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Abstract—In the multiple access channel, successive interference can-
cellation (SIC) can be used to achieve the boundary points of the
capacity region. In this paper, we investigate the practical potential of
SIC by employing a set of practical moderate-blocksize Low-Density
Parity-Check codes in the Multiple Access additive white Gaussian noise
channel; in particular we consider binary modulation. The theoretically
achievable points in the capacity region are compared with the practically
achievable operating points at a low bit-error rate. It is shown that
SIC makes available a higher transmission rate compared with simple
separate detection that treats the signal of the other user as noise. This
statement is also true for the use of binary modulation and a practical
efficient implementation with channel codes of moderate blocksize.

I. INTRODUCTION

In the multiple access channel (MAC), all users share the common
channel resources to transmit information to a destination. Time-
Division Multiple Access (TDMA) and Frequency Division Multiple
Access (FDMA) systems are based on the orthogonal division of
the resources “time” and “frequency”, with only one user occupying
a frequency at a time. Contrary to that in CDMA each user is
assigned a distinct signature sequence that allows for orthogonal
signal transmission with more than one user occupying a frequency
at the same time [1]; the price to pay is the increased bandwidth
due to the “signature sequence” that has to be transmitted to send
one information bit. Still, theoretical analysis shows that CDMA is a
more efficient multiple access method [2] than TDMA and FDMA,
mainly due to its greater flexibility.

In principle, the CDMA idea can also be used for channel-coded
sequences without any explicit “spreading” code and in this case it
is known from Information Theory [3] that Successive Interference
Cancellation (SIC) is a technique that can achieve the upper limits of
the capacity region of the Gaussian Multiple Access Channel. Signal
superposition together with SIC theoretically guarantee that one of the
users can transmit at the capacity-approaching rate, as in the single-
user AWGN channel, while the other user can still realise reliable
transmission at a non-zero rate that is determined by the Gaussian
MAC capacity region: essentially, the second user’s signal is treated
as “noise” by the first user, i.e., the first user suffers from a reduced
rate due to interference. When the first user’s rate is sufficiently
low, the signal can be reliably decoded at the receiving end, and
the re-encoded signal can be subtracted (cancelled) from the total
received signal, leaving only the Gaussian receiver noise. This means
the receiver “sees” a Gaussian channel without any interference for
the second user.

Although, at a first glance, this theoretical concept seems also
attractive for a practical application there are some potential draw-
backs. First, the theory assumes that Gaussian signal alphabets are
used, which is not possible in practice. Hence, we go to the opposite
extreme and investigate the performance of SIC schemes when a
binary modulation signal alphabet is used. This is motivated by the

idea to have very simple transmitters such as wireless network nodes
communicating to a receiving “base station” where we allow for some
higher complexity to perform more advanced signal processing such
as successive interference cancellation. Second, as it is impossible to
transmit strictly reliable in practice, the first user’s transmit signal can
not always be reconstructed correctly at the receiver, which means
the subtraction of the erroneous signal would lead to propagation
of the first user’s decoding errors into the decoding process for the
second user. Hence, it is unclear what the performance benefits of
SIC will be in practice: this is exactly the topic of the presented work
in which we investigate soft multiple user demodulators in which the
interference cancellation in carried out in a “soft” sense using bit-
reliability information.

In our work we use low-density parity-check (LDPC) codes which
are very powerful error correcting codes. Well-designed and with very
large blocksize these codes can achieve very low bit-error-rates (BER)
[4]. In practical applications, however, delay constraints usually put
an upper limit on the coding blocksize. Therefore, we use practical
moderate-blocksize LDPC codes and investigate their performance in
the Gaussian MAC with soft successive interference cancellation.

II. SYSTEM DESCRIPTION AND CHANNEL CAPACITIES
A. System Model (Two Users)

In a Multiple Access Channel (MAC), also called uplink multiuser
channel, all users send signals to one receiver. The discrete-time
model for the two-user AWGN MAC is shown in Figure 1. The
receive signal is given by

yli] = za[i] + x[i] + n[i], e))

with i the time index, n[i] ~ N(0,02) the i.i.d. Gaussian receiver
noise with power spectral density (PSD) Ny /2, the variance o2, =
No-B with B the base-band system bandwidth. For sake of simplicity
we assume real baseband signals; an extension to complex baseband
signals is straightforward. The received user signals are x4[i] and
xp[i]. We integrate any power scaling and any fixed path-loss into
the average power constraints such that E{ (4 5[i])?} = Pa.s.

B. Capacity of the single-user discrete-time AWGN Channel

The capacity for the ideal additive white Gaussian noise (AWGN)
channel with average input power constraint P is achieved with a
Gaussian distribution of the input symbols. The capacity equals

C= %logQ(l + 52) bits per transmission. 2)
Ow

For the band-limited AWGN channel with bandwidth B, the capacity
of the channel can be rewritten as

P .
C = Blog,(1 + m) bits per second. 3)
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Fig. 1. Multiple access channel.

The channel capacity for the binary-input discrete-time AWGN
channel with equiprobable input bits & € {0,1} and the channel
output signal y is

_ i pI&) | 2 p(yl€)
¢= 2 / 2 O80T (e = 0)

£€e{0,1}

dy (4

with C' in bits per transmission (channel use). For binary phase
shift keying modulation (with coherent detection) we map the input
bits £ € {0,1} to the modulation signal “constellation” {+1, —1}.
However, as we have integrated any power scaling and path loss into
the power constraints P,, P, we have for the received modulation
signals

Tap(§) =

Hence, the probability density function (pdf) of the Gaussian noise
equals

P.p-(1-2-¢) 5)

p(yl€) = —za(€))7) . (6)
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C. Capacity Region for the two-user AWGN MAC

The two-user capacity region is given by all rate vectors (Rq, Rp)
satisfying the following constrains [3]:

P, .
R, < Blog, (1 + NOB) bits / second
Py .
R, < Blog, (1 + m) bits / second @)
Pa + Pb .
o < teT-b
R,+ Ry, < Blog, (1 + NoB ) bits / second

The interpretation for the capacity region is straightforward: The
first two lines of (7) say that the transmission rates for the individual
users can not exceed the Gaussian capacity limits in the single-user
AWGN channel. The last line of (7) puts an upper limit on the sum
rate of the users: this sum can not exceed the rate limit that we obtain
on a Gaussian channel with the sum of the powers of both users.

The capacity region for the two-user Gaussian MAC is shown in
Figure 2 [5], where C}; and Cj, are given by

Py

Cx = Blog, (1+NOB), k=a,b, ®)
C: = Bl 14 fo 9)
o T T8 NoB+P, )’
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o B ogg( + NoB+Pa) (10)
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Fig. 2. Capacity region of the two-user multiple access channel [5].

The points (Ry, Ra) = (0,C,) and (C%,0) are achieved when
one transmitter sends its data at its maximum rate in the single-
user AWGN channel while the other user is silent. The rate pairs
on the straight line between (0,C,) and (Cy,0) are achieved
by a time-division strategy between two transmitters operating at
their maximum rates with fixed power. The rate pairs on the line
(0,Ca) — (Cy, Cq) and the rate pairs on the line (Cy, Cy) — (Ch, 0)
are achieved by using signal superposition together with SIC. The
rate pairs on the straight line connecting (Cj, Cy) and (Cs, C}) are
achieved by time-sharing between the two points or a rate-splitting
technique [6]. For the latter a user splits its data stream into multiple
substreams and encodes these substreams as if they originated from
different virtual users.

For comparison, Figure 2 also contains the rate region resulting
from orthogonal signalling (TDMA, FDMA) without SIC: the rate
region achieved by those schemes touches the boundary of the
capacity region in exactly one point, which corresponds to the rate
at which we obtain the maximum sum rate. In all other points or-
thogonal signalling is strictly suboptimal. The problem is particularly
significant, when the users have strongly different receive power: in
this case the weaker user will hardly get any rate at all in the capacity-
achieving point [7, pp. 232-234].

III. APPLICATION OF LOW-DENSITY PARITY-CHECK CODES IN
SUCCESSIVE INTERFERENCE CANCELLATION

A. Codes

LDPC codes were invented by Gallager [8], [9] in the early 1960s
and largely ignored until they were re-discovered [10] almost 40 years
later. LDPC codes are linear block codes with a particular structure
for the parity check matrix H in which the fraction of nonzero
entries is small. This allows graph-based decoders (e.g. Sum Product
Algorithm SPA [11]) to be applied efficiently with remarkable
performance. A key feature of the Sum Product Decoding algorithm
is that soft reliability information from the channel output can be
exploited for decoding.

We don’t deal with details of LDPC codes and the SPA decoder
as such in this paper (full details can be found, e.g., in [11]). We
rather provide a scheme with which log-likelihood ratios (L-values)
[12] can be obtained for the SIC scheme that we apply in the MAC:
L-values are the key to a successful application of soft-in put channel
decoding by the sum-product algorithm.



B. Signal Superposition and Successive Interference Cancellation
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Fig. 3. Capacity boundary for SIC and conventional single-user detection in
two-user multiple access channel.

Successive Interference Cancellation (SIC) is a multiuser detection
technique which can be used to achieve the boundary of the capacity
region of a Multiple-Access Channel [7]. In contrast to conventional
single-user detection (e.g., [2]), in which other users’ signals are
treated as noise when decoding one user’s signal, SIC is based on
subtracting (cancelling) the already detected signals from the received
signal before the detection of the next signal. The more disparate the
users’ powers are the higher the potential gain from SIC.

The point D in Figure 3 indicates that user B could transmit at
capacity-approaching rate in the point-to-point transmission model,
while user A can still transmit at the maximun rate of C without
errors. If signal A is the first one to be decoded, signal B is treated
as Gaussian noise to user A in the first signal detection stage.

In Figure 3, the line C, — D is achieved by signal superposition
together with SIC when signal A is first detected and subtracted. If the
order of the signal detection is reversed and signal B is first detected,
by SIC the capacity boundary C, — F' could be achieved. The capacity
boundary encompassed by C;;, E and Cj is for signal superposition
without SIC which is the conventional single-user detection method.
The theoretical capacity region shows that signal superposition with
SIC is superior to the conventional single-user detection method.

In practice, however, reliable communication with channel codes
of limited block size is impossible in a strict sense. Therefore,
instead of “cancelling by signal subtraction” (which would cause
error propagation in case of incorrect decoding), we resort to a
“soft” a posteriori probability (APP) demodulator, which can deal
with reliability information for bits rather than with hard decisions
only. This concept (in the given framework) is known from e.g. [13],
[14]. In what follows we consider the special case of coherently
detected binary phase-shift keying modulation (BPSK) and we state
a formulation of a multi-user detector that lends itself to an efficient
implementation by L-value algebra. We also compare the simulation
results with the unconstrained Gaussian MAC capacity region.

C. Multiuser APP-Demodulator for BPSK Modulation

The basic idea is to extract the a posteriori probability for the
transmitted bits By[i] of all users k = 1,2,..., K to be “one” or
“zero” given the received channel value y (see Fig. 1 for the two-
user case). The channel model for the general K-user case is given

by

K

yli) = > axlil +nli], an
k=1

where

. (bi[i]) = V/Pe(1 — 2bk[4])

and bi[i] € {0,1} is the bit sent by user k at time i; Py is the
receive power for the signal transmitted by user k. We now calculate
the APP L-value [12] of the bit by[i]:

Pr(By[i] = Oly)
Pr(By[i] = 1[y)

(12)

L(Bylilly) = log (13)
where By[i] indicates the random variable of the bit and by[i] €
{0,1} its realisation. As we consider only one time-instant in the
detector, we omit the time index 7 in what follows as long as there
is no risk of confusion.

We expand

K

> Pr(Bi=bi,..,Bx =bxly) (14
V{b1,....,b g }1bp=0

PI‘(B;!C = O|y) =

and use the Bayes-rule which immediately leads to
3" plylb) - Pr(b)
Vb:bj, =0

> p(ylb) - Pr(b)

Vb:b, =1

L(Bgly) = log 15)

with the bit vector realisations b ={b1, b2, ..., bk } (we use the same
definition for the bit vector random “variable” B). The notation Vb:
br =0 denotes all possible bit combinations of the other users, with
the bit value of “zero” for the user k& under consideration. For later use
we further define b\bx, = {b1, b2, ..., bk—1, bkt1, ..., bi }. Moreover,
we assume that the users’ code bits are independent (rather realistic
assumption for independent users), so that

Pr(b) = [ [ Pr(ts) - (16)
k=1

(above, we use the abbreviation Pr(Bjy = by) = Pr(bk)).

If we assume a Gaussian channel, we can write the probability
density function (PDF) of the channel as follows:

K
1 1 2
et S (ST I

Up to this stage, the equation are also valid for non-binary symbols,
but now we start to exploit the special BPSK modulation scheme: we
reformulate the exponent of the PDF in (17): with o = —y and the
abbreviation xr = zx(bx),k = 1,2, .... we obtain

p(ylb) =

k=0 k=0  I=k+1
K K K—1 K
7y2+21’k—2y~2a:k+2 kaxl (18)
k=1 k=1 k=1 I=k+1



As x, = /Pip(1 — 2by), with b, € {0,1}, we have z = Py,
which does not depend on the choice of the bit bs. Therefore, we
can re-write (15) as follows:

p(y[b) - Pr(b\bx)

Vbiby =0
L(Bkly) = log -
Pr(By=1) »  p(ylb) - Pr(b\by)
Vbib=1
Z ol (W1, bK) /0, - Pr(b\bx)
Vbibj, =0
= L(By) + log k — 5 (19)
ST Wit/ pr(b\by)
Vbibj =1
with « o .
f(yablu-"ubK):y'an_ZlBg Z x (20)
=1 =1 =gt

Note that, as above, x, = v/P<(1 — 2 - b,) for BPSK modulation.
We now separate out the bit by, in (20), i.e., we isolate xy = =k (bg):

f(yabla"'va):xk(y Zm§>+yzml Zibg Z X

1=1 e=1  I=¢+1
5¢k l#k E#k 17k
K K—1 K
=Zk-yY+ (y—xk) ng— ZCL‘§ Z x;  (21)
=1 e=1  1=¢+1
§#k §#k I#k

When we use (21) in (19) with x(br) = v/ Prx(1 — 2bi) we find

exp(y - 2x(0)/0%)

L(B = L(By) +1 + Lg(B
(Bkly) = L(By) %8 oy 2 (1)/0%) 5(Bk)
= L(By) ‘ﬁ ~y+Le(Br) (22)
where
Z e90(b\bR) /0, Pr(b\b)
. Vb\by,
Lp(By) = log S 7 Pr(ovon) (23)
Vb\by,
with
o(b\b) = (= 2 (p )ng—ng Z w, @4

=1 I=£+1
2k ek Ik
with p € {0,1} and z = /P(1 — 2b;). As long as we are using
binary modulation, (23) can be evaluated for, e.g., up to K = 10
users without serious complexity problems. If more users are in the
system and the received powers P; for their signals are significantly
different, we can approximate the sums in (24) by only considering
a subset of the “strongest” users.
We can further develop (23) by using (16):

HPr (b))

l;ﬁk

Pr(b\be) = (25)

We now express the probabilities Pr(b;) of the bits of user [ by its
corresponding “a-priori” L-value

. Pr(B; =0
L(B) = (B1=0)

log BB =1) (26)

By inversion of (26) we obtain

o~ L(Bu)-b
We use (25) to find
K
Pr(b\b) = A-exp | = > L(Bi) - b (28)

=1
£k

with the constant A that will cancel out in (23). We combine (28)

and (24) conveniently for use in (23) and obtain

hp(b\br) = — L g,(b\bs) ZL (B)) -
l;tk
1 K
(= )zws—zmzm) S
h g g oe/ B
(29)
with
Z exp(ho(b\bx))
Vb\by,
Lg(Br) = log (30)
Z exp(h1(b\bx))
Vb\by,

As only the factor zx(p) is different in the numerator and denom-
inator of (30), most of h,(b\bx) needs only to be computed once.
Moreover, the probability-weighting by the L-values for the bits of
other users appears as a simple sum of L-values (rightmost term in
(30), which are scaled by the bit-values b; € {0, 1}: hence, only the
“one”-bits in the bit-vector sum-"index” b\by need to be considered.
The double-sum in (29) is most conveniently computed by starting
with £ = K — 1: the result of the inner sum can then be recursively
used to compute the next result. As long as the channel-SNRs don’t
change and with a limited number of users in the system, all sums
in (29), apart from the last term, can in principle be pre-computed
and stored as they don’t depend on y or on the L-values of the other
users’ bits. Moreover, we can ignore terms in the sums that contribute
very little to the total result (which stem typically from users with
very low channel SNR); this helps to cope with a larger number of
users in the system. In the simulations below we have used (22), (29)
and (30) for the special case of K = 2 users.

IV. SIMULATION RESULTS AND ANALYSIS

The LDPC codes used here are randomly generated regular LDPC
codes' of blocksize 1200 with column weight 3. For the theoretical
capacity calculation, (2) is for Gaussian input symbols which could
not be implemented in the real world, while the capacity equation (4)
for binary input symbols could be used as a benchmark for BPSK
modulation. In the following simulations, this set of LDPC codes
is used in the two-user MAC with BPSK modulation in order to
compare the achievable rates by signal superposition and SIC with the
capacity region. The theoretical signal-to-noise ratio (SNR) to achieve
error free transmission and actual SNR for those middle blocksize
LDPC codes to achieve BER around 10~° in the single-user AWGN

IThe regular random LDPC matrices were constructed using the online
software available at http://www.cs.toronto.edu/~radford/ldpc.software.html
This program generates random regular LDPC codes of any specified rate and
block length and is capable of expurging four cycles in the LDPC constraint
graph.



TABLE I
THEORETICAL SNR AND ACTUAL SNR FOR THE 1200 BLOCKSIZE LDPC
CODES BY BPSK MODULATION.

Code rate 0.4 0.5 0.7 0.8 0.9
Theoretical SNR | -4.2182 | -2.8233 | -0.277 | 1.0704 | 2.7393
(Es/Nog in dB)

Actual SNR -1.9791 | -0.8103 | 1.4510 | 3.0103 | 4.2424
(Es/Nop in dB)
TABLE 1T
SIMULATION RESULTS FOR P, = 1.5 % P,
[ Point [ SNR & BER | Signal A | Signal B |

0.9, 0.4) SNR (dB) 6.0033 4.2424
BER 0 3.33x 10~ ?

(0.9, 0.5) SNR (dB) 6.0033 4.2424
BER 0.0295 0.034

0.4, 0.9) SNR (dB) 6.3849 4.6240
BER 0 1.91 x 10~—°

channel are listed in Table I. The SNR is represented by E/Ny
which is the ratio of energy per transmitted code symbol and the
one-sided power spectral density Ng of the Gaussian channel noise.

In the multi-user framework below, the SNR next refers to a user’s
signal power Py over the background Gaussian noise variance o2,
in the channel, and the background Gaussian noise variance o2 is

conveniently set to “1” (0dB) for the simulations.

A. First scenario: P, = 1.5 % P,

In this scenario, the received power of signal A is 1.5 times that
of the received power of signal B. The parameters used to set up
the simulation are SNR 6.00dB for signal A and SNR 4.24dB for
signal B. The theoretical SNR for 0.9 information bits per channel
use should be 2.74dB shown in Table I, but for this middle blocksize
LDPC code SNR of 4.24dB (about 1.5dB more than the theoretical
value) is needed to achieve BER below 10™*. According to the SNRs
for the signal A and signal B, the binary input theoretical capacity
values C, and Cj could be obtained by (4). C is obtained by
(4) according to the assumption in the capacity calculation that the
channel noise and the signal B both represent Gaussian interference
to signal A. This Gaussian interference assumption will be analysed
later. Cj is obtained in the same way by assuming signal A and
channel noise are both “Gaussian interference” to B. The theoretical
binary-input capacity calculation shows that under this scenario, as
the rate of signal B (C}) is fixed, the rate of signal A could achieve
as far as Cj. In a similar way, as the rate of signal A is fixed at
C4, the rate of signal B could be increased to as far as C; with
error free transmission. By signal superposition and soft SIC, the
first signal is detected as described in Section III-C and the channel
code is decoded by SPA algorithm [11]. If the first user’s signal
is successfully decoded (indicated by CRC check), the re-encoded
signal of the first user is directly subtracted from the total received
signal. The “left” signal is for detecting and decoding the second
user’s signal. If the first user’s signal is not totally successfully
decoded (failure in CRC check), soft SIC described in Section III-C
is needed for the second user’s detection. The simulation result is
shown in table II and the theoretical capacity value and the practical
achievable region for this scenario is shown in Figure 4.

1) point (0.9, 0.4): The simulation result shows that by using
signal superposition and SIC, error free transmission (or very low
BER for user A) could be achieved when the signal A with stronger
received power transmits at the rate of 0.4 and the signal B with

Ca
|
0.5 | (0.9, 0.5)
0.4 ¢ : ® (0.9 04)
|
|
| »R
C, c, b
0.4808 09
Fig. 4. Practical achievable point by using middle blocksize LDPC codes.
P, =1.5% Pb

weaker received power transmits at the rate of 0.9. The stronger signal
A is detected first.

2) point (0.9, 0.5): According to the theoretical capacity calcula-
tion, (0.9, 0.5) should be within the achievable region. But the results
show that this rate pair is not achievable. The equivalent SNR for the
first decoded user A in the multiple access channel is -0.09dB under
the assumption that the background Gaussian channel noise (variance
0dB) and the signal B are Gaussian interference to the signal A. But
for the middle blocksize rate 0.5 LDPC code, SNR of -0.81dB is
enough for error free transmission in single-user AWGN channel. It
should be noticed that to the first signal A, the noise with power
(02 + P,) is the superposition of channel noise satisfying Gaussian
distribution and the signal B satisfying the Bernoulli distribution
(which takes value -1 with probability p and +1 with probability
1 — p in the BPSK modulation). The pdf of this combined noise with
power (02 + Py) is

g(@) =p-flz+a)+ (1 -p)-f(z—a), €2y

1 2
in which f(z) = \/%Uwe 203, @ and a represents the symbol
power after BPSK. From (31) we could see that it is no longer
Gaussian distributed noise to the first user. So the decoding of the
first signal is not as good as in the single-user AWGN channel even

though higher SNR is provided.

3) point (0.4, 0.9): According to the setup SNR in this scenario,
the maximum code rate for user A by the theoretical calculation
should be 0.9652. Here the code rate 0.9 is used instead in order to
analyse the impact by reversing the order of detection. The decoding
order for the point (0.4, 0.9) is to detect signal B with weaker power
first, then after operating SIC the data for signal A with stronger
signal is decoded. BER below 10™* is also achievable for this point
but the corresponding SNR needs to be (6.38dB, 4.62dB) which is
higher than the SNR needed for point (0.9, 0.4). It means that if the
decoding order is reversed to decode the weaker signal first, more
signal power is needed to achieve the error free transmission in the
MAC. Here, the power of one user is only 1.5 times of the other. If
the two users have quite disparate power received at the destination,
the decoding order will have an obvious influence on the total signal
power to meet given target transmission rates [7].




B. Second scenario: P, = 2.0 x P,

In this scenario, the received power of signal A is twice of the
received power of signal B. The parameters used to set up the
simulation are listed in Table III. By detecting the stronger signal
A first and operating soft SIC to obtain the second signal B when
the first signal is not correctly decoded, point (0.8, 0.4) and point (0.8,
0.5) are achievable while the point (0.8, 0.7) could not be reached.
The simulation results are shown in Table III and Figure 5.

TABLE III
SIMULATION RESULTS FOR P, = 2.0 x P,

[ Point [ SNR&BER | Signal A [ Signal B |
0.8, 0.4) SNR (dB) 6.02 3.01
BER 0 6.5 x 10~°
0.8, 0.5) SNR (dB) 6.02 3.01
BER 3.41x107% | 1.13x 10~ °
0.8, 0.7) SNR (dB) 6.02 3.01
BER 0.082 0.128
R, PR=20"R
C, 0.9535 |
C; 08122 |
0.7 | (0.8,0.7)
|
0.5 | I (0.8,0.5)
0.4 | (08, 0.4)
|
|
| -R
C, G, b
0.3850 0.8
Fig. 5. Practical achievable point by using middle blocksize LDPC codes.
P, =2.0x% P.

V. CONCLUSION

Signal superposition together with SIC is the technique which
achieves the boundary of the capacity region for the Gaussian Mul-
tiple Access Channel. A set of practical LDPC codes with moderate
blocksize are used to investigate the practical performance of interfer-
ence cancellation. In order to match the BER performance under the
BPSK modulation, the binary-input channel capacity equation is used
to obtain the theoretical values as the benchmark for the simulations.
In practice SIC provides a higher transmission rate for the second
detected user compared with single-user detection method. The order
of the signal detection and subtraction also has an impact on the
required signal power to achieve the desired transmission rate. If the
previously detected signal is just subtracted, error propagation will
occur when the signal was not decoded correctly. For that reason we
used a “soft” interference cancellation scheme that takes into account
the reliabilities with which bit decisions after channel decoding can
be taken. The soft interference canceller was developed into a new
form that lends itself for an efficient implementation that will also
allow for iterative interference cancellation; this will be a topic of
further work.
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