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Abstract 

Today there is a great request of using automation 
networks in safety critical environments. Thus, such 
systems used in industrial and building automation 
have been enhanced with safety features derived from 
strict safety requirements specified in IEC 61508. 

One of the safety requirements to be met is the 
detection of hazardous events on the network such as 
the delay of a message. A safety measure to identify 
these hazardous events is the use of a timestamp within 
a safe protocol. However, a common time base among 
the nodes must be provided – by means of a network 
time synchronization mechanism.  

A centralized and decentralized approach was 
developed within the SafetyLon project. Realization of 
the concept and implementation in the 
producer/consumer model of SafetyLon is outlined. 

 

1. Introduction 

In the last years automation networks have been 
more and more used in new fields of application that 
are very demanding regarding functional safety (short 
safety). As a consequence, they must be considered as 
safety critical systems and have to meet very strict 
requirements specified by the international standard 
IEC 61508 [10]. 

The standard deals with functional safety achieved 
by a safety related device. The idea is to reduce the 
inherent risk of an equipment under control (EUC) 
below a maximum tolerable level by using safety 
related devices. Within this paper the EUC comprises 
the network as well as the nodes of an automation 
network. The safety related device is integrated into 
every node and is realized by microcontrollers and 
embedded software. In the following such a node is 
called safe node. 

Risk reduction is achieved by avoiding systematic 
and handling stochastic failures. 

1. Fault avoidance: By applying different 
measures during the life cycle of a system, 

systematic failures should be avoided. Such 
measures are failure mode and effect analysis 
(FMEA) or code walkthroughs. However, that 
topic is beyond the scope of this paper. 

2. Fault control: Stochastic failures cannot be 
avoided. Therefore faults must be controlled 
and handled by proper means. Generally 
speaking, fault control means that a fault does 
not result in a failure due to redundancy or that 
the fault has been detected and repaired before 
it resulted in a failure. 

Faults result in failures that in the end lead to 
hazards. It must be distinguished between hazards 
coming from failures on the network and hazards 
resulting from failures in the safety related device on 
the safe node. The last-mentioned failures can either be 
systematic software failures or stochastic hardware 
failures. Refer to [10] for avoiding systematic software 
failures and [11], [12] for ways of detecting stochastic 
hardware failures. 

In [5] typical hazards occurring on the network are 
mentioned. The consequences of these hazards are 
hazardous events: 

• Data corruption 
• Loss of messages 
• Insertion of messages 
• Delay, repetition, wrong sequence of messages 
• Non-safe message looks like a safe message 
The hazardous events must be detected with a 

certain probability. Therefore, so-called safety 
functions are specified performing tasks to detect the 
events. The probability of detecting hazardous events is 
categorized by safety integrity levels (SIL). 

IEC 61508 specifies four safety integrity levels 
(SIL). Safety integrity level 1 (SIL 1) is the lowest and 
safety integrity 4 (SIL 4) is the highest level. Each 
level corresponds with a specific error probability per 
hour. The higher the level, the higher the performance 
of a safety function must be, i.e. the higher the 
likelihood of detecting hazardous events has to be. 

Regarding the aforementioned hazardous events 
safety functions would be [2]: 

• CRC (cyclic redundancy check) to ensure data 
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integrity, 
• Watchdog to detect loss of a message, 
• safe addressing scheme and timestamp to 

discover insertion of messages, 
• timestamp to identify delay, repetition, wrong 

sequence of a message, 
• redundancy with cross comparison to detect 

repetition, loss, insertion, wrong sequence of a 
message. 

Using timestamps as means to detect hazardous 
events on the network during message exchange 
among safe nodes requires a network time 
synchronization mechanism. Timestamps are only an 
effective safety measure if safe nodes have the same 
time base. 

In the following a network time synchronization 
approach is being presented: a centralized and 
distributed one. Especially, the paper focuses on the 
realization in and implementation into the SafetyLon 
The approach was developed during the SafetyLon 
project. The European collective research project 
SafetyLon has the goal to make the EN 14908 (Local 
Operating Network, LON) technology [14] safe 
according to the requirements of SIL 3. 

Consequently, the remainder of the paper is 
structured as follows: section 2 conveys information on 
network time synchronization approaches in safety-
related automation systems. Section 3 presents the case 
study. It outlines some aspects of SafetyLon, required 
to understand the following sections: hardware and 
software architecture of a node, and the communication 
concept. Section 4 discusses the time synchronization 
concepts whereas section 5 mentions the realization 
within the SafetyLon. Finally, section 6 is related to the 
implementation of the two network time 
synchronization approaches. 

2. State of the Art 

SafetyLon is supposed to be the first safe building 
automation network. However, not the first to be 
enhanced with safety features. Especially, some 
industrial automation networks have been realized 
meeting the requirements specified by IEC 61508. 

EtherCAT which exists since 2003 is an Ethernet 
based subsystem which was extended with safety 
functions and is specified as “Safety over 
EtherCAT” [4]. It meets like SafetyLon SIL 3 
requirements of IEC 61508. Safe and non-safe 
communication is transmitted over the same 
communication medium. It is based on a 
producer/consumer concept. Safety functions are 
encapsulated in a Safety Layer which handles the 
EtherCAT messages. Instead of a time synchronization 
mechanism, a dedicated master/slave connection is 

realized which enables the full observation of the 
transmission path. 

Another SIL 3 compliant system is “Ethernet 
Powerlink Safety” [6]. Safety functions are located in a 
dedicated Safety Layer within the embedded software. 
Safety functions to detect hazardous events on the 
network are similar to those in SafetyLon: duplication 
of the data to ensure data integrity, usage of 
timestamps and safe addressing model to identify 
inserted messages are implemented. Time 
synchronization is based on a relative time mechanism 
[3] which measures the time difference between sender 
and receiver and considers it for later communication. 

PROFIsafe [5] is another SIL 3 compliant system 
where safety functions are integrated into a PROFIsafe 
layer located on top of the OSI model. Time 
synchronization mechanism is not implemented into 
the protocol because acknowledgements are used 
instead. 

Time synchronization itself is a broad field of 
research. There are mechanism available like NTP [9], 
IEEE 1588 [7] or hardware based implementation like 
SynUTC [8]. SynUTC and IEEE 1588 specify concepts 
to synchronize time with an accuracy of smaller than 
microseconds. NTP synchronizes time in the range of a 
few milliseconds. The very simple requirements of 
SafetyLon regarding time accuracy do not justify the 
implementation of those concepts. The measurement of 
the delay from IEEE 1588 e.g. is replaced by a simple 
transaction time. Also the storing of four timestamps in 
a packet specified in NTP to achieve a high time 
accuracy are not required. Less overhead during 
transmission is favoured (packet size typical 90 byte 
for NTP in contrast to 22 byte with SafetyLon). 
Hardware based time stamping like implemented in 
SynUTC was not considered because of the already 
pre-defined hardware.  

In SafetyLon time accuracy of about 10 ms is 
required. Also requirements with regard to hardware 
resources (64 kByte RAM, 256 kByte Flash memory, 
clock rate 43.2 MHz) have to be considered. 
Consequently, resources saving mechanisms are 
mandatory. 

3. Case Study 

As already mentioned shortly, the network time 
synchronization approach presented in the paper was 
developed in the SafetyLon project. It is a European 
collective research project, project number 012611, 
supported by the European Union within the Sixth 
Framework Program. The consortium consists of 17 
partners: universities, companies and user groups of 
seven European countries. 

SafetyLon is the safe extension to the LON 
technology. As a consequence a standard EN 14908 
[14] node is enhanced with additional hardware 



Figure 2 Software architecture of safety 
operating software (Safety Chip 1) 

Figure 3 Safe protocol message structure 

Figure 1 SafetyLon node 

(Figure 1) and embedded safety operating software [2]. 
Doing so has the advantage that safe and non-safe 
services are provided on a safe node. Moreover, it is 
possible to use safe and standard nodes within the same 
network. And the powerful network management tools 
used to setup the network are upgraded to meet 
requirements of a SIL 3 compliant system [15]. 

3.1. Hardware Architecture 
Every safe node includes a standard EN 14908 chip 

to access the LON. Additionally, there are two safety 
chips: Safety Chip 1 and Safety Chip 2 [2]. Safety 
Chip 1 is physically connected to the standard 
EN 14908 chip and uses it as network interface.  

Both safety chips perform the safety functions in 
close cooperation, are synchronized with each other 
and are connected via a serial interface. 

Sensors and actuators are connected to the safety 
related input and output unit. The inputs and outputs 
are controlled by both safety chips. 

3.2. Software architecture 
The software architecture of SafetyLon embedded 

software is based on a layered architecture [2] as 
illustrated in Figure 2. The Application Layer on top of 
the model is offering functions for developing safe 
user-defined applications to the application developer. 

The Safety Layer in the middle incorporates all the 
safety functions required to achieve SIL 3. Besides the 
online hardware self tests [11], the safe protocol stack 
[2] and the network time synchronization is part of the 
Safety Layer. Safety functions are called periodically 
by the Safety Operating Scheduler. 

The lower layer is divided into two parts. The 
Safety Chip Interface is responsible for the 
communication between the safety chips and is 
separated into an API and an interrupt based serial 
driver. The Network Access Layer offers functions to 
access the LON, independent of the underlying third 
party software [19], [21]. The Network Access Layer is 
only available on Safety Chip 1 because only this 
safety chip is connected to the EN 14908 chip as 
mentioned in subsection 3.1. Standard LON 

communication channel and the third-party software is 
treated as grey channel and not considered in safety 
considerations. 

3.3. Communication Concept 
Safe communication among nodes is based on the 

producer/consumer model. In general, producers are 
generating (producing) messages and consumers are 
“consuming”, i.e. are processing messages. Typically, 
producers are sensors and consumers are actuators. 

Producers and consumers on a single node get safe 
addresses. Additionally, consumers keep a list with 
safe addresses of the connected (bound) producers. 
This process is called safe binding.  

When a producer wants to send a message, it 
includes its safe address into the message. The 
consumer only processes a message if the safe address 
is listed in the table, i.e. it is a valid producer. This 
addressing scheme is called source based addressing 
model. 

The producers with a safe address are periodically 
sending “hello” or “keep-alive” messages, called 
heartbeats in the following. They are sent to proof the 
aliveness of producers. In case of missing heartbeats, 
i.e. timing expectation has not been fulfilled, watchdog 
is triggered and the consumer has to enter a defined 
safe state. 

Safe messages (Figure 3) are exchanged using a safe 
message format of a safe protocol. It is specified in a 
way so that hazardous events mentioned in section 1 
can be detected [2]. Therefore it consists of two parts 
to increase the level of integrity, including beside a 
length field (ID): 

• 3 byte safe address field (Address), 
• 2 byte timestamp field (Ms word, Ls word), 
• 1-8 byte payload field (Data), 
• 1 byte CRC field. 
The safe protocol is embedded into the payload field 

of the LonTalk [18]. As a consequence, routing of 
messages is provided by LonTalk only. 



4. Synchronization Concept 

Faulty transmission is caused by hazardous events 
resulting for example from broken cabling, stochastic 
failures or wrong wiring. As already mentioned in 
section 1, typical hazardous events are delay of a 
message, message loss or duplication of a message 
which have to be detected [3]. Some of such hazardous 
events can be detected by using acknowledgements, 
sequence numbers or safe addresses. 

The detection of a delay of a message is absolutely 
required in a safe automation network with devices that 
store messages temporarily, e.g. store-and-forward 
routers. That service and the respective watchdog 
functionality, however, can only be provided if timing 
expectation can be checked. A common timing 
expectation among nodes is only possible when nodes 
have the same time base. That is why a network time 
synchronization service is included into SafetyLon. It 
is a fundamental part of the system during startup of 
the network and during operation. 

The service enables checking of every message 
during regular operation regarding e.g.: 
• Is the receiving time of the message in the 

future? 
• Is the last received message older than the last 

saved one? 
• Is the maximum delay too high? 
Time synchronization in SafetyLon is similar to the 

relative time synchronization method [3] implemented 
in Ethernet Powerlink Safety (EPLsafety) [1]. With 
regard to a network time resolution1 of 10 milliseconds 
on a TP/FT-10 channel [20], sending and receiving of a 
single message lasting about 50-60 milliseconds, the 
time accuracy of the relative time synchronization 
method is sufficient. 

The network time synchronization approach is based 
on a request/response service. In the payload of a 
request and response message a CTN (Consecutive 
Timing Number) is transmitted (Figure 4). The CTN 
value is used to correlate the request with the response 
for detection of chronological disorder of replies and to 
prevent faulty synchronization. 

Each SafetyLon message contains a sending 
timestamp in the message header. To calculate the 
offset of the timing source, the timestamp of the header 
is extracted (Offset = ST1 - MT1). If the interval 
between the request and the response is too long 
(Response Time Δt = ST1 - ST2) the message is 
discarded and a new request is initiated. This condition 
is always checked in order to detect too big deviations 
due to network delays. 

                                                           
1 Network timers are realized by counters. The counter value , i.e. 

the network time, is increased from x to x+1 every 10 
milliseconds. Therefore, the network time resolution is the time 
that goes by between value x and x+1. 

The request/response service is used in two different 
time synchronization approaches. The first is based on 
a central algorithm (single master/multiple slaves) and 
the second one is based on a distributed or 
consumer/producer algorithm with different time bases 
(multiple masters and multiple slaves). 

In the central algorithm a dedicated node being the 
timing master is available. The master receives a 
request from the slave and responds with the current 
time. The slave uses the received time as new network 
time as shown in Figure 3. 

In the distributed algorithm every producer 
synchronizes the network time with its associated 
consumer. In contrast to Figure 4 the timing master, i.e. 
the consumer, starts to send its network time to all 
producers. They are using the value as their new 
network time and are sending a response as 
acknowledgement. Thus, all producers connected to a 
single consumer share the same network time. 
However, different consumers, especially on different 
nodes, need not to have the same network time. It is 
likely that various network times are present. 

To sum up, in the centralized algorithm network 
time of all nodes sending request to timing master is 
updated with the same value. Moreover, the network 
time is valid for all producers and consumer on a single 
node. However, only consumers on the same node and 
producers connected to the same consumer respectively 
share the same network time when the distributed 
algorithm is applied. Hence, producer on the same 
node as well as consumer on different nodes have 
different network times. 

The request/response service is necessary because 
the slave must be able to measure the delay for 
example due to congestion on the network. If the time 
between sending the request and receiving the response 
is above a specified time limit, accuracy of time is not 
guaranteed. The time limit is set according to the 
network time resolution. 

5. Realization of the Concept 

In SafetyLon the centralized algorithm uses an 
additional time synchronization consumer (here and 

Figure 4 Time synchronization mechanism 



after called only consumer) on slave side and a 
dedicated time synchronization producer (here and 
after called only producer) on master side. That is not 
the case applying the distributed or consumer/producer 
algorithm. However, realization of the concept is equal 
and presented as follows. 

On the contrary to the fact presented in subsection 
3.3 that a producer sends and a consumer receives 
messages, time synchronization is initiated by the 
consumer. The reason is the following: Only on 
consumer side timing expectation by means of a 
watchdog timer is checked. If watchdog is triggered, 
consumer can enter a defined safe state. Thus, 
consumer sends request and, if it does not receive at 
least a response message with a defined time frame, it 
enters safe state. 

Network time synchronization is a safety function. 
Consequently messages are sent via the safe protocol. 
For that reason a safe binding between producer and 
consumer is required. As outlined in subsection 3.3 the 
producer and the consumer receive a safe address. 
Moreover, on consumer side the safe address of the 
producer is stored in a list, called the consumer table. 
Only if a message with a safe address stored in the 
consumer table has been received, it is processed. 

The realization can be seen in Figure 5 for the 
network variable service of EN 14908 discussed in 
detail in section 6. Only for time synchronization 
requests the consumer is sending the safe address of 
the producer in the payload of the request message. 
The sender address is the safe address of the consumer. 
As already mentioned in subsection 3.3, SafetyLon is 
using a source based addressing model where the 
source address is part of the safe protocol header.  

The producer receives the request message and 
checks if the payload field contains the valid producer 
address. If not, the message is discarded. Otherwise the 
producer generates a response message. Now the 
producer address is the source address and the sender 
address of the received message, i.e. consumer address, 
is included in the payload field. 

After receiving the response message on consumer 
side, the producer address is compared with the 
associated one listed in the consumer table. In addition, 
it is verified if the payload field contains the safe 
address of the consumer. With this mechanism the 
consumer can assure that the response it received is 
from the producer it sent the request to first. Only if the 
cross comparison of safe addresses is successful, the 
time synchronization message is processed, otherwise 
it is discarded. 

6. Implementation in SafetyLon 

As shown in Figure 2, network time synchronization 
is a software module within the Safety Layer. It is 
implemented in a way to meet requirements of 

IEC 61508 regarding software development. In other 
words, structured programming, modularization of the 
software, coding rules are applied as outlined in detail 
in [13]. 

6.1. Integration into the System 
Network time synchronization software module is 

integrated into the software on both safety chips. Due 
to the underlying Network Access Layer on Safety 
Chip 1, the time synchronization software module is 
absolutely independent of the hardware architecture. 
The module is periodically called by the Safe 
Operating Scheduler on each safety chip independently 
of each other. The scheduling, the internal coupling of 
and same time synchronization related data on every 
safety chip make it possible that the time 
synchronization is executed on both safety chips at the 
same time.  

As a consequence, every safety chip must keep two 
important tables for storing the safe binding between 
producers and consumers: the consumer table lists the 
safe consumer addresses and all connected producers 
with their state (last message received, receive rate); 
the producer table the safe producer addresses and 
timing information (last message send, send rate). The 
importance of the tables for the time synchronization is 
twofold:  
• to realize the network time synchronization 

concept mentioned in section 5,  
• to acquire timing information: when should a 

request be triggered next and when has a 
response to be received the latest. 

The synchronization interval depends on the drift 
(GQuarz) of the safe node oscillators and the maximum 
allowable timing window (ΔtDrift). Under the 
assumption that both oscillators drift in opposite 
direction the interval can be calculated by:  

ΔtDrift = GQuarz ⋅ TSync 
At least three synchronization trails are recommended 
during an interval. 

Figure 5 SafetyLon addressing for time 
synchronization with network variable 
service 



Since both safety chips have the same time 
synchronization related data available, the time 
synchronization module independently triggers sending 
a part of the request and the response messages on each 
safety chip. As mentioned in subsection 3.3, a safe 
message always consists of two duplicated message 
parts. So in the safe protocol stack – another part of the 
Safety Layer – of Safety Chip 1 the first and of Safety 
Chip 2 the second part of a request or response 
message is built. Safe protocol stack of Safety Chip 1 
concatenates both parts and triggers the sending 
process. 

To keep time synchronization related data consistent 
on both safety chips, the received safe request/response 
messages must be available on each safety chip. Thus, 
safe protocol stack of Safety Chip 1 that is only 
connected to the EN 14908 chip forwards the complete 
message to its companion. 

In general, a safe node can receive three types of 
messages: 

1. A safe network management message using the 
message format presented in [15] and to be 
handled by the safe network management tool. 

2. An application related message using the safe 
message format where data is processed by the 
application. 

3. A network time synchronization using safe 
message format and being handled by the 
network time synchronization module. 

Message type 2 and 3 are using the same safe 
message format. Hence, a network time 
synchronization message is marked with the T/D 
(Time/Data) bit in the second byte of the safe address 
field (Figure 3). The T/D bit is the most significant bit 
in the second byte of the safe address. The bit is set and 
evaluated by the safe protocol stack. 

6.2. Centralized Algorithm 
The centralized algorithm with a single master and 

multiple slaves uses the EN 14908 concept of network 
variables (NV). Generally, a network variable is a data 
item that an application on Node A expects to get from 
Node B on a network (an input network variable) or 
expects to make available to Node B on a network (an 
output network variable). Network variables are used 
for operational data such as temperatures, or pressures. 
Each network variable has a special network variable 
type that specifies the units, scaling and structure of the 
NV [19]. Network variables of same type, but opposite 
direction can be connected – they are bound by 
performing a binding. Data of each NV can easily be 
referenced by a NV index. In the EN 14908 chip a 
table is kept where each NV index matches a LonTalk 
address for routing purpose. This kind of mechanism is 
used because it is supported in a very comfortable way 
by standard EN 14908 network management tools. 

Applying the centralized algorithm, two dedicated 
roles are defined. The master is the source of timing 
information for all nodes in the network. The slaves are 
querying the master for the time information. Selection 
of the master node is done before compilation of the 
software. Each node provides two safe NVs for 
synchronization where one is configured as input 
(consumer role, NVI) and the second one as output 
(producer role, NVO). The timing master can be 
implemented as an already existing node in the 
network – preferably powerful regarding 
computational power and memory resources. 

A safe binding is established only for the response 
path from the master (NVO) to the slave (NVI) (bold 
arrow in Figure 4). That is because a safe binding 
always results in sending a heartbeat periodically. As a 
consequence, the timing master would be flooded with 
heartbeats from many slaves. Moreover, from a more 
general perspective, it is absolutely irrelevant for the 
timing master if a timing slave is still available. Timing 
master is not affected in any case. On the contrary, 
timing slave is affected if timing master is not “alive” 
any more. It cannot synchronize network time, and 
therefore it is not able to check timing expectation; an 
important safety feature is not working. 

The safe network variables are always assigned by 
definition to the last but one and the last NV index. So 
in case of n defined network variables necessary for 
safe user-defined application, n+1 is the output NV 
and n+2 the input NV on every node. The safe address 
of a producer (NVO) on master node side and a 
consumer (NVI) on slave node side can be acquired by 
specifying the corresponding NV index. 

6.2.1. Slave Node Functionality 
Generally, a node does not start to send and process 

application related messages unless it has received a 
valid time synchronization response message. In 
addition, it stops sending and processing application 
related messages in case of not getting a time 
synchronization response messages for a while. As a 
consequence, it has to be distinguished between startup 
time synchronization and the one during operation. 

In case of startup synchronization the network time 
is set immediately to the received value. By doing so, 
the node can start to send/receive messages with out 
delay. In the following network time is adjusted by 
speeding up or slowing down the node internal network 
time. Such a way is required because otherwise 
watchdog functionality is affected. 

For example, a consumer on Node A received a 
heartbeat from a producer on Node B at network time 
435 time unit. It is specified that consumer gets the 
next heartbeat at 455 time unit, i.e. watchdog must be 
triggered every 20 time unit. Meanwhile 17 time units 
were gone by and no heartbeat has been received so 
far. If network time had to be adjusted to +4 time units 



and was set immediately, watchdog would not be 
triggered and consumer would have to enter safe state. 

As already outlined before, network time 
synchronization is a software module within the Safety 
Layer and called periodically by the Safety Operating 
Scheduler. Every time it is called by the scheduler a 
new request can be initiated and a received response 
can be processed. 

Sending a request can have different causes: 
• The node was never synchronized before 

(startup synchronization). 
• The configured time synchronization interval 

expired. 
• The existing requests are only valid for a limited 

time, i.e. until a timeout occurred. After 
expiration of the period the old request is 
marked invalid and a new request with a new 
CTN value is generated.  

As soon as new messages have been available for 
processing, they are first checked regarding the 
following criteria. 
• Is there a request with the same CTN value? 
• Is the arrival time within the allowed response 

interval? 
• Was the cross comparison of the safe addresses 

successful? 
In case of fulfilling all three criteria, the response is 

processed or otherwise discarded and a new request is 
sent. If the calculated offset is greater than a predefined 
minimum value, but smaller a maximum value, the 
network time will be slowly adjusted in positive 
direction to the correct value. With every execution of 
the synchronization algorithm the internal network 
time is sped up or slowed down. A maximum value is 
specified because great deviations of the internal 
network time from the network time received are a sign 
for defect node hardware. Therefore, as soon as great 
deviations have been detected multiple times one after 
another, the node switches to safe state. 

A slave node also enters the safe state when 
heartbeats from the producer on master side are not 
sent within a defined time frame. This kind of 
mechanism gives the consumer on slave side the 
possibility to check if the timing master is still 
available. 

6.2.2. Master Node Functionality 
The master algorithm has to provide the following 

functionality. Firstly, it is responsible for sending 
response messages after receiving a request. A request 
message is only checked for the right safe addresses as 
outlined in section 5. Next it triggers a response with 
the same CTN value and the consumer (sender) address 
received. Safe address of the producer and the current 
network timestamp are inserted into the response 
message by the safe protocol stack. 

Secondly, it has to trigger the regular heartbeat 
messages. To differentiate heartbeat messages from 
response messages a special reserved safe address as 
consumer (sender) address is used. On the slave side 
the heartbeat just initiates an update of the consumer 
table and is then discarded. The CTN value in the 
payload is not of importance and is set to the last 
received value. 

6.3. Distributed Algorithm 
Additionally to the centralized algorithm (see Table 

1 for a summary) a second method for time 
synchronization is presented. As already mentioned in 
section 4, the idea of this concept is that all producers 
in the network synchronize with the connected (bound) 
consumer. As a consequence, only producers bound to 
the same consumer share the same time base as well as 
all consumers on the same node. In other words, 
multiple masters represented by multiple consumers 
and multiple slaves (producers) exist. If a producer is 
connected to numerous consumers, the producer has to 
manage and use different time bases for each 
communication path – in the following called virtual 
times derived from the network time of a node. 
Especially in a meshed network many virtual times 
have to be handled by the nodes. 

In contrast to the centralized algorithm where 
network variables are applied, the EN 14908 concept 
of explicit messaging with explicit addressing is used 
when implementing the distributed algorithm. The 
reason is the following: For sending application related 
messages (message type 2 in subsection 6.1) only 
network variable service is used. Thus, a consumer is 
always equal to a network variable input (NVI) and a 
producer to a network variable output (NVO). As 
outlined in [19] and summarized in subsection 6.2, 
NVI can only receive, NVO just send data items. Since 
the consumer triggers the network time 
synchronization, each consumer would require 
additional network time synchronization NVO to send 
the request. The same on the producer side: each 
producer would require extra network time 
synchronization NVI to receive a request. In particular, 
in complex network configurations (meshed networks) 
an enormous amount of additional time 
synchronization network variables would be necessary. 
Consequently, a great number of LonTalk addresses 
have to be stored, but only an address table of limited 
entries is available on the EN 14908 chip. 

As a prerequisite of using explicit messaging service 
with explicit addressing, not only the safe binding 
between producer on Node A and consumer on Node B 
must be provided, but also the LonTalk addresses of 
Node A must be transmitted to Node B and vice versa. 
Both tasks are performed by the safe network 
management tool [15]. Not to forget, each node must 
store the explicit addresses that of course consumes 



memory resources on Safety Chip 1 and Safety Chip 2. 
Compared to the EN 14908 chip, the safety chips 
provide more memory resources and accordingly more 
addresses can be stored. 

Having the aforementioned in mind, a request is 
triggered by the consumer. The safe protocol stack not 
only builds the safe message format and forwards it to 
the Network Access Layer, but it also gives the 
LonTalk address to the Network Access Layer as 
parameter. 

Table 1 Facts about centralized and 
distributed algorithm 

 Central Distributed 

Time source Dedicated node Consumer 

Number of time 
sources 

Single master Equal to number 
of consumers 

Memory 
resources 

Less on slave side High on producer 
and consumer side 

Risk of failure High Low 

Time 
synchronization 

Single network 
time 

Multiple network 
times 

Load balance All requests 
handled by master 

Every node 
handles some 
requests 

 
Each safe node in the network is running the same 

network time synchronization software. On the 
contrary to the master algorithm, no configuration of 
different roles at compile time is required. The 
synchronization procedure is very similar to that in 
Figure 5. The difference is that the operation is 
initiated by the consumer acting as timing master. The 
producer receives the request. It takes the timing 
information as the new network time. Identical to the 
way mentioned in subsection 6.2.1, network time is set 
immediately at startup time synchronization. During 
operation it is sped up or slowed down. Producer 
acknowledges the request by sending a response to the 
consumer. The response time is checked by the 
consumer which reinitiates synchronization if the 
check failed. 

Since there are not dedicated time synchronization 
network variables, an incoming time synchronization 
message must be checked whether it is a request from a 
consumer or a response from a producer. Therefore the 
safe address (source address) is used. 
• If the message is a request, safe address is not 

found in the consumer table. However, the 
payload of the message contains a safe address 
which is found in the producer table. 

• If the message is a response, the safe address 
(source address) and the safe address in the 
payload is found in the consumer table. 

Implementing distributed algorithm results in many 
virtual network times. As a consequence, CTN value 
for each producer/consumer, time of sending a request 
and network time synchronization interval for every 
consumer must be stored – further memory resources 
are required. In addition, each producer has to store its 
current timing information shared with different 
consumers. 

The disadvantage of the distributed algorithm is first 
a higher communication effort increasing with the 
degree of meshing. Also the management of the 
synchronization relations yields a higher need of 
memory (additional parameter) as outlined in Table 1 
and computing power (numerous virtual network 
times). The big advantage is the missing of a single 
point of failure. In a centralized approach a defect of 
the timing master results in a safe state of all nodes 
connected. On the contrary, a faulty timing master in 
the decentralized approach only causes the connections 
to the producer to be not working. So availability of the 
whole network is just affected to some extent. 

7. Conclusion 

The goal of the SafetyLon project is to develop a 
safe building automation network based on the already 
existing LON. All requirements of IEC 61508 safety 
integrity level 3 (SIL 3) are met. Thus, a transport of 
safe and non-safe data over the same communication 
channel using a safe protocol is guaranteed. Network 
time synchronization is of fundamental importance in 
this protocol. Since the LON includes devices that add 
delays to the transmission (e.g. routers) hazardous 
events such as a delay, repetition or wrong sequence of 
a message are possible. A safety function to detect such 
hazardous events is applying timestamps to every safe 
message. However, timestamps are only an effective 
means if nodes have a common understanding of the 
time, i.e. are time synchronized. 

Each node in the network is executing a time 
synchronization algorithm which is based on a 
request/response service. Two implementations are 
specified: the first is based on a central approach 
(master/slave) and the second is based on a distributed 
algorithm (consumer/producer). The central algorithm 
uses a single master structure and the EN 14908 NV 
communication concept. The distributed algorithm can 
also be seen as a network with multiple masters, where 
all producers synchronize with their connected 
consumers. Regardless of the algorithm used, the 
synchronization algorithm is embedded into the Safety 
Layer of the software architecture and called 
periodically by the Safe Operating Scheduler. 



The time synchronization concept was ported to the 
SafetyLon target hardware and is going to be subject of 
extensive system tests. A small test network was 
already set up and functionality as well as stability of 
network time synchronization were verified. It is 
becoming apparent that all SafetyLon requirements are 
met. 

Additional aspects such as scalability of the 
algorithms are going to be investigated by means of a 
network simulator [17] which will be built based on the 
time discrete event triggered network simulation 
environment OMNET++ [16]. It focuses on 
synchronization errors, synchronization configuration 
parameters and hardware related issues under typical 
operating conditions. 

Further investigations about the performance of the 
different time synchronization concepts are going to 
follow by extending the simulation tool and testing the 
integration of the time synchronization with the other 
software functions. More practical testing is going to 
examine long term stability of the complete system. 
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