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Abstract

The problem of incomplete and noisy information in profile reconstruction from neutron reflectometry data is considered. In

particular methods of Bayesian statistics in combination with modelling or inverse scattering techniques are considered in order to

properly include the required a priori knowledge to obtain quantitatively reliable estimates of the reconstructed profiles. Applying Bayes

theorem the results of different experiments on the same sample can be consistently included in the profile reconstruction.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Neutron reflectometry is a widely applied technique in
materials science [1]. It is well known that a unique
reconstruction of the depth profile requires the knowledge
of the complete reflection coefficient (modulus and phase).
However, measurements with standard neutron reflecto-
meter setups yield only the reflectivity (modulus), but not
the phase of the reflection coefficient. Several proposals to
solve this so-called phase problem of specular neutron
reflectometry have been worked out [2–6], but for various
reasons none of them has become an established technique
so far. To our knowledge only the method of Ref. [6] has
been implemented experimentally for a specific case [7].
Because of the missing phase information additional
assumptions are required to uniquely reconstruct the depth
profile from experimental reflection data. For example, we
assumed knowledge of the nuclear depth profile and
developed an iterative procedure to uniquely reconstruct
magnetic profiles from polarized neutron reflectometry
data [8]. However, in general the analyses of neutron
reflectometry data rely on modelling, which make use of a
e front matter r 2007 Elsevier B.V. All rights reserved.

ma.2007.11.040

58801 14258; fax: +43 1 58801 14299.

ess: leeb@kph.tuwien.ac.at
priori knowledge in a usually uncontrolled way to by-pass
the phase problem. Therefore, it is difficult to quantita-
tively estimate the reliability of the extracted profile.
In this contribution we study the method of profile

reconstruction in detail. With regard to recent develop-
ments [8] we restrict ourselves to nuclear profiles. The
unique reconstruction of profiles from experimental reflec-
tion data is hampered not only by the missing data on the
phase of the reflection coefficient, but also by the
limitations of the accessible momentum range as well as
by the uncertainties of the measurements. In particular
the latter represent a severe difficulty because of the
ill-posedness of inverse scattering techniques (reconstruc-
tion techniques), which result in instabilities of the
reconstructed profiles. A priori knowledge is required to
overcome these difficulties and to obtain quantitatively
reliable profiles. Bayesian statistics [9] offers a well-defined
procedure to incorporate the a priori information into the
reconstruction process. Within this concept of statistics we
will consider reconstruction via modelling as well as via
inverse scattering techniques.
In Section 2 we briefly recall the basic relationships of

Bayesian statistics and apply them to the analysis of neutron
reflectometry data. In Section 3 we follow the idea of Inguva
and Baker-Jarvis [10] and propose a statistical procedure
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based on the Marchenko equation with noisy data. A
summary and final conclusions are given in Section 4.
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Fig. 1. A priori knowledge on the sample. The shaded area gives the

possible variations of the potential in the regions 0pxpa. The boundaries

are determined by the largest and smallest scattering length densities of all

materials. In addition, the material on the surface is given, i.e. V 0 ¼ V ð0Þ.

The inset shows the a priori probability distribution of the potential values

at a given x, i.e. pðV jx;MÞ.
2. Modelling and statistics

In specular neutron reflection one is dealing with one-
dimensional quantal scattering by a potential V which is
proportional to the scattering-length density profile per-
pendicular to the surface. Hence, we assume a layered
sample whose potential varies only with the coordinate x

perpendicular to the surface. The scattering of a neutron
beam with normal wave number q is then characterized by
the complex reflection and transmission coefficients RðqÞ

and TðqÞ, respectively. For a known potential V ðxÞ the
calculation of RðqÞ and TðqÞ is straightforward. The
analysis of experimental data requires inferences in the
opposite direction, i.e. from the data to the potential, and is
usually denoted as an inverse problem, whose solution is
generally more involved. Therefore most analyses of
reflectometry data rely on iterative calculations of rðqÞ

with a parametrized ansatz of ~V ¼ V ðr; aÞ. In this so-called
modelling procedure the parameters are adjusted by a w2-fit
to the experimental rðqÞ-values.

In standard reflectometer setups only the reflectivity
rðqÞ ¼ jRðqÞj2 is measured with uncertainty

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D2rðqÞ

p
in a

limited momentum range 0pqpqmax. Hence, with regard
to a unique reconstruction the information is incomplete
and additional information is required (Section 1).
Important a priori information is entered via the ansatz
of the parametrized form of the potential. Without
restriction to a specific experiment we can make the
following assumptions: (1) the sample is mounted on a
known substrate, (2) the maximal thickness a of the
sample, (3) the material at the surface of the sample and (4)
the minimal thickness of a layer are known. In the region
between 0pxpa the potential V ðxÞ is not determined and
we can give only a probability distribution. In Fig. 1 we
show the associated potential with its uncertainties.

Since we are dealing with noisy and incomplete data,
any reconstruction can only yield probability distributions
for the profiles. In probability theory we have to deal
with two fundamental relationships for the probability
distribution p

pðv j r;MÞ þ pðv̄j r;MÞ ¼ 1, (1)

pðv; r jMÞ ¼ pðv j r;MÞpðr jMÞ

¼ pðr j v;MÞpðv jMÞ, ð2Þ

where v; r;M are propositions which are ‘true’ and v̄ stands
for the proposition v is ‘false’. Here, we have introduced
the propositions relevant in neutron reflectometry, i.e. v

refers to the set of the parameters in the model potential, r

to the set of experimental data and M refers to the model
expressed in terms of the conditions listed above. The
product rule (2) reflects the symmetry of p with regard to
the parameters v and observables r and leads directly to
Bayes theorem [9]

pðv j r;MÞ ¼
pðr j v;MÞ

pðr jMÞ
pðv jMÞ (3)

which allows to update the prior pðr jMÞ with the
information of a new measurement expressed in the
likelihood function pðr j v;MÞ. Thus the a posteriori distribu-

tion pðv j r;MÞ is the expectation on the set of parameters
taking consistently into account the experimental and the a

priori knowledge.
The likelihood function gives the probability distribution

of the data r for a model M with parameters v and is of the
form

pðr j v;MÞ ¼ N̂ exp½�1
2
w2�

with w2 ¼ ðr�rMðvÞÞTB�1ðr�rM ðvÞÞ ð4Þ

where N̂ is an appropriate normalization constant and B is
the experimental covariance matrix with elements
Bij ¼ hDriDrji.
The determination of the prior is the most important step

for the application of Bayesian statistics. Here, we assume
that the parameters v ¼ ðv1; . . . ; vMÞ correspond to values of
the potential at specific mesh points ðx1; . . . ; xMÞ. Thus it is
reasonable to assume the uncorrelated probability

pðv jMÞ ¼
YM
i¼1

pðviÞ (5)

with p̄ ¼ ðVmax � VminÞ
�1 and

pðviÞ ¼
p̄ 0oxpa

0 xp0 or aox:

(
(6)

If we know the materials within the sample, e.g. from the
production process, we can reduce pðviÞ to equally weighted
discrete values.
Using this prior and the likelihood function (4) we

obtain the probability distribution of the parameters v and
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thus of the potential V ðxÞ. The calculation of uncertainties
and correlations of the potential is straightforward. If we
want to take a further measurement into account, we can
use the a posteriori distribution (3) as a prior and multiply
with the new likelihood function to obtain after normal-
ization the new a posteriori distribution. Thus also X-ray
reflectivity data can consistently be included into the
reconstruction procedure.

3. Inverse scattering and information entropy

The use of inverse scattering techniques for profile
reconstruction has been extensively discussed in the
literature, e.g. Refs. [11,12] and references therein. These
methods are based on the solution of the Marchenko
equation for x4y

Kðx; yÞ þ Bðxþ yÞ þ

Z þx

�x

dzKðx; zÞBðzþ yÞ ¼ 0, (7)

where the reflection coefficient RðqÞ enters via the Fourier
transformation

BðxÞ ¼
1

2p

Z þ1
�1

dqe�iqxRðqÞ (8)

for x40, while BðxÞ ¼ 0 for xo0. The potential is obtained
from the kernel Kðx; yÞ via

V ðxÞ ¼ 2
d

dx
Kðx;x� 0Þ for x40. (9)

In several studies on the phase problem in neutron
reflectometry [2,3,13,14] reconstructions with noisy sche-
matic data of the reflection coefficient RðqÞ have been
performed. The quality of the corresponding reconstruc-
tions as well as the depth resolution depended strongly on
the noise of the data, while the limitation in qpqmax was
only reflected in smeared out transitions and Gibbs
oscillations at the interfaces of the layers.

The situation is different for the reconstruction of
profiles from reflectivity data of standard experiments.
Due to the missing phase information the ill-posedness of
the inverse problem represents a severe difficulty for the
reconstruction of the profile. In order to carry out the
inversion procedure with noisy and incomplete informa-
tion, Inguva and Baker-Jarvis [10] suggested a statistical
procedure and assume that the actual data provide only a
probability pðv jRÞ for the resulting potential.

In order to determine this probability we follow Ref. [10]
and discretize the Marchenko equation (7). In particular
we introduce a mesh in the coordinate x ðxi; i ¼ 1; . . . ;NÞ.
Thus the discretized Marchenko equation (7) can be cast
into the formX
moi

Ki;m½w
ðiÞ
m Bm;j þ dj;m� ¼ �Bi;j, (10)

where wðiÞm are the weights for the chosen quadrature and
moi refers to values of the kernel Kðxi; ymÞ with ymoxi.
The linear equation (10) can easily be solved for the
unknowns Ki;m at each xi. In the following we treat K as a
matrix of random variables Ki;j with the probability pðKÞ.
Following Shannon [15] we introduce the information
entropy

S ¼ �

Z YN
joi¼1

ðdKi;jÞpðKÞ ln pðKÞ. (11)

Here and in the following i4j refers to all unknown Ki;j-
values up to i ¼ N as outlined in the explanation of
Eq. (10). At fixed reflection coefficient RðqÞ the most
probable distribution pðKÞ is given by the maximum of the
information entropy under the constraints

1 ¼

Z YN
joi¼1

ðdKi;jÞpðKÞ ð12Þ

� Bi;j ¼ hKi;ji þ
X
moi

wðiÞm hKi;miBm;j ð13Þ

with

hKi;ji ¼

Z YN
joi¼1

ðdKi;jÞpðKÞKi;j. (14)

Using the technique of Lagrange multipliers li;j ; joi one
obtains the probability

pðKÞ ¼
1

Z
exp �

X
joi

Ki;jGi;j

 !
(15)

with

Z ¼

Z YN
joi¼1

ðdKi;jÞ exp �
X
mok

Km;kGm;k

 !
(16)

Gi;j ¼
X

m

½w
ðiÞ
j Bj;m þ dj;m�li;m. (17)

Following Ref. [10] we assume uncorrelated values
Ki;j 2 ½�B;1½, where �B is a reasonably chosen lower
bound. Thus we are able to perform the integrations in
Eqs. (15) and (16) and obtain

pðKÞ ¼
Y
joi

Gi;j exp �
X
mok

X k;m

 !
(18)

with

X k;m ¼ Gk;mðKk;m þ BÞ (19)

and

hKk;mi ¼
1

Gk;m
� B. (20)

The Lagrange multipliers can be determined by the
solution ofX

m

ðwðiÞm Bm;j þ dm;jÞ½G�1m;j � B� ¼ �Bi;j. (21)

Thus the probability distribution (18) is completely known
and one can determine hKi;ji, the potential V ðxÞ and the
corresponding probability pðV Þ.
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Following Ref. [10] we have implicitly assumed to know
the phase of RðqÞ ¼

ffiffiffiffiffiffiffiffi
rðqÞ

p
expðijðqÞÞ with some uncer-

tainty. At first glance this condition is not satisfied
because standard neutron reflectometer experiments yield
only rðqÞ. However, due to the existence of dispersion
relations [16,17] the reflection coefficient can be given in
the form

RðqÞ ¼
ffiffiffiffiffiffiffiffi
rðqÞ

p
expðijHðqÞÞ

Y~M
i¼1

q� ai

qþ ai

qþ a�i
q� a�i

(22)

with the Hilbert phase

jHðqÞ ¼ �p�
q

2p

Z 1
0

dq0
ln rðq0Þ � ln rðqÞ

q2 � q02
. (23)

Thus the determination of the phase is reduced to the
determination of the complex valued zero points ai

of the reflection coefficient, which occurs always in pairs
because of Rð�qÞ ¼ R�ðqÞ for real potentials. In addition,
there is a relationship between the potentials with
equivalent reflectivity by the recursive procedure for n ¼

1; 2; . . . ; ~M

VnðxÞ ¼ Vn�1ðxÞ

� 2
d2

dx2
ln Im f þn�1ðan; xÞ

d

dx
f þn�1ð�a�n;xÞ

� �� �
ð24Þ

with V 0ðxÞ ¼ VHðxÞ and V ðxÞ ¼ V ~M ðxÞ. Here VHðxÞ is the
potential associated with the Hilbert phase jHðqÞ and
f þi�1ðai; xÞ are the Jost solutions of the Schrödinger
equation with V i�1ðxÞ at the momentum k ¼ ai. However,
we do not obtain any information about the number ~M
and the zero points of RðqÞ from standard experiments.

Summarizing these facts, Eq. (18) leads to a conditioned
probability pðV j r;j

H
; IÞ, where I stands for a specific

combination of zero points a. In order to obtain a
probability distribution similar to Eq. (3) one has to
evaluate first

pðv j rÞ ¼ ~N
X

I

Z
d r

Z
dj

H
pðv j r;j

H
; a; IÞ ð25Þ

�pðj
H
j rÞpexpðrÞpða jIÞ ð26Þ

where pexpðrÞ is the probability distribution of the measured
reflectivities. The probability pðj

H
j rÞ refers to the fact that

the measurement of rðqÞ is limited to qpqmax and leads
therefore to some uncertainty in the evaluation of the
jHðqÞ via Eq. (23). Finally, the probability pða jIÞ accounts
for the distribution of the zero points of RðqÞ for a given
model I, characterized by the number of ai-values. In
practical applications one will assume equally distributed
values of the real and imaginary part in the interval
0pqp2qmax. The constant ~N provides the normalization
(1) of the probability.

So far we have not used any of the four constraints on
the model potential given in Section 2. In order to include
these constraints we transform pðv j rÞ into pðv j r;MÞ by
applying pðv jMÞ as a filter, i.e.

pðv j r;MÞ ¼
Npðv j rÞ if pðv jMÞa0

0 if pðv jMÞ ¼ 0:

(
(27)

Here N is again a proper normalization of the final
probability in order to satisfy Eq. (1). It is expected that the
model conditions of Section 2 will select admissible zero
points of RðqÞ, thus significantly reducing the ambiguities.
In principle the probability of Eq. (27) obtained via the

inverse scattering techniques contains essentially the same
data and a priori information as the probability distribu-
tion (3) obtained by modelling. Therefore, despite the
differences in procedure the final result should reveal the
same characteristics of the depth profile. A verification of
this supposition would be very helpful with regard to
extensions of these procedures to other model constraints.

4. Conclusions

We have considered the reconstruction of depth profiles
from neutron reflection data within a statistical context in
order to consistently include a priori information. Assum-
ing constraints on the model potential the application of
Bayesian statistics to modelling is straightforward. Follow-
ing Inguva and Baker-Jarvis [10] we developed a statistical
procedure for profile reconstruction, which is based on the
Marchenko equation. The method is much more involved,
but should finally lead to a comparable result without
explicitly fitting the potential. At present work is in
progress to demonstrate the feasibility of the method and
to compare its result with modelling. Both solutions are
promising with regard to uniqueness and quantitative
estimate of the extracted profile. In addition, they allow a
consistent update with other experimental data, e.g. from
X-ray reflectivity measurements.
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