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Abstract— A new technique for efficient encoding of LDPC
codes based on the known concept of approximate lower trian-
gulation (ALT) is introduced. The greedy permutation algorithm
is presented to transform parity-check matrices into an approxi-
mate lower triangular (ALT) form with minimum “gap”. A large
girth, which is known to guarantee good decoding performance,
is shown (for a fixed column-weight of the parity-check matrix
of the code) to result in a large gap to linear encoding, which
demonstrates a fundamental trade-off between complexity and
decoding performance.

I. INTRODUCTION

Low-density parity-check (LDPC) codes [1] can, for large
blocksize, achieve a performance very close to the Shannon
limit [2], with low-complexity iterative decoding by “Believe
Propagation” (BP) or the Sum-Product Algorithm (SPA) [3].
Decoding of LDPC codes can be performed efficiently as
long as the parity-check matrices are sparsely populated with
“ones”. The “girth”, which is the length of the shortest cycle in
the Tanner graph [4] of the code, determines the performance
under BP decoding.

The sparseness of the parity-check matrix (PCM) allows for
decoding with low complexity based on a graph based decoder.
However, encoding with low complexity is not straightfor-
ward, as LDPC codes are defined by their PCM and the
generator matrix is generally unknown. The conventional way
is systematic encoding [3] with the generator matrix derived
from PCM by (modulo-2) Gaussian elimination. The method
is the same for any block code, thus it does not deploy the
sparseness of LDPC codes, and the complexity is O(n2) (Pre-
processing O(n3), actual encoding by matrix mulitplication
O(n2)) where n is the length of the codewords; for large
blocksize n the encoding complexity can be significant.

Some novel ideas for lower-complexity LDPC encoding
where the spaseness of PCM is exploited have been presented
recent years: the graph-based message-passing encoder [5], [6]
is a technique that uses the decoder for encoding by assumimg
that the unknown parity bits have been erased by the channel.
Hence, the encoding process is exactly the same as decoding
after transmission over a binary erasure channel (BEC). The
idea applies to any LDPC code – regular or irregular, random

or structured. The method, however, does not always work, in
particular when stopping sets [7] exist within the code.

Another encoding method which applies to any LDPC code
and which always works was proposed in [8]. The idea is
to transform the PCM into an approximate lower triangular
(ALT) form by row and column permutations only (but without
any additions of rows!), which preserves the sparseness of the
matrix. Then the encoding complexity is O(n + g2), where g

is called the “gap” to linear encoding1. This “gap” is actually
the number of rows of the PCM that can not be brought
into triangular form by row and column permutations only.
Although the concept presented in [8] is convincing, no exact
“programmable” step-by-step algorithm is given that describes
how to get an ALT form of the PCM that has a small gap:
this is exactly the topic of the work presented in this paper.
We discuss the gap to “linear encoding” of LDPC codes and
we show the tradeoff between the encoding complexity and
the performance: the gap must increase when the performance
increases.

The paper is organized as follows: In Section II the idea of
almost linear encoding with the ALT method is reviewed and
compared with systematic encoding by Gaussian elimination.
In Section III we present our novel “greedy permutation”
algorithm to get a “good” ALT form from the PCM with
minimum gap g. Numerical results are given in Section IV.

II. ALMOST LINEAR ENCODING WITH APPROXIMATE
LOWER TRIANGULATION (ALT)

A. Systematic Encoding by Gaussian elimination

Firstly, we review the traditional method for encoding a
block code with a known PCM: we use Gaussian elimination
to find the unknown generator matrix from the PCM. Getting
the PCM, H, into systematic form is achieved through row
permutations, modulo-2 sums of rows and some column
permutations (if neccesary) to make the right part of the PCM a
unit matrix I. We obtain H′ = {P, I} from which, by standard

1By “linear encoding” we mean that the complexity of channel encoding
grows linearly with the block size, n, of the channel code. We use the notation
“O(n)” to indicate a complexity order with this linear growth.



rules [3], we otbain the generator matrix G = {Ik,PT}. Then,
if the information word is u, the channel codeword v is given
by v = u · G. From left to right, the information bits are
the leading bits in the codeword followed by the parity check
bits. In other words, having the PCM, H, in the equivalent
systematic form, H′, we know how the parity check bits are
linearly calculated from the information bits.

The computational complexity of reducing the PCM,
Hm×n, to its systematic form is O(n3). And, as the sparseness
of H is lost during Gaussian elimination, the complexity of
actual encoding is generally that of a matrix multiplication,
i.e., encoding has a complexity of order O(n2).

B. Encoding with a Complexity that Grows Approximately
Linear with the Blocksize

The parity-check matrix (PCM) of a LDPC code is “sparse”
by definition, and, although the generator matrix (GM) is
generally not sparse, we would like to perform encoding with
low complexity, preferably close to a complexity-order O(n),
with n the block size of the code, i.e., we would like the
complexity of encoding to grow only linear with n.

Encoding by “Approximate Linear Triangulation” (ALT) of
the PCM presented in [8] achieves a complexity of O(n+g2),
where g is the gap to linear encoding with g � n. The idea
is to transform the PCM, H, with as small gap g as possible,
into an equivalent2 “almost lower triangular” form, H1, as
illustrated by Fig. 1. As the ALT form, H1, of the PCM, H,
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Fig. 1. Parity check matrix, H1, in approximate lower triangular (ALT)
form.

is obtained by row and column permutations only, the sub-
matrices A,B,C,D, T and E are all sparse matrices.

In a second step we keep the matrices A,B and T , and we
transform the matrix E into an “all-zero” matrix and the matrix
D into an identity matrix, both by Gaussian elimination. The
resulting equivalent PCM has “systematic approximate lower
triangular” (SALT) form and full rank, and we denote this
PCM by HH; it is illustrated by Fig. 2. Note that we assume
that during the process of transformation of the original PCM,

2Equivalent in the sense that all PCMs check the same channel code. Below,
however, we will extend the notion of “equivalence” to PCMs that check codes
in which some of the code bits are re-ordered although the code is, structurally,
still the same.
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Fig. 2. Parity Check Matrix, HH, in systematic approximate lower triangular
(SALT) form.

H, into the equivalent form, HH, any linear dependent rows
(which frequently but not necessarily occur in LDPC code
constructions) are removed, so that the equivalent SALT form
HH of the PCM has full rank and the number of rows equals
the number m of parity bits. To obtain the diagonal structure
for the matrix T we may have to permute columns, which
means that we relocate bit-positions within the code word.
Although this means that the matrices H and HH will not
describe exactly the same code, the codewords will only differ
in the ordering of the bits. This trivial type of change is
assumed to be contained in our notion of “equivalence” of
PCMs.

Due to the structure of the SALT form (Fig. 2) we can
conveniently pick the first n −m bit positions (from the left)
in the codeword to be the data bit positions, i.e., the columns
corresponding to the matrices A and C1 are those of the data
bits. Hence, the codewords have the following structure: v =
(u,p1,p2) with u the n − m data bits, p1 the first g parity
bits and p2 the remnaining (m − g) parity bits.

The first g parity bits p1 can be directly determined from
the sub-matrices C1 and D1 according to p1 = u · CT

1
.

Further, from the parity-check condition H · vT = 0n×1 for
any codeword v, we obtain A ·uT +B ·pT

1
+T ·pT

2
= 0m×1.

As the matrix T has lower triangular form, we obtain the
second set p2 = {p2(1), p2(2), ..., p2(m − g)} of parity bits
by back-substitution (details are given in [8]):

p2(l) =

n−m
∑

j=1

Al,j · uj +

g
∑

j=1

Bl,j · p1(j)+

l−1
∑

j=1

Tl,j · p2(j) (1)

for l = 1, 2, ...,m − g (all arithmetic operations “modulo-2”).
For a complexity analysis of the encoding procedure de-

scribed above it is important to realise that, except for the
submatrix C1, all submatrices are still sparse and that D1

is a g × g indentity matrix. There are n − m information
bits and m parity check bits. Among them there are m − g

linearly encoded parity check bits (those we get from (1) by
back-substitution) and g parity bits we get from the matrix
multiplication p1 = u · CT

1
with C1 not sparse. The total

complexity of encoding by this method turns out to be of



order O(n + g2); the details of the complexity analysis are
given [8]. Note that the gap to linear enoding complexity is
determined by the number g of non-sparse rows in the matrix
C1. Therefore, the goal is to find a SALT form of the PCM
with g as small a possible: this is, e.g., achieved by the greedy
permutation algorithm proposed in the next section.

III. GREEDY PERMUTATION ALGORITHM

The key of the encoding method described in Section II-B
is to get the SALT form of the PCM with minimum gap g,
because the smaller the gap is, the more efficient encoding
will be.

The problem of finding the SALT form with minimum gap
is rather hard, especially when H is large, because the larger
the matrix dimensions are, the more possibilities for row and
column-permutations exist and it is not straightforward which
permutations to use in which order to obtain the best result.

Below, we present an algorithm to get the SALT form of
the PCM with “small” (but not necessarily the minimum) gap.
It applies to any LDPC code and it is efficient for both regular
and irregular codes. We call the scheme a “greedy permutation
algorithm” and its complexity is O(n3), which is the same as
Gaussian elimination.

We note that in the SALT form of the PCM, the “ones” are
concentrated in the left-bottom corner of the PCM (submatrix
C1). Moreover, in the last m− g columns of the SALT form,
all “ones” will lie on or below the matrix main diaogonal (see
Fig. 2) of the submatrix T . To obtain this SALT form, we start
from the original PCM, H, and work column-wise backwards
from column n to column n − m + g + 1.

We first find the column 1, ..., n of the original PCM, H,
which has the smallest number of “ones”: we place this column
at position n (i.e., at the very right-hand side) of the “new”
PCM. Then we permute the rows such, that all “ones” in
column n appear at the bottom of the new, equivalent PCM.
Next, we search all columns to the left of the previously
considered one (i.e., columns 1, ...., n − 1 initially) and we
place the column with the smallest number of “ones” on and
above the main diagonal (see submatrix T in Fig. 2) at position
n−1. If there is only one “one” on or above the main diagonal,
we permute the row with this “one” in column n−1 to the main
diagonal (if it is not there anyway). If there are more than one
“ones” in column n−1, we permute one of the corresponding
rows such that the “one” is located on the main diagonal. The
other rows with “ones” in column n − 1 are permuted to the
bottom of the matrix and the gap g increases exactly by this
number of rows. Then we search the columns left of n − 1
again for that one with the smallest number of “ones” on or
above the main diagonal of the submatrix T and we proceed
as described above, until we reach the first row with the main
diagonal of the matrix T : then we have obtained the ALT form
of the PCM (see Fig. 1).

In the next step we leave the rows 1....m − g unchanged
and we use the lower-diagonal matrix T to cancel all “ones”
in the sub-matrix E in Fig. 1. After that we use Gaussian
elimination to transform the matrix D in Fig. 1 into an g × g

identity matrix: during this process (but also when cancelling
the matrix E as described above) we loose the sparsity of
C1. During Gaussian elimination we might encounter linear
dependent rows that we remove: this reduces the gap which
is, of course, very welcome.

The greedy permutation algorithm is summarised in Table I.
The computational cost to transform a given PCM to the

TABLE I
DESCRIPTION OF THE GREEDY PERMUTATION ALGORITHM

We start with a given PCM with m rows and n columns; there
may be redundant rows.
Initialisation: search for the column with smallest number k0 > 0
of “ones” (random choice if more than one such column exists).
Permute this column to the rightmost position, i.e., to the column-
index n. Permute all k0 rows which have a “one” in the last column
to the bottom of the PCM. Set the current gap to g = k0 −1. The
current submatrix T starts at the lower right-hand corner with a
“one” in row m − g and column n.
Set p = n − 1 and j = 1.
Step 1: Search for the index 1, ..., p of the column in which there
is the smallest number kj > 0 of “ones” on or above the main
diagonal of the current sub-matrix T (arbitrary choice if more than
one such column exists). This is the smallest number of “ones” in
any column 1, ..., p in the rows 1, ..., m − g + j. Permute the
“best” column to column-index p.
Is there only one “one” on or above the main diagonal of the
sub-matrix T in the column permuted to column-index p?
Yes No
If the “one” is above the main
diagonal of T permute the corre-
sponding row such that the “one”
is placed on the main diagonal of
the sub-matrix T . This is permute
the row with an index 1, ..., m−

g + j + 1 (which has a “one” in
column “p”) with the row with
index m − g + j.

Pick any row with an index
1, ..., m−g+j which has a “one”
in column p and permute it to
row-index m−g+j. Append the
remaining number rj rows with
indices 1, ..., m−g+j+1, which
also have a “one” in column p,
at the bottom of the PCM. The
gap increases, i.e., the new gap
is g := g + rj .

Set j := j + 1 and p := p − 1. If m − g − j < 1 GoTo Step 2;
otherwise GoTo Step 1.
Step 2: ALT-form is obtainted. Convert the ALT into the SALT
form: start from the right in Fig. 1 and cancel all “ones” in the
submatrix E by adding rows from the submatrix T . Afterwards,
perform Gaussian elimination on the matrices C and D to trans-
form D into an identity matrix D1. The result is the SALT form
illustrated by Fig. 2. During Gaussian elimination, some of the
g rows at the bottom of the matrix may turn out to be linearly
dependent. Remove these rows; the gap g is reduced by the number
of linearly dependent rows.

ALT form using greedy permutation algorithm is O(n3),
and transforming the ALT form to the SALT form takes a
complexity of order O(n2 + g3). Hence, the total complexity
is O(n3), which is the same as Gaussian elimination. This
complexity, is however, not critical, as the SALT form needs
to be computed only once and “off-line”, before the system is
used. The important part is that the SALT form of the matrix
allows for efficient encoding by exploiting the sparsity of the
original PCM.

Example 1: To illustrate the proposed greedy permutation
algorithm in Table I, we give a detailed example. Consider the



following PCM taken from [1]:

H=

























1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 . . . . . . . . . . . . . . . . 1
. . . . 1 1 1 1 . . . . . . . . . . . . 2
. . . . . . . . 1 1 1 1 . . . . . . . . 3
. . . . . . . . . . . . 1 1 1 1 . . . . 4
. . . . . . . . . . . . . . . . 1 1 1 1 5
1 . . . 1 . . . 1 . . . 1 . . . . . . . 6
. 1 . . . 1 . . . 1 . . . . . . 1 . . . 7
. . 1 . . . 1 . . . . . . 1 . . . 1 . . 8
. . . 1 . . . . . . 1 . . . 1 . . . 1 . 9
. . . . . . . 1 . . . 1 . . . 1 . . . 1 10
1 . . . . 1 . . . . . 1 . . . . . 1 . . 11
. 1 . . . . 1 . . . 1 . . . . 1 . . . . 12
. . 1 . . . . 1 . . . . 1 . . . . . 1 . 13
. . . 1 . . . . 1 . . . . 1 . . 1 . . . 14
. . . . 1 . . . . 1 . . . . 1 . . . . 1 15

























First, we find the column with the smallest number of
“ones”. As the PCM represents a regular (3,4) LDPC code,
all rows and columns have, by definition, the same number
of “ones”. Therefore, we pick column 20 for simplicity. The
permutations of the rows such that all “ones” of column 20
are placed at the bottom of the matrix gives:

H=

























1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 . . . . . . . . . . . . . . . . 1
. . . . 1 1 1 1 . . . . . . . . . . . . 2
. . . . . . . . 1 1 1 1 . . . . . . . . 3
. . . . . . . . . . . . 1 1 1 1 . . . . 4
1 . . . 1 . . . 1 . . . 1 . . . . . . . 6
. 1 . . . 1 . . . 1 . . . . . . 1 . . . 7
. . 1 . . . 1 . . . . . . 1 . . . 1 . . 8
. . . 1 . . . . . . 1 . . . 1 . . . 1 . 9
1 . . . . 1 . . . . . 1 . . . . . 1 . . 11
. 1 . . . . 1 . . . 1 . . . . 1 . . . . 12
. . 1 . . . . 1 . . . . 1 . . . . . 1 . 13
. . . 1 . . . . 1 . . . . 1 . . 1 . . . 14
. . . . . . . . . . . . . . . . 1 1 1 1 5
. . . . . . . 1 . . . 1 . . . 1 . . . 1 10
. . . . 1 . . . . 1 . . . . 1 . . . . 1 15

























Next we deal with column-index 19. We choose that column
out of the ones with indices 1, ..., 19 which has the smallest
number of “ones” on or above the main diagonal of the sub
matrix T , i.e., we consider the rows indexed from 14 upwards.
Again we have a number of choices which all have two “ones”
on or above the row-index 14. For simplicity we pick column
19. We permute the row indexed by 13 (with a “one” in column
19) and the row indexed by 14 so we get a “one” on the main
diagonal of T ; the row indexed by 9 is appended at the bottom
of the matrix: therefore, the gap g increases by 1. The result
is:

H=

























1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 . . . . . . . . . . . . . . . . 1
. . . . 1 1 1 1 . . . . . . . . . . . . 2
. . . . . . . . 1 1 1 1 . . . . . . . . 3
. . . . . . . . . . . . 1 1 1 1 . . . . 4
1 . . . 1 . . . 1 . . . 1 . . . . . . . 6
. 1 . . . 1 . . . 1 . . . . . . 1 . . . 7
. . 1 . . . 1 . . . . . . 1 . . . 1 . . 8
1 . . . . 1 . . . . . 1 . . . . . 1 . . 11
. 1 . . . . 1 . . . 1 . . . . 1 . . . . 12
. . . 1 . . . . 1 . . . . 1 . . 1 . . . 14
. . 1 . . . . 1 . . . . 1 . . . . . 1 . 13
. . . . . . . . . . . . . . . . 1 1 1 1 5
. . . . . . . 1 . . . 1 . . . 1 . . . 1 10
. . . . 1 . . . . 1 . . . . 1 . . . . 1 15
. . . 1 . . . . . . 1 . . . 1 . . . 1 . 9

























Wec continue with column index 18. We need to find a
column with an index from the set {1, ..., 18} with the smallest
possible number of “ones” on or above the row-indexed by 14.
We find the column indexed by 15 which has only a single
“one” abover row 14. We permute the columns with indices
18 and 15. Then we permute the two rows indexed by 4 and
14 so that a single ”one” is placed on the main diagonal of
T . As there are no further “ones” above the main diagonal of

T the gap does not increase this time. We obtain:

H=

























1 2 3 4 5 6 7 8 9 10 11 12 13 14 18 16 17 15 19 20
1 1 1 1 . . . . . . . . . . . . . . . . 1
. . . . 1 1 1 1 . . . . . . . . . . . . 2
. . . . . . . . 1 1 1 1 . . . . . . . . 3
. . . 1 . . . . 1 . . . . 1 . . 1 . . . 14
1 . . . 1 . . . 1 . . . 1 . . . . . . . 6
. 1 . . . 1 . . . 1 . . . . . . 1 . . . 7
. . 1 . . . 1 . . . . . . 1 1 . . . . . 8
1 . . . . 1 . . . . . 1 . . 1 . . . . . 11
. 1 . . . . 1 . . . 1 . . . . 1 . . . . 12
. . . . . . . . . . . . 1 1 . 1 . 1 . . 4
. . 1 . . . . 1 . . . . 1 . . . . . 1 . 13
. . . . . . . . . . . . . . 1 . 1 . 1 1 5
. . . . . . . 1 . . . 1 . . . 1 . . . 1 10
. . . . 1 . . . . 1 . . . . . . . 1 . 1 15
. . . 1 . . . . . . 1 . . . . . . 1 1 . 9

























We continue this process, considering column-indices
17, 16, .... until we obtain the following ALT form of the PCM:

H1 =

























1 2 3 9 5 6 7 10 4 8 17 14 18 12 11 13 16 15 19 20
1 1 1 . . . . . 1 . . . . . . . . . . . 1
. . . . 1 1 1 . . 1 . . . . . . . . . . 2
. 1 . . . 1 . 1 . . 1 . . . . . . . . . 7
. . . 1 . . . . 1 . 1 1 . . . . . . . . 14
. . 1 . . . 1 . . . . 1 1 . . . . . . . 8
1 . . . . 1 . . . 1 . . 1 1 . . . . . . 11
. . . 1 . . . 1 . . . . . 1 1 . . . . . 3
1 . . 1 1 . . . . . . . . . . 1 . . . . 6
. 1 . . . . 1 . . . . . . . 1 . 1 . . . 12
. . . . . . . . . . . 1 . . . 1 1 1 . . 4
. . 1 . . . . . . 1 . . . . . 1 . . 1 . 13
. . . . . . . . . . 1 . 1 . . . . . 1 1 5
. . . . . . . . . 1 . . . 1 . . 1 . . 1 10
. . . . 1 . . 1 . . . . . . . . . 1 . 1 15
. . . . . . . . 1 . . . . . 1 . . 1 1 . 9

























We still have to transform the ALT into the SALT form.
In this example the gap of g = 3 suggested by the matrix
H1 above reduces to two, because during the Gaussian-
Elimination to form an identity sub-matrix D1 (see Fig. 2)
we detect a linearly dependent row which we remove. The
final result is (see Fig. 2):

HH=

























1 1 1 . . . . . 1 . . . . . . . . . . .
. . . . 1 1 1 . . 1 . . . . . . . . . .
. 1 . . . 1 . 1 . . 1 . . . . . . . . .
. . . 1 . . . . 1 . 1 1 . . . . . . . .
. . 1 . . . 1 . . . . 1 1 . . . . . . .
1 . . . . 1 . . . 1 . . 1 1 . . . . . .
. . . 1 . . . 1 . . . . . 1 1 . . . . .
1 . . 1 1 . . . . . . . . . . 1 . . . .
. 1 . . . . 1 . . . . . . . 1 . 1 . . .
. . . . . . . . . . . 1 . . . 1 1 1 . .
. . 1 . . . . . . 1 . . . . . 1 . . 1 .
. . . . . . . . . . 1 . 1 . . . . . 1 1

. . . . 1 1 1 . . . . . . . . . . . . .

. . 1 1 1 . . 1 . . . . . . . . . . . .

























Example 2: In Figures3 3/4 and Figures 5/6 we compare the
results for equivalent forms of the PCM we get from Gaussian
elimination and from our greedy permutation algorithm. We
use the QC-LDPC codes proposed in [6] as realistic example
codes, because they are easy to construct and their girth can be
analysed [9], which will, in the next section, allow us to find
relations between the encoding complexity and the decoding
performance (that directly depends on the girth).

Both figures clearly indicate the efficiency of the greedy
permutation algorithm, as the equivalent SALT forms of the
PCMs are still widely sparse (which will allow for efficient
encoding) while the Gaussian elimination generates equivalent
PCMs with large parts densely populated with “ones”.

In our simulations we observed the following properties of
the greedy permutation algorithm:

1) Although the greedy permutation algorithm is not glob-
ally optimal, the results achieved are always “good” in
the sense that the gap is usually small, relative to the

3In the figures, a black dot indicates a “one” in the PCM.
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Fig. 3. (305,3,5) LDPC code / Gaussian elimination
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Fig. 4. (305,3,5) LDPC code / Greedy Permutation Algorithm
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Fig. 5. (905,3,5) LDPC code / Gaussian elimination
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Fig. 6. (905,3,5) LDPC code / Greedy Permutation Algorithm

number of rows in the PCM. The results obtained for
different choices of rows and colums when there is a
tie are always very similar and this applies even if we
perform random permutations in the PCM before we
start the algorithm.

2) For any regular LDPC code with a column-weight of
two (j = 2), the gap is always g = 0, i.e., (2, k) LDPC
codes are totally linearly-encodable.

3) Generally, for (j, k) LDPC codes with a column-weight
of j > 2 and a row-weight of k > 3, there always exits
a lower bound for the minimum gap which is not zero.

IV. SIMULATION RESULTS

In Table II we present some simulation results for QC-
LDPC codes [6]. (The circulant size is a design paramter of
the codes; for details see [6]). In the last column of Table
II we show the “gap” to linear encoding complexity obtained
from our greedy permutation algorithm.

TABLE II
GAP OF DIFFERENT CODES FROM GREEDY PERMUTATION ALGORITHM

Block Circulant Column Row girth gap g
length n size m weight j weight k

21 7 2 3 12 0
93 31 2 3 12 0
129 43 2 3 12 0
155 31 3 5 8 4
186 31 5 6 6 34
305 61 3 5 10 10
905 181 3 5 8 5
905 181 3 5 10 17
905 181 3 5 12 26
1055 211 3 5 12 26
1477 211 3 7 10 12
1477 211 5 7 6 211
1205 241 3 5 12 26
1355 271 3 5 12 20
1928 241 3 8 8 12
1928 241 5 8 8 234
2041 157 3 13 6 3
1967 281 5 7 6 284
2248 281 5 8 6 236
1655 331 3 5 12 41
2105 421 3 5 12 48
2947 421 3 7 10 24
2947 421 4 7 8 173

We observe that, for a fixed column weight j, a larger girth
always means larger gap at the same time. Therefore, there is
a fundamental tradeoff between decoding performance (deter-
mined by the girth) and low encoding complexity (determined
by the gap): a “good” code with high decoding performance
will cause higher encoding complexity.

V. CONCLUSION

We have investigated the ALT encoding method and pre-
sented a new algorithm to transform the original PCM into the
ALT form and the SALT form, with small gap to an encoding
complexity that grow linearly with the block size. Simulation
results demonstrate the efficiency of the new algorithm.
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