. SPIE Conf. Image and Video Processing II, 1994, pp.

142-149.

[18] Barrz G. Haskell Adriana Dumitras, ”A look-ahead Method for Pan and Zoom

Detection in Video Sequences using Block/based Motion Vectors in Polar Co-

ordinates”, May 2004.

105

[19] B. Girod, G. Greiner, H. Niemann, ”Principles of 3D Image. Analysis and

Synthesis”, Kluwer Academic Publishers, USA, 2002.

[20] A. Akutsu, Y. Tonomura, H. Hashimoto, Y. Ohba, ”Video indexing using

motion vectors”, in: Proc. SPIE: Visual Comm. and Image Processing 1818,

Boston, 1992, pp. 1522-1530..

[21] N.V. Patel, I.K. Sethi, ”Video shot detection and characterization for video

databases”, Pattern Recognition 30 (1997) 583-592.

[22] I.K. Sethi, G.P.R. Sarvarayuda, ”Hierarchical classifier design using mutual

information”, IEEE Trans. on Pattern Analysis and Machine Intelligence,

1982, 441-445.

[23] Olivia Nemethova, Michal Ries and Markus Rupp, ”Quality assessment for

H.264 coded low-rate and low-resolution video sequences”, Published in the

proceedings of CIIT,St. Thomas, US Virgin Islands, November 22-24, 2004.

[24] ITU-T Recommendation P.800.1. ”Mean Opinion Score (MOS) terminology”,

July 2006.

