

Network Time Synchronization in a Safe Automation Network

Thomas Novak
Vienna University of Technology
Institute of Computer Technology

Gusshausstrasse 27-29/384
1040 Vienna, Austria

novakt@ict.tuwien.ac.at

Berndt Sevcik
Vienna University of Technology
Institute of Computer Technology

Gusshausstrasse 27-29/384
1040 Vienna, Austria

sevcik@ict.tuwien.ac.at

Abstract

Today there is a great request of using automation
networks in safety critical environments. Thus, such
systems used in industrial and building automation
have been enhanced with safety features derived from
strict safety requirements specified in IEC 61508.

One of the safety requirements to be met is the
detection of hazardous events on the network such as
the delay of a message. A safety measure to identify
these hazardous events is the use of a timestamp within
a safe protocol. However, a common time base among
the nodes must be provided – by means of a network
time synchronization mechanism.

A centralized and decentralized approach was
developed within the SafetyLon project. Realization of
the concept and implementation in the
producer/consumer model of SafetyLon is outlined.

1. Introduction

In the last years automation networks have been
more and more used in new fields of application that
are very demanding regarding functional safety (short
safety). As a consequence, they must be considered as
safety critical systems and have to meet very strict
requirements specified by the international standard
IEC 61508 [10].

The standard deals with functional safety achieved
by a safety related device. The idea is to reduce the
inherent risk of an equipment under control (EUC)
below a maximum tolerable level by using safety
related devices. Within this paper the EUC comprises
the network as well as the nodes of an automation
network. The safety related device is integrated into
every node and is realized by microcontrollers and
embedded software. In the following such a node is
called safe node.

Risk reduction is achieved by avoiding systematic
and handling stochastic failures.

1. Fault avoidance: By applying different
measures during the life cycle of a system,

systematic failures should be avoided. Such
measures are failure mode and effect analysis
(FMEA) or code walkthroughs. However, that
topic is beyond the scope of this paper.

2. Fault control: Stochastic failures cannot be
avoided. Therefore faults must be controlled
and handled by proper means. Generally
speaking, fault control means that a fault does
not result in a failure due to redundancy or that
the fault has been detected and repaired before
it resulted in a failure.

Faults result in failures that in the end lead to
hazards. It must be distinguished between hazards
coming from failures on the network and hazards
resulting from failures in the safety related device on
the safe node. The last-mentioned failures can either be
systematic software failures or stochastic hardware
failures. Refer to [10] for avoiding systematic software
failures and [11], [12] for ways of detecting stochastic
hardware failures.

In [5] typical hazards occurring on the network are
mentioned. The consequences of these hazards are
hazardous events:

• Data corruption
• Loss of messages
• Insertion of messages
• Delay, repetition, wrong sequence of messages
• Non-safe message looks like a safe message
The hazardous events must be detected with a

certain probability. Therefore, so-called safety
functions are specified performing tasks to detect the
events. The probability of detecting hazardous events is
categorized by safety integrity levels (SIL).

IEC 61508 specifies four safety integrity levels
(SIL). Safety integrity level 1 (SIL 1) is the lowest and
safety integrity 4 (SIL 4) is the highest level. Each
level corresponds with a specific error probability per
hour. The higher the level, the higher the performance
of a safety function must be, i.e. the higher the
likelihood of detecting hazardous events has to be.

Regarding the aforementioned hazardous events
safety functions would be [2]:

• CRC (cyclic redundancy check) to ensure data

978-1-4244-2350-7/08/$25.00 ©2008 IEEE.

integrity,
• Watchdog to detect loss of a message,
• safe addressing scheme and timestamp to

discover insertion of messages,
• timestamp to identify delay, repetition, wrong

sequence of a message,
• redundancy with cross comparison to detect

repetition, loss, insertion, wrong sequence of a
message.

Using timestamps as means to detect hazardous
events on the network during message exchange
among safe nodes requires a network time
synchronization mechanism. Timestamps are only an
effective safety measure if safe nodes have the same
time base.

In the following a network time synchronization
approach is being presented: a centralized and
distributed one. Especially, the paper focuses on the
realization in and implementation into the SafetyLon
The approach was developed during the SafetyLon
project. The European collective research project
SafetyLon has the goal to make the EN 14908 (Local
Operating Network, LON) technology [14] safe
according to the requirements of SIL 3.

Consequently, the remainder of the paper is
structured as follows: section 2 conveys information on
network time synchronization approaches in safety-
related automation systems. Section 3 presents the case
study. It outlines some aspects of SafetyLon, required
to understand the following sections: hardware and
software architecture of a node, and the communication
concept. Section 4 discusses the time synchronization
concepts whereas section 5 mentions the realization
within the SafetyLon. Finally, section 6 is related to the
implementation of the two network time
synchronization approaches.

2. State of the Art

SafetyLon is supposed to be the first safe building
automation network. However, not the first to be
enhanced with safety features. Especially, some
industrial automation networks have been realized
meeting the requirements specified by IEC 61508.

EtherCAT which exists since 2003 is an Ethernet
based subsystem which was extended with safety
functions and is specified as “Safety over
EtherCAT” [4]. It meets like SafetyLon SIL 3
requirements of IEC 61508. Safe and non-safe
communication is transmitted over the same
communication medium. It is based on a
producer/consumer concept. Safety functions are
encapsulated in a Safety Layer which handles the
EtherCAT messages. Instead of a time synchronization
mechanism, a dedicated master/slave connection is

realized which enables the full observation of the
transmission path.

Another SIL 3 compliant system is “Ethernet
Powerlink Safety” [6]. Safety functions are located in a
dedicated Safety Layer within the embedded software.
Safety functions to detect hazardous events on the
network are similar to those in SafetyLon: duplication
of the data to ensure data integrity, usage of
timestamps and safe addressing model to identify
inserted messages are implemented. Time
synchronization is based on a relative time mechanism
[3] which measures the time difference between sender
and receiver and considers it for later communication.

PROFIsafe [5] is another SIL 3 compliant system
where safety functions are integrated into a PROFIsafe
layer located on top of the OSI model. Time
synchronization mechanism is not implemented into
the protocol because acknowledgements are used
instead.

Time synchronization itself is a broad field of
research. There are mechanism available like NTP [9],
IEEE 1588 [7] or hardware based implementation like
SynUTC [8]. SynUTC and IEEE 1588 specify concepts
to synchronize time with an accuracy of smaller than
microseconds. NTP synchronizes time in the range of a
few milliseconds. The very simple requirements of
SafetyLon regarding time accuracy do not justify the
implementation of those concepts. The measurement of
the delay from IEEE 1588 e.g. is replaced by a simple
transaction time. Also the storing of four timestamps in
a packet specified in NTP to achieve a high time
accuracy are not required. Less overhead during
transmission is favoured (packet size typical 90 byte
for NTP in contrast to 22 byte with SafetyLon).
Hardware based time stamping like implemented in
SynUTC was not considered because of the already
pre-defined hardware.

In SafetyLon time accuracy of about 10 ms is
required. Also requirements with regard to hardware
resources (64 kByte RAM, 256 kByte Flash memory,
clock rate 43.2 MHz) have to be considered.
Consequently, resources saving mechanisms are
mandatory.

3. Case Study

As already mentioned shortly, the network time
synchronization approach presented in the paper was
developed in the SafetyLon project. It is a European
collective research project, project number 012611,
supported by the European Union within the Sixth
Framework Program. The consortium consists of 17
partners: universities, companies and user groups of
seven European countries.

SafetyLon is the safe extension to the LON
technology. As a consequence a standard EN 14908
[14] node is enhanced with additional hardware

Figure 2 Software architecture of safety
operating software (Safety Chip 1)

Figure 3 Safe protocol message structure

Figure 1 SafetyLon node

(Figure 1) and embedded safety operating software [2].
Doing so has the advantage that safe and non-safe
services are provided on a safe node. Moreover, it is
possible to use safe and standard nodes within the same
network. And the powerful network management tools
used to setup the network are upgraded to meet
requirements of a SIL 3 compliant system [15].

3.1. Hardware Architecture
Every safe node includes a standard EN 14908 chip

to access the LON. Additionally, there are two safety
chips: Safety Chip 1 and Safety Chip 2 [2]. Safety
Chip 1 is physically connected to the standard
EN 14908 chip and uses it as network interface.

Both safety chips perform the safety functions in
close cooperation, are synchronized with each other
and are connected via a serial interface.

Sensors and actuators are connected to the safety
related input and output unit. The inputs and outputs
are controlled by both safety chips.

3.2. Software architecture
The software architecture of SafetyLon embedded

software is based on a layered architecture [2] as
illustrated in Figure 2. The Application Layer on top of
the model is offering functions for developing safe
user-defined applications to the application developer.

The Safety Layer in the middle incorporates all the
safety functions required to achieve SIL 3. Besides the
online hardware self tests [11], the safe protocol stack
[2] and the network time synchronization is part of the
Safety Layer. Safety functions are called periodically
by the Safety Operating Scheduler.

The lower layer is divided into two parts. The
Safety Chip Interface is responsible for the
communication between the safety chips and is
separated into an API and an interrupt based serial
driver. The Network Access Layer offers functions to
access the LON, independent of the underlying third
party software [19], [21]. The Network Access Layer is
only available on Safety Chip 1 because only this
safety chip is connected to the EN 14908 chip as
mentioned in subsection 3.1. Standard LON

communication channel and the third-party software is
treated as grey channel and not considered in safety
considerations.

3.3. Communication Concept
Safe communication among nodes is based on the

producer/consumer model. In general, producers are
generating (producing) messages and consumers are
“consuming”, i.e. are processing messages. Typically,
producers are sensors and consumers are actuators.

Producers and consumers on a single node get safe
addresses. Additionally, consumers keep a list with
safe addresses of the connected (bound) producers.
This process is called safe binding.

When a producer wants to send a message, it
includes its safe address into the message. The
consumer only processes a message if the safe address
is listed in the table, i.e. it is a valid producer. This
addressing scheme is called source based addressing
model.

The producers with a safe address are periodically
sending “hello” or “keep-alive” messages, called
heartbeats in the following. They are sent to proof the
aliveness of producers. In case of missing heartbeats,
i.e. timing expectation has not been fulfilled, watchdog
is triggered and the consumer has to enter a defined
safe state.

Safe messages (Figure 3) are exchanged using a safe
message format of a safe protocol. It is specified in a
way so that hazardous events mentioned in section 1
can be detected [2]. Therefore it consists of two parts
to increase the level of integrity, including beside a
length field (ID):

• 3 byte safe address field (Address),
• 2 byte timestamp field (Ms word, Ls word),
• 1-8 byte payload field (Data),
• 1 byte CRC field.
The safe protocol is embedded into the payload field

of the LonTalk [18]. As a consequence, routing of
messages is provided by LonTalk only.

4. Synchronization Concept

Faulty transmission is caused by hazardous events
resulting for example from broken cabling, stochastic
failures or wrong wiring. As already mentioned in
section 1, typical hazardous events are delay of a
message, message loss or duplication of a message
which have to be detected [3]. Some of such hazardous
events can be detected by using acknowledgements,
sequence numbers or safe addresses.

The detection of a delay of a message is absolutely
required in a safe automation network with devices that
store messages temporarily, e.g. store-and-forward
routers. That service and the respective watchdog
functionality, however, can only be provided if timing
expectation can be checked. A common timing
expectation among nodes is only possible when nodes
have the same time base. That is why a network time
synchronization service is included into SafetyLon. It
is a fundamental part of the system during startup of
the network and during operation.

The service enables checking of every message
during regular operation regarding e.g.:
• Is the receiving time of the message in the

future?
• Is the last received message older than the last

saved one?
• Is the maximum delay too high?
Time synchronization in SafetyLon is similar to the

relative time synchronization method [3] implemented
in Ethernet Powerlink Safety (EPLsafety) [1]. With
regard to a network time resolution1 of 10 milliseconds
on a TP/FT-10 channel [20], sending and receiving of a
single message lasting about 50-60 milliseconds, the
time accuracy of the relative time synchronization
method is sufficient.

The network time synchronization approach is based
on a request/response service. In the payload of a
request and response message a CTN (Consecutive
Timing Number) is transmitted (Figure 4). The CTN
value is used to correlate the request with the response
for detection of chronological disorder of replies and to
prevent faulty synchronization.

Each SafetyLon message contains a sending
timestamp in the message header. To calculate the
offset of the timing source, the timestamp of the header
is extracted (Offset = ST1 - MT1). If the interval
between the request and the response is too long
(Response Time Δt = ST1 - ST2) the message is
discarded and a new request is initiated. This condition
is always checked in order to detect too big deviations
due to network delays.

1 Network timers are realized by counters. The counter value , i.e.

the network time, is increased from x to x+1 every 10
milliseconds. Therefore, the network time resolution is the time
that goes by between value x and x+1.

The request/response service is used in two different
time synchronization approaches. The first is based on
a central algorithm (single master/multiple slaves) and
the second one is based on a distributed or
consumer/producer algorithm with different time bases
(multiple masters and multiple slaves).

In the central algorithm a dedicated node being the
timing master is available. The master receives a
request from the slave and responds with the current
time. The slave uses the received time as new network
time as shown in Figure 3.

In the distributed algorithm every producer
synchronizes the network time with its associated
consumer. In contrast to Figure 4 the timing master, i.e.
the consumer, starts to send its network time to all
producers. They are using the value as their new
network time and are sending a response as
acknowledgement. Thus, all producers connected to a
single consumer share the same network time.
However, different consumers, especially on different
nodes, need not to have the same network time. It is
likely that various network times are present.

To sum up, in the centralized algorithm network
time of all nodes sending request to timing master is
updated with the same value. Moreover, the network
time is valid for all producers and consumer on a single
node. However, only consumers on the same node and
producers connected to the same consumer respectively
share the same network time when the distributed
algorithm is applied. Hence, producer on the same
node as well as consumer on different nodes have
different network times.

The request/response service is necessary because
the slave must be able to measure the delay for
example due to congestion on the network. If the time
between sending the request and receiving the response
is above a specified time limit, accuracy of time is not
guaranteed. The time limit is set according to the
network time resolution.

5. Realization of the Concept

In SafetyLon the centralized algorithm uses an
additional time synchronization consumer (here and

Figure 4 Time synchronization mechanism

after called only consumer) on slave side and a
dedicated time synchronization producer (here and
after called only producer) on master side. That is not
the case applying the distributed or consumer/producer
algorithm. However, realization of the concept is equal
and presented as follows.

On the contrary to the fact presented in subsection
3.3 that a producer sends and a consumer receives
messages, time synchronization is initiated by the
consumer. The reason is the following: Only on
consumer side timing expectation by means of a
watchdog timer is checked. If watchdog is triggered,
consumer can enter a defined safe state. Thus,
consumer sends request and, if it does not receive at
least a response message with a defined time frame, it
enters safe state.

Network time synchronization is a safety function.
Consequently messages are sent via the safe protocol.
For that reason a safe binding between producer and
consumer is required. As outlined in subsection 3.3 the
producer and the consumer receive a safe address.
Moreover, on consumer side the safe address of the
producer is stored in a list, called the consumer table.
Only if a message with a safe address stored in the
consumer table has been received, it is processed.

The realization can be seen in Figure 5 for the
network variable service of EN 14908 discussed in
detail in section 6. Only for time synchronization
requests the consumer is sending the safe address of
the producer in the payload of the request message.
The sender address is the safe address of the consumer.
As already mentioned in subsection 3.3, SafetyLon is
using a source based addressing model where the
source address is part of the safe protocol header.

The producer receives the request message and
checks if the payload field contains the valid producer
address. If not, the message is discarded. Otherwise the
producer generates a response message. Now the
producer address is the source address and the sender
address of the received message, i.e. consumer address,
is included in the payload field.

After receiving the response message on consumer
side, the producer address is compared with the
associated one listed in the consumer table. In addition,
it is verified if the payload field contains the safe
address of the consumer. With this mechanism the
consumer can assure that the response it received is
from the producer it sent the request to first. Only if the
cross comparison of safe addresses is successful, the
time synchronization message is processed, otherwise
it is discarded.

6. Implementation in SafetyLon

As shown in Figure 2, network time synchronization
is a software module within the Safety Layer. It is
implemented in a way to meet requirements of

IEC 61508 regarding software development. In other
words, structured programming, modularization of the
software, coding rules are applied as outlined in detail
in [13].

6.1. Integration into the System
Network time synchronization software module is

integrated into the software on both safety chips. Due
to the underlying Network Access Layer on Safety
Chip 1, the time synchronization software module is
absolutely independent of the hardware architecture.
The module is periodically called by the Safe
Operating Scheduler on each safety chip independently
of each other. The scheduling, the internal coupling of
and same time synchronization related data on every
safety chip make it possible that the time
synchronization is executed on both safety chips at the
same time.

As a consequence, every safety chip must keep two
important tables for storing the safe binding between
producers and consumers: the consumer table lists the
safe consumer addresses and all connected producers
with their state (last message received, receive rate);
the producer table the safe producer addresses and
timing information (last message send, send rate). The
importance of the tables for the time synchronization is
twofold:
• to realize the network time synchronization

concept mentioned in section 5,
• to acquire timing information: when should a

request be triggered next and when has a
response to be received the latest.

The synchronization interval depends on the drift
(GQuarz) of the safe node oscillators and the maximum
allowable timing window (ΔtDrift). Under the
assumption that both oscillators drift in opposite
direction the interval can be calculated by:

ΔtDrift = GQuarz ⋅ TSync
At least three synchronization trails are recommended
during an interval.

Figure 5 SafetyLon addressing for time
synchronization with network variable
service

Since both safety chips have the same time
synchronization related data available, the time
synchronization module independently triggers sending
a part of the request and the response messages on each
safety chip. As mentioned in subsection 3.3, a safe
message always consists of two duplicated message
parts. So in the safe protocol stack – another part of the
Safety Layer – of Safety Chip 1 the first and of Safety
Chip 2 the second part of a request or response
message is built. Safe protocol stack of Safety Chip 1
concatenates both parts and triggers the sending
process.

To keep time synchronization related data consistent
on both safety chips, the received safe request/response
messages must be available on each safety chip. Thus,
safe protocol stack of Safety Chip 1 that is only
connected to the EN 14908 chip forwards the complete
message to its companion.

In general, a safe node can receive three types of
messages:

1. A safe network management message using the
message format presented in [15] and to be
handled by the safe network management tool.

2. An application related message using the safe
message format where data is processed by the
application.

3. A network time synchronization using safe
message format and being handled by the
network time synchronization module.

Message type 2 and 3 are using the same safe
message format. Hence, a network time
synchronization message is marked with the T/D
(Time/Data) bit in the second byte of the safe address
field (Figure 3). The T/D bit is the most significant bit
in the second byte of the safe address. The bit is set and
evaluated by the safe protocol stack.

6.2. Centralized Algorithm
The centralized algorithm with a single master and

multiple slaves uses the EN 14908 concept of network
variables (NV). Generally, a network variable is a data
item that an application on Node A expects to get from
Node B on a network (an input network variable) or
expects to make available to Node B on a network (an
output network variable). Network variables are used
for operational data such as temperatures, or pressures.
Each network variable has a special network variable
type that specifies the units, scaling and structure of the
NV [19]. Network variables of same type, but opposite
direction can be connected – they are bound by
performing a binding. Data of each NV can easily be
referenced by a NV index. In the EN 14908 chip a
table is kept where each NV index matches a LonTalk
address for routing purpose. This kind of mechanism is
used because it is supported in a very comfortable way
by standard EN 14908 network management tools.

Applying the centralized algorithm, two dedicated
roles are defined. The master is the source of timing
information for all nodes in the network. The slaves are
querying the master for the time information. Selection
of the master node is done before compilation of the
software. Each node provides two safe NVs for
synchronization where one is configured as input
(consumer role, NVI) and the second one as output
(producer role, NVO). The timing master can be
implemented as an already existing node in the
network – preferably powerful regarding
computational power and memory resources.

A safe binding is established only for the response
path from the master (NVO) to the slave (NVI) (bold
arrow in Figure 4). That is because a safe binding
always results in sending a heartbeat periodically. As a
consequence, the timing master would be flooded with
heartbeats from many slaves. Moreover, from a more
general perspective, it is absolutely irrelevant for the
timing master if a timing slave is still available. Timing
master is not affected in any case. On the contrary,
timing slave is affected if timing master is not “alive”
any more. It cannot synchronize network time, and
therefore it is not able to check timing expectation; an
important safety feature is not working.

The safe network variables are always assigned by
definition to the last but one and the last NV index. So
in case of n defined network variables necessary for
safe user-defined application, n+1 is the output NV
and n+2 the input NV on every node. The safe address
of a producer (NVO) on master node side and a
consumer (NVI) on slave node side can be acquired by
specifying the corresponding NV index.

6.2.1. Slave Node Functionality
Generally, a node does not start to send and process

application related messages unless it has received a
valid time synchronization response message. In
addition, it stops sending and processing application
related messages in case of not getting a time
synchronization response messages for a while. As a
consequence, it has to be distinguished between startup
time synchronization and the one during operation.

In case of startup synchronization the network time
is set immediately to the received value. By doing so,
the node can start to send/receive messages with out
delay. In the following network time is adjusted by
speeding up or slowing down the node internal network
time. Such a way is required because otherwise
watchdog functionality is affected.

For example, a consumer on Node A received a
heartbeat from a producer on Node B at network time
435 time unit. It is specified that consumer gets the
next heartbeat at 455 time unit, i.e. watchdog must be
triggered every 20 time unit. Meanwhile 17 time units
were gone by and no heartbeat has been received so
far. If network time had to be adjusted to +4 time units

and was set immediately, watchdog would not be
triggered and consumer would have to enter safe state.

As already outlined before, network time
synchronization is a software module within the Safety
Layer and called periodically by the Safety Operating
Scheduler. Every time it is called by the scheduler a
new request can be initiated and a received response
can be processed.

Sending a request can have different causes:
• The node was never synchronized before

(startup synchronization).
• The configured time synchronization interval

expired.
• The existing requests are only valid for a limited

time, i.e. until a timeout occurred. After
expiration of the period the old request is
marked invalid and a new request with a new
CTN value is generated.

As soon as new messages have been available for
processing, they are first checked regarding the
following criteria.
• Is there a request with the same CTN value?
• Is the arrival time within the allowed response

interval?
• Was the cross comparison of the safe addresses

successful?
In case of fulfilling all three criteria, the response is

processed or otherwise discarded and a new request is
sent. If the calculated offset is greater than a predefined
minimum value, but smaller a maximum value, the
network time will be slowly adjusted in positive
direction to the correct value. With every execution of
the synchronization algorithm the internal network
time is sped up or slowed down. A maximum value is
specified because great deviations of the internal
network time from the network time received are a sign
for defect node hardware. Therefore, as soon as great
deviations have been detected multiple times one after
another, the node switches to safe state.

A slave node also enters the safe state when
heartbeats from the producer on master side are not
sent within a defined time frame. This kind of
mechanism gives the consumer on slave side the
possibility to check if the timing master is still
available.

6.2.2. Master Node Functionality
The master algorithm has to provide the following

functionality. Firstly, it is responsible for sending
response messages after receiving a request. A request
message is only checked for the right safe addresses as
outlined in section 5. Next it triggers a response with
the same CTN value and the consumer (sender) address
received. Safe address of the producer and the current
network timestamp are inserted into the response
message by the safe protocol stack.

Secondly, it has to trigger the regular heartbeat
messages. To differentiate heartbeat messages from
response messages a special reserved safe address as
consumer (sender) address is used. On the slave side
the heartbeat just initiates an update of the consumer
table and is then discarded. The CTN value in the
payload is not of importance and is set to the last
received value.

6.3. Distributed Algorithm
Additionally to the centralized algorithm (see Table

1 for a summary) a second method for time
synchronization is presented. As already mentioned in
section 4, the idea of this concept is that all producers
in the network synchronize with the connected (bound)
consumer. As a consequence, only producers bound to
the same consumer share the same time base as well as
all consumers on the same node. In other words,
multiple masters represented by multiple consumers
and multiple slaves (producers) exist. If a producer is
connected to numerous consumers, the producer has to
manage and use different time bases for each
communication path – in the following called virtual
times derived from the network time of a node.
Especially in a meshed network many virtual times
have to be handled by the nodes.

In contrast to the centralized algorithm where
network variables are applied, the EN 14908 concept
of explicit messaging with explicit addressing is used
when implementing the distributed algorithm. The
reason is the following: For sending application related
messages (message type 2 in subsection 6.1) only
network variable service is used. Thus, a consumer is
always equal to a network variable input (NVI) and a
producer to a network variable output (NVO). As
outlined in [19] and summarized in subsection 6.2,
NVI can only receive, NVO just send data items. Since
the consumer triggers the network time
synchronization, each consumer would require
additional network time synchronization NVO to send
the request. The same on the producer side: each
producer would require extra network time
synchronization NVI to receive a request. In particular,
in complex network configurations (meshed networks)
an enormous amount of additional time
synchronization network variables would be necessary.
Consequently, a great number of LonTalk addresses
have to be stored, but only an address table of limited
entries is available on the EN 14908 chip.

As a prerequisite of using explicit messaging service
with explicit addressing, not only the safe binding
between producer on Node A and consumer on Node B
must be provided, but also the LonTalk addresses of
Node A must be transmitted to Node B and vice versa.
Both tasks are performed by the safe network
management tool [15]. Not to forget, each node must
store the explicit addresses that of course consumes

memory resources on Safety Chip 1 and Safety Chip 2.
Compared to the EN 14908 chip, the safety chips
provide more memory resources and accordingly more
addresses can be stored.

Having the aforementioned in mind, a request is
triggered by the consumer. The safe protocol stack not
only builds the safe message format and forwards it to
the Network Access Layer, but it also gives the
LonTalk address to the Network Access Layer as
parameter.

Table 1 Facts about centralized and
distributed algorithm

 Central Distributed

Time source Dedicated node Consumer

Number of time
sources

Single master Equal to number
of consumers

Memory
resources

Less on slave side High on producer
and consumer side

Risk of failure High Low

Time
synchronization

Single network
time

Multiple network
times

Load balance All requests
handled by master

Every node
handles some
requests

Each safe node in the network is running the same

network time synchronization software. On the
contrary to the master algorithm, no configuration of
different roles at compile time is required. The
synchronization procedure is very similar to that in
Figure 5. The difference is that the operation is
initiated by the consumer acting as timing master. The
producer receives the request. It takes the timing
information as the new network time. Identical to the
way mentioned in subsection 6.2.1, network time is set
immediately at startup time synchronization. During
operation it is sped up or slowed down. Producer
acknowledges the request by sending a response to the
consumer. The response time is checked by the
consumer which reinitiates synchronization if the
check failed.

Since there are not dedicated time synchronization
network variables, an incoming time synchronization
message must be checked whether it is a request from a
consumer or a response from a producer. Therefore the
safe address (source address) is used.
• If the message is a request, safe address is not

found in the consumer table. However, the
payload of the message contains a safe address
which is found in the producer table.

• If the message is a response, the safe address
(source address) and the safe address in the
payload is found in the consumer table.

Implementing distributed algorithm results in many
virtual network times. As a consequence, CTN value
for each producer/consumer, time of sending a request
and network time synchronization interval for every
consumer must be stored – further memory resources
are required. In addition, each producer has to store its
current timing information shared with different
consumers.

The disadvantage of the distributed algorithm is first
a higher communication effort increasing with the
degree of meshing. Also the management of the
synchronization relations yields a higher need of
memory (additional parameter) as outlined in Table 1
and computing power (numerous virtual network
times). The big advantage is the missing of a single
point of failure. In a centralized approach a defect of
the timing master results in a safe state of all nodes
connected. On the contrary, a faulty timing master in
the decentralized approach only causes the connections
to the producer to be not working. So availability of the
whole network is just affected to some extent.

7. Conclusion

The goal of the SafetyLon project is to develop a
safe building automation network based on the already
existing LON. All requirements of IEC 61508 safety
integrity level 3 (SIL 3) are met. Thus, a transport of
safe and non-safe data over the same communication
channel using a safe protocol is guaranteed. Network
time synchronization is of fundamental importance in
this protocol. Since the LON includes devices that add
delays to the transmission (e.g. routers) hazardous
events such as a delay, repetition or wrong sequence of
a message are possible. A safety function to detect such
hazardous events is applying timestamps to every safe
message. However, timestamps are only an effective
means if nodes have a common understanding of the
time, i.e. are time synchronized.

Each node in the network is executing a time
synchronization algorithm which is based on a
request/response service. Two implementations are
specified: the first is based on a central approach
(master/slave) and the second is based on a distributed
algorithm (consumer/producer). The central algorithm
uses a single master structure and the EN 14908 NV
communication concept. The distributed algorithm can
also be seen as a network with multiple masters, where
all producers synchronize with their connected
consumers. Regardless of the algorithm used, the
synchronization algorithm is embedded into the Safety
Layer of the software architecture and called
periodically by the Safe Operating Scheduler.

The time synchronization concept was ported to the
SafetyLon target hardware and is going to be subject of
extensive system tests. A small test network was
already set up and functionality as well as stability of
network time synchronization were verified. It is
becoming apparent that all SafetyLon requirements are
met.

Additional aspects such as scalability of the
algorithms are going to be investigated by means of a
network simulator [17] which will be built based on the
time discrete event triggered network simulation
environment OMNET++ [16]. It focuses on
synchronization errors, synchronization configuration
parameters and hardware related issues under typical
operating conditions.

Further investigations about the performance of the
different time synchronization concepts are going to
follow by extending the simulation tool and testing the
integration of the time synchronization with the other
software functions. More practical testing is going to
examine long term stability of the complete system.

References

[1] P. Wratil, “Sicherheitsgerichtete Netzwerke – Ethernet
Powerlink Safety”, PRAXIS Profiline – Vision of
Automation, Nov. 2004.

[2] T. Novak, T. Tamandl, “Architecture of a Safe Node
for a Fieldbus System”, in Proceedings of the 5th IEEE
International Conference on Industrial Informatics
(INDIN), Volume 1, pp. 101-106, 2007.

[3] P. Wratil, “Sichere Netzwerke – Technik und
Anwendungen, Teil 1 Fehlerarten und
Korrekturstrategien”, Elektronik, Issue 21, 2005.

[4] G. Beckmann, “Die EtherCAT Sicherheitslösung”,
AUTlook, May 2007.

[5] D. Reinert, M. Schaefer (Publisher), Sichere
Bussysteme in der Automation, Hüthig Verlag, ch. 3-4,
2001.

[6] P. Wratil, M. Kieviet, Sicherheitstechnik für
Komponenten und Systeme, Hüthig Verlag, Heidelberg,
ch. 5 and ch. 7, 2007.

[7] J. C. Eidson, “Measurement Control and
Communication Using IEEE 1588”, Springer Verlag,
2006.

[8] R. Höller. M. Horauer, G. Gridling, N. Kerö, U.
Schmid, K. Schossmaier, “SynUTC – High Precision
Time Synchronization over Ethernet Networks”, in
Proceedings oft he 8th Workshop on Electronics for

LHC Experiments (LECC’02), Colmar, France,
pp. 428-432, 2002.

[9] T. Neagoe, V. Cristea, L. Banica, “NTP versus PTP in
Computer Networks Clock Synchronization”, in
Proceedings of IEEE International Symposium on
Industrial Electronics, Volume 1, pp. 317-362, 2006.

[10] “IEC 61508 – Functional safety of
electric/electronic/programmable electronic safety-
related systems”, 1999.

[11] T. Tamandl, P. Preininger, “Online Self Tests for
Microcontrollers in Safety Related Systems”, in
Proceedings of the 5th IEEE International Conference
on Industrial Informatics (INDIN), Volume 1, pp. 137-
142, 2007.

[12] T. Tamandl, P. Preininger, T. Novak, P. Palensky,
“Testing Approach for Online Hardware Self Tests in
Embedded Safety Related Systems”, in Proceedings of
12th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA),
pp. 1270-1277, 2007.

[13] Josef Börcsök, Electronic Safety Systems, Hüthig
Verlag, Heidelberg, ch. 6.6, 2004.

[14] “EN 14908 – Open data communication in building
automation, controls and building management –
control network protocol”, 2006.

[15] P. Fischer, M. Holz, M. Mentzel, “Network
Management for a Safe Communication in an Unsafe
Environment”, in Proceedings of the 5th IEEE
International Conference on Industrial Informatics
(INDIN), Volume 1, pp. 131-136, 2007.

[16] A. Varga, “OMNET++ Discrete Event Simulation
System User Manual”, Omnet Community, Version 3.2,
2005.

[17] B. Sevcik, “Netzwerkzeitsynchronisation in sicheren
Feldbussystemen”, M.S. thesis, Vienna University of
Technology, Institute of Computer Technology, ch. 5,
2007.

[18] “EN 14908-1 – Open data communication in building
automation, controls and building management –
control network protocol – Part 1: Protocol,” 2006.

[19] Echelon Corporation, “ShortStack User’s Guide,” v2,
2002.

[20] “EN 14908-2 – Open data communication in building
automation, controls and building management –
control network protocol – Part 2: Twisted Pair
Specification,” 2006.

[21] LOYTEC, “Orion Stack Programmer’s Manual”,
January 2005.

	WFCS2008_000469.pdf
	Menu
	Workshop Program
	Index of Authors
	Index of Papers
	Welcome Messages
	Keynote by Stephen Hung
	Keynote by Dirk Weidemann
	Reviewers
	Workshop Committees
	Supported by
	Previous Document
	Next Document

