
A model-driven top-down approach to inter-organizational systems:
From global choreography models to executable BPEL

Birgit Hofreiter, Christian Huemer

University of Technology Sydney, Australia, birgith@it.uts.edu.au
Vienna University of Technology, Austria, huemer@big.tuwien.ac.at

Abstract

Today, most approaches for inter-organizational busi-
ness processes start bottom-up from the interfaces and the
workflows of each partner described on the IT layer. Al-
ternatively, one may start from the commitments and agree-
ments between business partners to reach their complemen-
tary business goals. The latter approach is target of the
UN/CEFACT Modeling Methodology (UMM), which mod-
els a global choreography. In a model driven approach the
UMM artifacts must be further elaborated toward an IT so-
lution for each participating business partner. For this pur-
pose we have developed a UML profile to model a local
choreography or an orchestration that respects the agree-
ments made in the global choreography. In order to execute
the local choreography / orchestration in the local IT, the
processes must be machine-readable. For this purpose we
demonstrate a transformation to the business process exe-
cution language (WS-BPEL).

1. Motivation

In this paper we concentrate on orchestrations and chore-
ographies [11] in the context of inter-organizational busi-
ness processes. Both terms are closely related, but must be
well distinguished to follow this paper. Orchestration deals
with the sequence and conditions in which one business pro-
cess calls its components to realize a business goal. Chore-
ography describes business processes in a peer-to-peer col-
laboration. It describes the flow of interactions between the
participating business partners that interlink their individ-
ual processes. We distinguish local and global choreogra-
phies. A local choreography describes the flow from a par-
ticipating partners point of view. It makes the public parts
of its local process visible to others. A global choreography
defines the inter-organizational process from a neutral per-
spective. A global choreography has the potential to achieve

an agreement between the partners. Local choreographies
enable the configuration of each partners system.

If business partners want to collaborate they must have
complementary local choreographies - which is rather un-
likely if the local choreographies have been developed in
isolation. Thus, we prefer an approach that starts off with
an agreement on a global choreography between the busi-
ness partners. Each business partner may develop its lo-
cal choreography or orchestration in accordance to the ef-
fected global choreographies. The resulting model of a local
choreography or orchestration has then to be transformed
into a machine-readable workflow language to be executed
in the local IT of the business partner.

An approach for modeling global choreographies is de-
livered by the United Nations Centre of Trade Facilitation
and e-Business and their UN/CEFACT Modeling Method-
ology (UMM). The UMM specification is defined as a UML
profile [15], which we have co-edited. Usually, commit-
ments are made on a bi-lateral basis. Accordingly, UMM
models always describe business collaborations between
two parties. Also similar to a contract, a UMM model
describes the commitments and agreements from a neutral
perspective. In summary, the UMM provides a UML-based
methodology for bi-lateral and global choreographies.

The next step in the top-down approach is the defini-
tion of the processes at each partners side that respect the
commitments made on the level of the global choreogra-
phies. The local process of a partner may include com-
munications with many different other partners - defined in
different global choreographies. Consequently, we need a
methodology that extends the concepts of UMM in order
to model a local multi-party choreography or orchestration.
Since UMM is UML-based this extension should also be de-
fined as a UML profile. In our paper [1] we have presented
a UML profile for exactly this purpose.

Having defined the local business processes by means of
UML, it is necessary to transform them into a workflow lan-
guage that may be processed by the local IT systems. In an
Web Services environment the language of choice is BPEL.

It follows that the automatic generation of BPEL code from
the UML models requires a well-defined mapping from the
stereotypes of the UML profile for local choreographies /or-
chestrations to the BPEL constructs. This paper defines the
corresponding mapping.

The remainder of this paper is structured as follows: We
provide an overview of related work in section 2. In section
3 we introduce UMM by the means of a simple example.
Section 4 uses this example to demonstrate the UML pro-
file for local choreographies. In Section 5 we define the
transformation to BPEL 5. Section 6 summarizes the paper.

2. Related Work

In order to use UML for modeling business processes
different authors have developed either just guidelines or
a UML profile that customizes UML for business process
modeling. Customizations of UML for modeling business
processes internal to a company are described in [12] [8]
[6]. Beside UMM, UML customizations for modeling inter-
organizational processes are described in the RosettaNet
Framework [13] and in Kramler et al. [7].

Already in 2004 we investigated the interdependencies
of UMM and BPEL in [2]. The subject of the paper was
to scrutinize whether BPEL is appropriate for capturing the
choreography modeled in UMM. However, going directly
from UMM to BPEL does not allow to derive local chore-
ographies between multiple parties. Furthermore, it cannot
result in executable processes, since this approach does not
cover all the internal activities in an orchestration. A three
step approach as described in this paper is much more ad-
vances, since it leads to executable multi-party processes.

Another approach defining a direct mapping from a
global choreography to a BPEL process is delivered by
Khalaf [5]. He transforms the global choreography of a
RosettaNet model into BPEL.

Several approaches have taken up the idea of compos-
ing services with the help of UML diagrams. Skogan et
al. propose a method using UML activity diagrams to de-
sign web services and OMG’s Model Driven Architectures
(MDA) to generate executable specifications in BPEL [14].
Their model allows to import existing web service descrip-
tions stored in WSDL files into a UML diagram. Unlike the
UMM approach the idea pursued by Skogan et al. does not
take the business context into account.

A model driven approach to BPEL specifications has
also been proposed in [10] by using BPMN process mod-
els. The solution presented uses business process diagrams
and splits them up into components. Using a rule based
and an activity based translation these components are then
transformed into BPEL code. Similar to the first approach
presented, this methodology also does not take into account
the business context.

An approach using global choreographies to derive local
choreographies has been presented in [9]. The work uses
WS-CDL specifications representing global choreographies
to generate local BPEL specifications. Similar to BPEL,
WS-CDL is intended to be processed by machines. How-
ever, for implementing a successful B2B solution, first a
conceptual modeling approach considering the specifics of
B2B - like UMM - is required to capture the collaborative
space between enterprises.

3 UN/CEFACTs Modeling Methodology

UN/CEFACTs Modeling Methodology (UMM) models
the choreography and data exchange commitments indepen-
dent of the IT. It is a methodology that starts off with an-
alyzing the business environment and the requirements of
each partner. In a next step the requirements for a collab-
oration in an inter-organizational business process are an-
alyzed. These requirements are transformed into a global
choreography between the partners. The documents ex-
changed in the choreography follow the concepts of the core
components specification.

By following the methodology a number of well defined
UML artifacts are created. These artifacts must follow the
UMM meta model that is defined as a UML profile. Ac-
cordingly, the UMM meta model specification covers a set
of well defined stereotypes including tagged definitions for
each of the above mentioned views. Due to page limitations
we are not able to elaborate in detail on all artifacts. We
limit ourself to the artifacts describing the resulting global
choreography: business transaction and business collabora-
tion protocol. The reader interested in more UMM details
is referred to the technical specification [15] which we have
co-edited and to our publication in [3] detailing many UMM
backgrounds.

3.1 UMM Business Transaction

A business transaction is an atomic business process be-
tween two authorized roles synchronizing the business en-
tity states between them. It involves sending business infor-
mation from one authorized role to the other and an optional
reply. The business transaction is built by two partitions -
one for each authorized role. Hence, a business transac-
tion is composed of exactly two business transaction swim-
lanes. Each business transaction swimlane relates to one
authorized role. An authorized role is assigned to exactly
one business transaction swimlane. It follows, that the two
swimlanes of a business transaction must be assigned to
different authorized roles.

Within a business transaction each authorized role per-
forms exactly one business action - the requesting autho-
rized role performs a requesting business activity and the

2

RespondingInformationEnvelope

BusinessTransaction

RequestingBusinessActivity RespondingBusinessActivity

RequestingInformationEnvelope

BusinessTransactionSwimlane

BusinessInformation::
InformationEnvelope

BusinessAction

AuthorizedRole

1

outputs

1

+partition

2

+type

1

receives as input

1

1

1

outputs

0..1

1 1

1

*

1

receives as input

0..1

1

+type

0..1

1

Figure 1. Business transactions: meta model

responding authorized role performs a responding business
activity. Each business action - no matter whether request-
ing or responding business activity - is assigned to a busi-
ness transaction swimlane, and each business transaction
swimlane comprises exactly one business action.

The requesting business activity outputs the requesting
information envelope that is input to the responding busi-
ness activity. The responding information envelope created
by the responding business activity and returned to the re-
questing business activity is optional.

For a better understanding we demonstrate the relevant
UMM artifacts by a simple order from quote example.
This example involves two business transactions request
for quote and place order which are depicted in fig-
ure 2.

Both business transactions follow the meta model de-
scribed before. For a better understanding we detail
the request for quote case. It consists of two busi-
ness transaction swimlanes, one for the buyer, another
one for the seller. The buyer performs the requesting
business activity obtain quote which outputs a quote

request setting the business entity quote to the interim
state requested. The quote request is input to the sell-
ers requesting business activity calculate quote. The
activity sets the final state of the business entity quote ei-
ther to provided or refused. The final state is commu-
nicated by returning the quote to the requesting business
activity obtain quote.

3.2 Business collaboration protocol

The flow between business transactions is defined in a
business collaboration protocol. Its meta model is depicted
in figure 3. The activities of a business collaboration pro-
tocol are business collaboration activities and/or business

act RequestForQuote

:Seller

«BusinessTransactionSwimlane»

:Buyer

«BusinessTransactionSwimlane»

«RequestingBusinessActiv ity»
obtain quote

Initial State

«RespondingInformationEnvelo...
:Quote

Failure Success

[Quote.refused]

[Quote.provided]

«RequestingInformationEnvelop...
:QuoteRequest «RespondingBusinessActiv ity»

calculate quote

act PlaceOrder

:Seller

«BusinessTransactionSwimlane»

:Buyer

«BusinessTransactionSwimlane»

Initial State

«RequestingBusinessActiv ity»
order product

«RespondingInformationEnvelo...
:OrderResponse

[Order.accepted]
[Order.rejected]

«RespondingBusinessActiv ity»
act on purchase order

«RequestingInformationEnvelope»
:PurchaseOrder

Success
Failure

Figure 2. Business transactions

transaction activities. Hence, a business collaboration pro-
tocol is composed of zero to many business collaboration
activities and of zero to many business transaction activi-
ties. However, at least one business collaboration activity
or a business transaction activity must be present in a busi-
ness collaboration protocol. Transitions defining the flow
among the business collaboration activities and/or business
transaction activities may be guarded by the states of busi-
ness entities.

A business transaction activity is characterized by the
fact that it is refined by a business transaction. Each busi-
ness transaction must be at least once used to refine a busi-
ness transaction activity. A business transaction may be
nested in different business transaction activities.

A business collaboration activity is characterized by the

BusinessCollaborationActivity

BusinessCollaborationProtocol

BusinessTransactionActivity

BusinessTransaction

0..*

1

0..*
0..*

1

1..*

Figure 3. BCP: meta model

3

fact that it is refined by another business collaboration pro-
tocol. Not each business collaboration is a refined business
collaboration activity - only the nested business collabora-
tion protocols. A business collaboration protocol may be
nested in different business collaboration activities.

«BusinessTransactionActivity»
request for quote

«BusinessTransactionActivity»
place order

Start

Success

Failure

[Order.accepted]

[Order.rejected]

[Quote.refused]

[Quote.provided]

Figure 4. Business Collaboration Protocol

The business collaboration protocol order from

quote - depicted in figure 4 - defines a sequence of the
business transaction activities request for quote and
place order. Each of the two is refined by the corre-
sponding business transaction of figure 2.

3.3 Excursion: Bi-lateral Nature of UMM

In this subsection we extend our previous example by an-
other authorized role. We assume that the seller contacts the
buyers bank to check his credit before giving a quote. From
a business point of view the scenario is as follows: First
the buyer submits his quote. In order to decide whether to
make a firm quote or not, the seller requests the bank to
check the buyers credit. After receiving the result of the
credit check from the bank, the seller returns a quote docu-
ment, which either includes the quote or a reason for quote
rejection. Evidently, we need another business transaction
for check credit between seller and bank. It is depicted in
figure 5.

However, the business transaction check credit can-
not be part of the business collaboration protocol of figure
4. In this business collaboration protocol we define the con-
trol flow between the request for quote and the check
credit business transaction activities. In general, the
transition from one business transaction activity to another
one is triggered by the fact that the first one is completed.
Looking at our example, it is clear that the request for

quote business transaction activity is started first. How-
ever, it is not completed before the check credit busi-
ness transaction activity starts. In fact, check credit

is nested within request for quote. This means that
the nested activity is triggered as part of starting the en-

Responder :Bank

«BusinessTransactionSwimlane»

Requestor :Seller

«BusinessTransactionSwimlane»

«RequestingBusinessActivity»
request credit check

«RespondingBusinessActivity»
perform credit check

«RequestingInformationEnvelope»
:CreditCheckRequest

«RespondingInformationEnvelope»
:CreditCheckResponse

Initial State

Success

Failure

[CreditCheck.refused]

[CreditCheck.reported]

Figure 5. Business Transaction: Check Credit

compassing activity and the nested one has to complete for
the encompassing one to finish. In case of nested business
transaction activities, it is not possible to specify a transition
between the business transaction activities in the business
collaboration protocol.

Thus, the current UMM is only suited for bi-lateral col-
laborations. From a UN/CEFACT perspective this seems
to be ok, because it is the goal to model agreements and
commitments between two business partners. Evidently, it
is not intended to standardize how enterprises and organi-
zations work internally. Accordingly, mandating a credit
check as part of a request for quote is not the task
of UN/CEFACT. It is an internal decision made by a seller,
which is part of its internal business process.

4 A UML Profile for Local Processes

4.1 The Local Process by Example

Before explaining the meta model of a UML profile
for local processes, i.e. local choreographies or orchestra-
tions, we demonstrate the concepts by means of our order
from quote example. We present the local process of the
seller who also performs check credit with the bank.

The flow within this local process is depicted in figure 6.
Its main building blocks are initiating activities and reacting
activities. An initiating activity is used to model the inside
of a requesting business activity. Similarly an reacting ac-
tivity models the inside of a responding business activity. It
follows that the sellers local process includes equivalent re-
acting activities for its responding business activities in the
transactions of figure 2: calculate quote and act on

purchase order.
The next step is to specify the flow between these two

reacting activities. This flow is derived from the busi-

4

ness collaboration protocol order from quote in figure
4. The reacting activities (or the responding business activ-
ities respectively) represent the seller’s task in the business
transaction activities that are choreographed in this busi-
ness collaboration protocol. It follows that the sequence
of request for quote and place order in figure 4
is mapped to a sequence between calculate quote and
act on purchase order in the seller’s local process.
Furthermore, the guard conditions are mapped. This means,
a refused quote leads to a failure state. The transition
from calculate quote to act on purchase order is
guarded by the fact that a quote was provided. A re-
jected order leads to a failure state after act on purchase

order, whereas an accepted order leads to a success.
The next step is detailing each of the reacting activities in

the local process. An object node is added for each incom-
ing and outgoing information envelope. Initiating/reacting
activities taken from two-way business transactions have
both an input and an output node. If they refer to a one-
way business transaction, an initiating activity has only
an output node and a reacting activity has only an input
node. In our example, calculate quote and act on

purchase order both are derived from two-way business
transactions. Thus, they have an input and an output node.
The information envelopes assigned to these nodes corre-
spond to the input and output of the corresponding request-
ing/responding business activities. From figure 2 it follows
that calculate quote has an input of quote request

and an output of quote response. Similarly, act on

purchase order receives an input of purchase order

and outputs an order response.
For each input node we add a UML accept event ac-

tion that is stereotyped as receive business information. It
is used to recognize the event of an incoming information
envelope and to hand it over to the initiating/reacting activ-
ity. In case of a reacting activity this event and the resulting
transfer of the information envelope is required to start the
reacting activity. In our example of figure 6 the overall ini-
tial state leads immediately to the calculate quote ac-
tivity. However, before the first activity within calculate

quote is started, the accept event action exchange quote

request must recognize the receipt of a quote request

and transfer it to calculate quote.
In order to demonstrate modeling the flow within an

initiating/reacting activity we take a look on calculate

quote in figure 6. As mentioned above it is started
with an incoming quote request. So the first task
of the flow is file quote request. The nested task
request credit check from a bank is the next one.
Once this is done the flow continues with act on the

credit check results. Logically, the next step is ei-
ther provide quote or refuse quote. In either case
exchange quote response is the last task. Note, if a

act OrderFromFirmQuoteSeller

«ReactingActiv ity»
calculate quote

:QuoteRequest

:Quote

«InitiatingActiv ity»
request credit check

:CreditCheckRequest

:CreditCheckResponse

«ReceiveBusinessInformation»
exchange quote request

«Priv ateAction»

file quote request

«CallNestedTransaction»

:request credit check

«Priv ateAction»
prepare credit

check

«SendBusinessInformation»
exchange credit check request

«PrivateAction»

file credit check
response

«Priv ateAction»
act on credit check

result

«Priv ateAction»
refuse quote

«PrivateAction»
prov ide quote

«ReactingActiv ity»
act on purchase order

:PurchaseOrder

:OrderResponse

«ReceiveBusinessInformation»
exchange purchase order

«PrivateAction»

file purchase order

«Priv ateAction»

compare purchase
order and quote

«PrivateAction»
reject order

«PrivateAction»
accept order

Start

Success

Failure

«ReceiveBusinessInformation»
exchange credit check response

«SendBusinessInformation»
exchange quote

«SendBusinessInformation»
exchange order response

[Quote.refused]

«trace»

[Quote.provided]

[CreditCheck.reported]

[Order.accepted]

[Order.rejected]

[not ok][ok]

[CreditCheck.refused]

Figure 6. Local Process of the Seller

5

quote is refused the quote response will state the reason
of rejection.

It is easy to recognize that the activities with an initi-
ating/reacting activity are based on different stereotypes.
Most of them are private actions which are tasks internal to
the organization. Since these are not visible to others, they
are not part of a local choreography, but of an orchestration.
It follows, when modeling only a local choreography by the
concepts of our UML profile, private actions must not be
used.

The tasks request credit check and exchange

quote response are also relevant for local choreogra-
phies. The latter is of stereotype send business information
which is a special kind of the UML send signal action. In
our example, exchange quote response transfers the
quote to the output node of calculate quote. The fact,
that the quote is returned to obtain quote (executed by
the buyer) is not shown in a local process (c.f. figure 6 -
it is already defined in the request for quote business
transaction on top of figure 2.

Check credit is of stereotype call nested transaction.
It enables nested transactions with third parties. As ex-
plained in subsection 3.3, checking the customer credit has
do be done after receiving a quote request and before
responding to it. This means that the business transaction
check credit is started as part of the seller’s calculate
quote activity.

Accordingly, we define the concept of a call nested
transaction as a special kind of the UML call action be-
havior, used to call another structured activity - which is
an initiating activity of the same party. In our example of
figure 6, the calculate quote activity includes the call
nested transaction request credit check. This one
calls the synonymously named initiating activity request
credit check - which is the seller’s task in the business
transaction check credit (see figure 5).

We again specify a flow within the initiating activity
request credit check. After finishing this flow, con-
trol is given back to calculate quote. Since request

credit check is an initiating activity, its internal flow
first includes a send business information action before re-
ceiving a return back. However, its flow is only able to
continue with file credit check, if a credit check

response is recognized by the receive business informa-
tion action exchange credit check response. Fur-
thermore, it should be noticed that call nested transaction is
only used for calling a single initiating activity. If a whole
collaboration is nested, the call nested collaboration con-
cept is used. This one calls another local process.

4.2 Meta Model for Local Processes

In this subsection we discuss the meta model of our UML
profile to model local processes. This meta model is illus-
trated in figure 7. It serves as a base to model the local busi-
ness processes of a business partner who collaborates with
multiple parties in order to reach his business goal. Per def-
inition, the local business process describes the flow from a
particular partner’s point of view. The example process of
the seller’s order management depicted in figure 6 is com-
pliant to this meta model.

The justification for developing another orchestra-
tion/choreography language is the dedicated binding to
UMM allowing a straight-through modeling approach. Ac-
cordingly, the stereotypes of our local choreography have
well-defined relationships to the UMM stereotypes. Thus,
we fist elaborate on the relationships between its stereotypes
to the ones of UMM:

• A local process describes a flow of activities from a
participating partys point of view. It extends the con-
cept of a UML activity, that is itself composed of fur-
ther activities. All its activities are performed by the
same party. Consequently, a local process is assigned
to exactly one authorized role from UMM:

• A UMM business collaboration protocol always in-
volves two parties. A local process - although executed
by a single party - involves interactions with multiple
parties, i.e. interactions defined in different business
collaboration protocols. It follows, that a local pro-
cess is related at least to one, but up to many business
collaboration protocols. A business collaboration pro-
tocol may be reflected in many different local chore-
ographies.

• When a UMM business collaboration protocol is part
of a local process, it is mandatory that each of its busi-
ness transaction activities results in a local activity, or
in other words in an initiating activity or in a reacting
activity. Since a business transaction activity is per-
formed by two parties, it may be the source of up to
two local activities. However, it should be noted that
these two local activities will never be used in the same
local choreography, because they are not executed by
the same authorized role. Contrariwise, each local ac-
tivity is backed up by exactly one business transaction
activity.

• In UMM, a business transaction activity is refined by a
business transaction, in which the authorized role un-
der consideration in the local process performs either
a requesting business activity or a responding business
activity- which one is defined by the authorized role
assigned to the business transaction swimlane hosting

6

the requesting/responding business activity. If the au-
thorized role executes a requesting business activity,
the local process includes an initiating activity. In
case of a responding business activity, the local pro-
cess comprises a reacting activity. In other words a
requesting business activity and an initiating activity
(as well as a responding business activity and a re-
acting activity) represent they same logical concept -
however one is used in the flow of inter-organizational
systems and the other one in the local flow. In order to
avoid mixing up the flows, the logical concepts results
in two different stereotypes. However, there is always
a one-to-one relationship between requesting business
activity and initiating activity as well as between re-
sponding business activity and reacting activity.

The meta model in figure 7 shows the relationships be-
tween the stereotypes of the UML profile for local pro-
cesses. It is our intension that local processes may be spec-
ified in the same model as the related UMM model. How-
ever, all artifacts of the local process must reside in their
own package structure independent of the UMM.

LocalProcess ReceiveBusinessInformation

InitiatingActivity

ReactingActivity

LocalActivity

CallNestedTransactionCallNestedCollaboration

PrivateAction PrivateActivity

InputNode

OutputNode

SendBusinessInformation

:InformationEnvelope

:InformationEnvelope

0..*

calls

1

*

1

receives

1

1..*

1..*

**

1delivered to1

* *

0..1

1outputs 1

0..1

1

delivered to

1

0..1

0..*
calls 1

Figure 7. Local Processes: Meta Model

A local process includes at least one, but up to many lo-
cal activities. 5 is the abstract super class of initiating activ-
ity and reacting activity. However, a local process does not
exclusively own a local activity. One and the same local ac-
tivity may be re-used in different local processes - since the
related business collaboration protocol may be used in dif-
ferent local processes. It is important to note that the tran-
sitions between local activities must correspond - including
their guards - to the transitions in the business collabora-
tion protocol from which the local business activities are
derived.

A local process may include receive business informa-
tion activities in addition to local activities - however no

other children are allowed. The concept of the stereotype
receive business information is explained below.

In UMM, requesting/responding business activities send
and/or receive information envelopes. This fact must be re-
flected in local activities as well. Thus, an object node is
added to a local activity for each incoming and outgoing
information envelope. Local activities taken from two-way
business transactions have both an input node and an out-
put node. If they are part of a one-way business transaction,
an initiating activity has only an output node and a reacting
activity has only an input node.

For each input node we add a receive business informa-
tion - which is a UML accept event action - to the local
process. It is used to recognize the event of an incoming
information envelope and to deliver it to the input node of
the corresponding local activity. In case of a reacting ac-
tivity this event and the resulting transfer of the information
envelope is required to start the initiating activity.

The flow within a local activity comprises the following
concepts: Private actions and private activities are used to
model tasks that are internal to the organization and are not
visible to other parties. Private activities may be decom-
posed into further activities and actions, private actions do
not. Private actions and private activities are used to model
orchestrations. If the UML profile is used to model a local
choreography, these two stereotypes must not be used.

The next concept is send business information. It is a
special kind of the send signal action that is used to deliver
an information envelope to the output node of the local ac-
tivity. It should be mentioned that output nodes of a lo-
cal activity do not show any further object flow in the local
choreography. This means the flow of sending the informa-
tion envelope to the other party must be specified in a UMM
business transaction.

The stereotype call nested transaction is another kind of
action in the flow of a local activity. It is as a special kind of
the UML call action behavior used to call a flow in another
local activity of local choreography. However, it should be
noticed that call nested transaction is only used for calling
a single initiating/reacting activity. If a whole collaboration
is nested, the call nested collaboration concept is used. This
one calls another local process.

5 Transformation to BPEL

The Business Process Execution Language (BPEL) has
become the most dominant language for specifying work-
flows in the area of web services. Thus, we prefer to map
our UML models of local processes to BPEL. BPEL spec-
ifies a business process among web services. To be more
precise, it is a flow among web services operations that are
provided by one ore more business partners. These opera-
tions are defined as part of port types in one or more WSDL

7

files.
Accordingly, we have to identify the port types and the

operations that result from our UML models. A port type
has to be created not only for the owner of the process, but
also for the partners he is communicating with. It follows
that we create a port type for each authorized role. In our
order management example, we create a port type for the
process owner seller and for the authorized roles buyer
and bank.

In a next step we have to assign appropriate operations
to the port types. The operations assigned to the port type
of the process owner correspond to the activities stereotyped
as receive business information in the local process. The in-
put message of each operation corresponds to the informa-
tion envelope classifying the object node that is connected
to the receive business information activity. In our exam-
ple, exchange quote request, exchange purchase

order and exchange credit check response are as-
signed to the seller’s port type. The send business in-
formation activities result in operations that are located in
the port type of one of the other authorized roles. The
corresponding authorized role is calculated by referring to
the other role in the business transaction on which the
local activity (initiating/reacting activity) containing the
send business information activity is based. In our ex-
ample, the operations exchange quote response and
exchange order response are assigned to the buyer’s
port type. Whereas, the operation exchange credit

check request is part of the bank’s port type. The re-
sulting port types of the seller, the buyer and the bank

are depicted in figure 8. For a better readability we omit
to show the XML code of the WSDL files, but present a
graphical equivalent.

Figure 8. Port Types: Seller, Buyer, Bank

It is important to note that the calculation of the port
types and their operations is based on some conventions on
the inter-organizational layer that must be considered in the
local processes. A two-way business transaction involves
sending a requesting information envelope and returning a
responding information envelope. The exchanges of these
two envelopes are transformed into two asynchronous mes-
sage exchanges to avoid blocking on each partner’s side.

Figure 9. Port Type: Private to Seller

Accordingly, an operation is always added to the port type
of the authorized role that receives the information enve-
lope. Furthermore, it is necessary that the exchange of
an information envelope is named exactly the same in the
local processes of the participating authorized roles. In
other words, the receive business information activity in
the local process of the receiver must have the same name
as the send business information activity in the local pro-
cess of the sender. This requires a naming convention.
Therefore, all receive business information and send busi-
ness information activities have to be named ’exchange
<information envelope>’. This naming convention
was already followed in the local process of the seller in
figure 6, e.g. the first receive business information activity
is called exchange quote request.

So far, we have discussed the operations resulting from
communications with business partners. If a local process
models a local choreography there are no other operations
involved. However, if a local process models an orchestra-
tion, there will be operations that are visible to the owner of
the local process, but not to the outside world. This is ex-
actly the purpose of the private actions in local processes.
Thus, the private actions are transformed to operations that

8

are located in port types that are private to the process
owner. The name of the operation corresponds to the name
of the private action. However, the private actions may re-
flect already existing operations on different port types. In
order to ensure a flexible assignment of the operations to
different port types, we have decided to add a tagged value
to the private action in the UML profile specifying the port
type. Furthermore, a private action requires some input and
may produce some output. One option would have been
to assign object nodes to private actions in the UML profile
and to model also the object flow in the local process. How-
ever, experience shows that this leads to overloaded activity
diagrams that are hard to grasp. Hence, we opted for the
alternative to denote the input and the optional output by
further tagged values assigned to the private action. We did
not show the instantiation of the tagged values in the local
process of the seller in figure 6, but the input and out-
put of the private actions is visible in the operations of the
port type that is private to the seller (figure 9). For reasons
of simplicity, we have mapped all the private actions to the
same port type.

Having created all the port types and their operations,
it is necessary to orchestrate the flow of operations in a
BPEL code according to the UML activity diagram of a
local process. In order to ensure a well-defined mapping
from UML activity diagrams to BPEL, one must not use
all the flow concepts of UML activity diagrams. A map-
ping is guaranteed, if the business collaboration protocol
and, consequently, the flow among initiating/reacting activ-
ities, as well as the flow within initiating/reacting activities
is limited to the following basic control flow patterns [16]:
sequence, parallel split, synchronization, exclusive choice,
multiple choice, and simple merge. In this case the BPEL
process can be created by basic activities and by the struc-
tured activities sequence, switch and flow.

The transformation from the local process of a UML ac-
tivity diagram is mapped to the BPEL code as follows: The
transformation from a sequence in UML to BPEL is rather
trivial. Alternative paths in UML are transformed into
switch activities in BPEL. Parallel UML paths are trans-
formed into flow activities in BPEL. A receive business in-
formation activity of the local process is always inserted in
BPEL as a predecessor of the activity to which it delivers an
input. The subgraph of the behavior of a call nested trans-
action (or a call nested collaboration) is always inserted at
the point of the call nested transaction (or of the call nested
collaboration, respectively).

The transformation of the seller’s local process in fig-
ure 6 results in the BPEL structure of figure 10. Due to page
limitations and for reasons of better readability we do not
show the XML code. Each node of figure 10 corresponds
to an operation. The character in the node reflects the port
type: seller (S), buyer (B), bank (C) and private to

exchange quote request

File quote request

S

P

Quote Request

Quote Request

prepare credit check

exchange credit check request

P

C CreditCheckRequest

Quote Request
CreditCheckRequest

file credit check response

exchange credit check request

exchange credit check response
S

P

CreditCheckResponse

CreditCheckResponse

file credit check response

act on credit check result

P

P

f
P

CreditCheckResponse
CreditCheckDecision

Quote Quote
Quote Request CreditCheckResponse

exchange quote

provide quote

B

refuse quote

Quote

PurchaseOrder

exchange purchase order
S

file purchase order

P

PurchaseOrder

PurchaseOrder

PurchaseOrder

compare purchase order and quote

P

accept order

P
reject order

P

PurchaseOrder

OrderResponse
OrderResponse
PurchaseOrder OrderDecision

OrderDecision

exchange order response
B

OrderResponse

Figure 10. BPEL Process of the Seller

9

seller (P). The operations private to the seller are depicted
by white nodes, whereas the operations with business part-
ners are shown by black nodes. The input and output to the
operations is marked close to the little arrows above the op-
erations. Operations having only an input represent receive
activities. In contrary, operations having an output or an
output and an input represent invoke activities. The UML-
like diamond presents a switch in the following activities.

6 Summary

In this paper we presented a model driven approach to
inter-organizational business processes. We build up-on
the UN/CEFACT modeling methodology (UMM). UMM
is defined as a UML profile for modeling global chore-
ographies. We used a simple order from quote example to
demonstrate modeling a bi-lateral, global choreography by
means of UMM. More complex and realistic UMM chore-
ographies are part of all business requirements specifica-
tions developed for international trade by UN/CEFACT, as
well as by national e-government frameworks, such as XOV
in Germany, GovDex in Australia, and the Governments of
Canada Strategic Reference Model (GSRM).

However, it is critical for an organization to model its
own business processes and at the same time being in-line
with business collaboration models the organization agreed
up-on. For these reasons we provide a methodology ex-
tending the UMM for the purpose of modeling internal pro-
cesses, i.e. local choreographies or orchestrations. Our ap-
proach extends the UMM by another set of stereotypes. We
presented the first ideas on this extension in [1]. In this
paper we define the exact meta model for the internal pro-
cesses and the relationship of its stereotypes to the one of
UMM. Our profile guarantees that the local choreography
respects the commitments made in the global choreography
- assuming that the global choreography is correct.

In order to execute the model of internal processes by
the local IT systems it must be translated into a workflow
language. For this purpose we define a mapping from our
UML profile for internal processes to BPEL.

In order to support our approach, we created the UML
profile definition for the commercial UML tool Enterprise
Architect. Accordingly, all stereotypes are then built into
Enterprise Architect and the profile may be used together
with our Enterprise Architect Add-in for the UMM founda-
tion module [4]. Nevertheless, it should be noted that our
approach sits on top of the UML meta model and, thus, any
other UML tool may be used to create compliant models.
This fact helped also in the early stages of developing the
UML profile: The Australian GovDex project reported the
need for modeling UMM-compliant internal processes. We
offered a preliminary version of our profile for local chore-
ographies. The feedback loops with GovDex helped a lot in

the evaluation and the fine tuning of our approach.

References

[1] B. Hofreiter. Extending UN/CEFACTs modeling method-
ology by a UML profile for local choreographies. Journal
on Information Systems and E-Business Management, 0(0),
2008. to appear, online first: 10.1007/s10257-008-0083-3.

[2] B. Hofreiter and C. Huemer. Transforming UMM Business
Collaboration Models to BPEL. In OTM 2004 Workshops,
volume 3292 of LNCS, pages 507–519, 2004.

[3] B. Hofreiter, C. Huemer, P. Liegl, R. Schuster, and M. Zaple-
tal. UN/CEFACT’S Modeling Methodology (UMM): A
UML Profile for B2B e-Commerce. In ER 2006 Workshops,
volume 4231 of LNCS, pages 19–31. Springer, 2006.

[4] B. Hofreiter, C. Huemer, P. Liegl, R. Schuster, and M. Zaple-
tal. UMM Add-In: A UML Extension for UN/CEFACT’s
Modeling Methodology. In Service-Oriented Computing -
ICSOC 2007, Fifth International Conference, volume 4749
of LNCS, pages 618–619. Springer, 2007.

[5] R. Khalaf. From RosettaNet PIPs to BPEL processes: A
three level approach for business protocols. Data Knowl.
Eng., 61(1):23–38, 2007.

[6] B. Korherr and B. List. Extending the UML 2 Activity Di-
agram with Business Process Goals and Performance Mea-
sures and the Mapping to BPEL. In ER 2006 Workshops,
volume 4231 of LNCS, pages 7–18. Springer, 2006.

[7] G. Kramler, E. Kapsammer, G. Kappel, and W. Retschitzeg-
ger. Towards Using UML 2 for Modelling Web Service Col-
laboration Protocols. In Interoperability of Enterprise Soft-
ware and Applications (INTEROP-ESA’05), pages 227–238.
Springer, 2005.

[8] B. List and B. Korherr. A UML 2 Profile for Business Pro-
cess Modelling. In ER 2005 Workshops, volume 3770 of
LNCS, pages 85–96. Springer, 2005.

[9] J. Mendling and M. Hafner. From Inter-organizational
Workflows to Process Execution: Generating BPEL from
WS-CDL. In OTM 2005 Workshops, volume 3762 of LNCS,
pages 506–515. Springer, 2005.

[10] C. Ouyang, M. Dumas, A. H. ter Hofstede, and W. M.
van der Aalst. From BPMN Process Models to BPEL
Web Services. In International Conference on Web Services
(ICWS), pages 285–292. IEEE, 2006.

[11] C. Peltz. Web services orchestration and choreography.
IEEE Computer, 36(10):46–52, 2003.

[12] M. Penker and H.-E. Eriksson. Business Modeling With
UML: Business Patterns at Work. Wiley, 2000.

[13] RosettaNet. RosettaNet Implementation Framework: Core
Specification, Dec. 2002. V02.00.01.

[14] D. Skogan, R. Gronmo, and I. Solheim. Web Service Com-
position in UML. In 8th IEEE Enterprise Distributed Object
Computing Conference (EDOC), pages 47–57. IEEE, 2004.

[15] UN/CEFACT. UN/CEFACT’s Modeling Method-
ology (UMM), UMM Meta Model - Foundation
Module, Mar. 2006. Technical Specification V1.0,
http://www.unece.org/cefact/umm/UMM Foundation Module.pdf.

[16] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kie-
puszewski, and A. P. Barros. Workflow patterns. Distributed
and Parallel Databases, 14(1):5–51, 2003.

10

