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Within the linearized augmented plane-wave method for electronic structure calculations, a force
expression was derived for such exchange–correlation energy functionals that lead to orbital-dependent
potentials (e.g., LDA + U or hybrid methods). The forces were implemented into the WIEN2k code and
were tested on systems containing strongly correlated d and f electrons. The results show that the
expression leads to accurate atomic forces.
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1. Introduction

The majority of present day electronic structure calculations on periodic solids are performed with the Kohn–Sham (KS) formulation [1]
of density functional theory [2] using the local density (LDA) or generalized gradient approximations (GGA) for the exchange–correlation
energy. Among the different methods to solve the KS equations, the full-potential (linearized) augmented-plane-wave and local-orbitals
(FP-(L)APW + lo) methods [3,4] are among the most accurate schemes. For a given crystal structure one is very often interested in finding
the atomic positions corresponding to the lowest energy. For solids with a complicated unit cell a direct minimization of the total energy
is impractical, but the knowledge of atomic forces simplifies the structure optimization and allows one to move the atoms until the forces
vanish. The formalism of the force calculation for the original LAPW basis set [5] was independently developed by Soler and Williams
[6,7] and Yu et al. [8], leading to two formulations which later on were shown to be equivalent both from the formal as well as practical
points of view [9–11]. The formulation of Yu et al. [8] was adopted for the WIEN2k code [12–15] (the details of the implementation can
be found in Ref. [16]). Then, the formalism was adapted for the APW + lo basis set [4,17,18]. Other works on forces for the LAPW basis set
can be found in Refs. [19,20].

There are important classes of solids for which the LDA and GGA functionals are known to yield even qualitatively incorrect ground
states. Notorious examples are the so-called strongly correlated systems, e.g., the transition-metal oxides or rare-earth compounds. The
ground state of such systems can often be described significantly better by using the LDA + U [21,22] or hybrid functionals (see, e.g.,
Refs. [23,24]). The WIEN2k code, which is based on the FP-(L)APW + lo method, allows such calculations [24–26], but so far structural
relaxation has not been possible due to the lack of an atomic force formalism for LDA + U and hybrid functionals in the FP-(L)APW + lo
basis set. Therefore, it is of great importance to develop such a formalism, which is presented here.
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The paper is organized as follows. The next section describes the theory, namely, the FP-(L)APW + lo basis set, the basic KS equations
with orbital-dependent potentials, and the derivation of the atomic forces for such potentials. Then, numerical tests are presented in
Section 3, and finally a summary is given in Section 4.

2. Theory

2.1. FP-L(A)PW + lo basis sets

In the FP-(L)APW + lo method, the unit cell volume is divided into two types of regions (see Ref. [3] for details): the interstitial I and
the non-overlapping muffin-tin (MT) spheres Sα centered at the positions Rα of the nuclei. The basis functions, which are used for the
expansion of the crystal orbitals (n is the band index, k is a vector in the first Brillouin zone, and σ is the spin index)

ψσ
nk(r) =

∑
K

dσ
nk+Kφσ

k+K(r) +
∑

i

dLOiσ
nk+Ki

φLOiσ
k+Ki

(r), (1)

are augmented plane waves (where V is the unit cell volume and rα = r − Rα is the position inside sphere α):

φσ
k+K(r) =

{ 1√
V

ei(k+K)r r ∈ I,∑
�,m(aα�mσ

k+K uασ
1,� (rα) + bα�mσ

k+K u̇ασ
1,� (rα))Y�m(r̂α) r ∈ Sα,

(2)

where uασ
1,� is a radial function evaluated at the energy εασ

1,� and u̇ασ
1,� is its energy derivative, and local orbital (LO) basis functions

φLOiσ
k+Ki

(r) =
{

(aαi�imiσ
LOk+Ki

uαiσ
1,�i

(rαi ) + bαi�imiσ
LOk+Ki

u̇αiσ
1,�i

(rαi ) + cαi�imiσ
LOk+Ki

uαiσ
2,�i

(rαi ))Y�imi (r̂αi ) r ∈ Sαi ,

0 r /∈ Sαi .
(3)

Eqs. (2) and (3) are for the LAPW + LO basis set [3], while for the APW + lo basis set [4] the coefficients bα�mσ
k+K in Eq. (2) and cαi�imiσ

LOk+Ki
in

Eq. (3) are zero.

2.2. DFT + U and hybrid functionals

In the WIEN2k code, the DFT+ U and hybrid methods are implemented only inside the MT spheres [24–26], which is justified provided
these methods are applied to electrons that are well localized inside the corresponding sphere, e.g., 3d and 4 f electrons in transition-
metal and rare-earth atoms, respectively. In essence, an orbital-dependent contribution to exchange and correlation is added within the
MT spheres of the atoms which contain strongly correlated electrons and the corresponding LDA or GGA contribution is subtracted.

The DFT + U and hybrid total-energy functionals are given by (all equations are expressed in Hartree atomic units)

E = Ts + ECoul + E loc
xc + Eorb, (4)

where Ts, ECoul, E loc
xc , and Eorb are the KS kinetic, Coulomb (electron–electron, electron–nucleus, and nucleus–nucleus electrostatic inter-

actions), (semi-)local (i.e., LDA or GGA) exchange–correlation, and orbital (Hubbard or hybrid) terms, respectively. The corresponding KS
equations for the valence electrons are

Ĥσ ψσ
nk(r) = (

T̂ + vKS
eff,σ (r) + Ûσ

)
ψσ

nk(r) = εσ
nkψσ

nk(r), (5)

where T̂ = − 1
2 ∇2 is the kinetic-energy operator,

vKS
eff,σ (r) = vCoul(r) + v loc

xc,σ (r) (6)

is the multiplicative effective KS potential [1], and Ûσ is the non-multiplicative (i.e., orbital-dependent) operator associated with Eorb (see
Refs. [27] and [26] for DFT + U and hybrid functionals, respectively):

Ûσ ψσ
nk(r) = δEorb

δψσ∗
nk (r)

=
∑

β,m1,m2

∂ Eorb

∂nβ�σ
m1m2

δnβ�σ
m1m2

δψσ∗
nk (r)

=
∑

β,m1,m2

vβ�σ
m1m2 P̂β�

m1m2ψ
σ
nk(r). (7)

In Eq. (7), mi = −�, . . . , �, where � is the angular momentum of the electrons of atom β , for which the Hubbard or hybrid correction is
applied, vβ�σ

m1m2 = ∂ Eorb/∂nβ�σ
m1m2 , P̂β�

m1m2 is the projector which is defined such that

〈
f
∣∣ P̂β�
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∣∣g
〉 =

Rβ
MT∫

0

〈 f |Y�m1 〉Ω,β 〈Y�m2 |g〉Ω,βr2 dr, (8)

and nβ�σ
m1m2 is the occupation matrix which is calculated in the following way (see Eq. (11) of Ref. [27]):
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where wσ
nk is the weight for the integration in the Brillouin zone. In Eqs. (8) and (9), 〈 f |g〉r,β and 〈 f |g〉Ω,β denote radial and angular

integrations in the sphere Sβ , respectively. Using the sum of eigenenergies, the KS kinetic energy is given by

Ts =
∑
σ ,i

εσ
i +

∑
σ ,n,k

wσ
nkε

σ
nk −

∑
σ

∫
cell

vKS
eff,σ (r)ρσ (r)d3r −

∑
β,σ ,m1,m2

vβ�σ
m1m2nβ�σ

m1m2 , (10)

where the first two sums are over the core and valence orbitals, respectively.

2.3. Forces for DFT + U and hybrid functionals

The force Fα = −∇Rα E which acts on the nucleus α is composed of two terms:

Fα = FES
α + FIBS

α , (11)

where FES
α is the Hellmann–Feynman electrostatic (ES) force and FIBS

α is the so-called Pulay force [28] which arises due to the use of an
atomic-position-dependent incomplete basis set (IBS). Details of the force formalism for LDA and GGA functionals (as implemented in the
WIEN2k code) can be found in Refs. [8,16,18]. Therefore, only the term specific to the DFT + U or hybrid method, Forb

α (which is a part of
FIBS
α ), will be shown below.

The first order variation of the energy Eorb in Eq. (4) due to the displacement 
Rα of the nucleus α is


Eorb =
∑

β,σ ,m1,m2

vβ�σ
m1m2
nβ�σ

m1m2 . (12)

Similarly, the variation of the last term in Eq. (10) is




(
−

∑
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m1m2

)
= −

∑
β,σ ,m1,m2

(

vβ�σ

m1m2nβ�σ
m1m2 + vβ�σ

m1m2
nβ�σ
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)
. (13)

Adding Eqs. (12) and (13) yields


Eorb + 


(
−

∑
β,σ ,m1,m2

vβ�σ
m1m2nβ�σ

m1m2

)
= −

∑
β,σ ,m1,m2


vβ�σ
m1m2nβ�σ

m1m2 , (14)

which is the term that has to be added to the force expression for LDA or GGA functionals (see Eq. (15) of Ref. [16]):

Fα = − 
E


Rα
= FES

α − 1


Rα

(∑
σ ,i


εσ
i +

∑
σ ,n,k

wσ
nk
εσ

nk −
∑
σ

∫
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vKS
eff,σ (r)ρσ (r)d3r −

∑
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vβ�σ
m1m2nβ�σ

m1m2

)
. (15)

Similar to Eq. (26) of Ref. [16], the first order variation of the eigenenergy of a valence electron in the state ψσ
nk is given as


εσ
nk =

∑
K,K′

dσ∗
nk+Kdσ

nk+K′
(〈
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∑
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which leads to∑
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∣∣Ĥσ
core − εσ

i
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∑
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Using Eq. (17) in Eq. (15) gives

Fα = FES
α − 1


Rα

[∑
σ ,i

(〈
ψσ
i |Ĥσ

core − εσ
i |ψσ

i 〉 + 〈ψσ
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∑
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+
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wσ
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nk

∣∣
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〉 + ∑
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wσ
nk

〈
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Ûσ
∣∣ψσ
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]
. (18)

With the help of Eq. (7), the term in Eq. (18) involving 
Ûσ becomes
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∑
σ ,n,k

wσ
nk

〈
ψσ

nk

∣∣
Ûσ
∣∣ψσ

nk

〉 = ∑
β,σ ,m1,m2


vβ�σ
m1m2nβ�σ

m1m2 +
∑

β,σ ,m1,m2

vβ�σ
m1m2

∑
n,k

wσ
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〈
ψσ

nk

∣∣
 P̂β�
m1m2

∣∣ψσ
nk

〉

=
∑
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∑
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vα�σ
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∑
n,k

wσ
nk

〈
ψσ

nk

∣∣
 P̂α�
m1m2

∣∣ψσ
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〉
, (19)

which leads to

Fα = FES
α −

∑
σ ,i

(〈
dψσ

i

dRα

∣∣∣∣Ĥσ
core − εσ

i

∣∣ψσ
i

〉 + 〈
ψσ

i

∣∣Ĥσ
core − εσ

i

∣∣∣∣dψσ
i

dRα

〉)

−
∑

σ ,n,k,K,K′
wσ

nkdσ∗
nk+Kdσ

nk+K′

(〈
dφσ

k+K

dRα

∣∣∣∣Ĥσ − εσ
nk

∣∣φσ
k+K′

〉 + 〈
φσ

k+K

∣∣Ĥσ − εσ
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∣∣∣∣dφσ
k+K′
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〉)

−
∑
σ ,n,k

wσ
nk

〈
ψσ

nk

∣∣ dT̂

dRα

∣∣ψσ
nk

〉 − ∑
σ ,m1,m2

vα�σ
m1m2

∑
n,k

wσ
nk

〈
ψσ

nk

∣∣dP̂α�
m1m2

dRα

∣∣ψσ
nk

〉
, (20)

where (see Eq. (5.13.7) of Ref. [3])

dφσ
k+K(r)

dRα
	

{
i(k + K)φσ

k+K(r) − ∇φσ
k+K(r) r ∈ Sα,

0 r /∈ Sα.
(21)

Note that the term involving dT̂ /dRα is non-zero since we use basis functions, whose second (LAPW basis set) or first two (APW + lo
basis set) derivatives are discontinuous across the spheres boundaries [3,4,6,8,9,16–18,29]. Finally, combining the terms of the second line
of Eq. (20) coming from the contribution of Ûσ with the last term of Eq. (20) yields an additional term with respect to the expression for
LDA or GGA functionals (see Eq. (27) of Ref. [16]) for the force expression due to the Hubbard or hybrid correction:

Forb
α = −

∑
σ ,n,k,K,K′

wσ
nkdσ∗

nk+Kdσ
nk+K′
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dφσ
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∣∣∣∣Ûσ
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∑
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nk

〈
ψσ

nk
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〉
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d
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∣∣φσ
k+K′

〉
α

= 2
∑
σ ,n,k

wσ
nk Im

[ ∑
m1,m2

vα�σ
m1m2

(
Aαnkσ∗

�m1
Aαnkσ

�m2
+ Bαnkσ∗

�m1
Bαnkσ

�m2

〈
u̇ασ

1,�

∣∣u̇ασ
1,�

〉
r,α + Cαnkσ∗

�m1
Cαnkσ

�m2

+ (
Aαnkσ∗

�m1
Cαnkσ

�m2
+ Cαnkσ∗

�m1
Aαnkσ

�m2

)〈
uασ

1,�

∣∣uασ
2,�

〉
r,α + (

Bαnkσ∗
�m1

Cαnkσ
�m2

+ Cαnkσ∗
�m1

Bαnkσ
�m2

)〈
u̇ασ

1,�

∣∣uασ
2,�

〉
r,α
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, (22)

where

Aαnkσ
�m =

∑
K

dσ
nk+Kaα�mσ

k+K , (23)

Aαnkσ
�m =

∑
K

Kdσ
nk+Kaα�mσ

k+K , (24)

and the same for Bαnkσ
�m , Bαnkσ

�m , Cαnkσ
�m , and Cαnkσ

�m . We note that Eq. (22) is a component of the total-force expression only for those atoms
α, for which the DFT + U or a hybrid functional was applied. For the other atoms in the unit cell, the force expression for (semi-)local
functionals remains correct.

3. Test cases: CoO and Ce2O3

We chose CoO and Ce2O3, which contain 3d and 4 f electrons, respectively, as test cases to check the correctness of Eq. (22) and its
implementation. At zero pressure and temperature, the most stable structure of CoO is a distorted rock-salt (see Ref. [30] and references
therein), but for this test the wurtzite (space group P 63mc) structure was used as it contains one free structural parameter. The wurtzite
phase of CoO has been synthesized [31–33] and the experimental lattice constants of the unit cell (which contains two f.u.) are a = 6.14
and c = 9.83 bohr [32,33]. The atoms sit at the positions (1/3,2/3, uz) and (2/3,1/3, uz + 1/2) with uCo

z = 0.416 and uO
z = 0 for the Co

and O atoms, respectively [32]. We mention that the structural parameters given in Ref. [31] differ somewhat from those given in Refs.
[32,33]. While rock-salt CoO is an antiferromagnet, there are uncertainties concerning the magnetic phase of wurtzite CoO [32]. The most
stable structure of the antiferromagnet Ce2O3 is hexagonal (space group P 3m1) whose experimental lattice constants are a = 7.35 and
c = 11.45 bohr. The two Ce atoms sit at ±(1/3,2/3,0.2454) while the three O atoms sit at ±(1/3,2/3,0.6471) and (0,0,0) [34]. It has
been inferred that for both CoO [32] and Ce2O3 (see, e.g., Refs. [35–37]) LDA and GGA functionals are not accurate enough to properly
describe the electronic and magnetic structures, but that the use of the LDA + U or hybrid functionals improves the results.

The calculations were done using two functionals. The first functional is LDA + U , which consists of choosing (in Eq. (4)) E loc
xc = ELDA

xc
[38,39] and Eorb = Eee − Edc, where Eee is a rotationally invariant electron–electron (ee) interaction energy of Hartree–Fock-type [40] for
the electrons of angular momentum � and Edc is the atomic limit version of the double-counting (dc) term [41]. The value of U was
chosen to be 6.9 and 4 eV for CoO [21] and Ce2O3 [35–37], respectively, while J = 0 was used in both cases. The second functional is the
hybrid Fock-αx [23], i.e., E loc

xc = ELDA
xc [38,39] and Eorb = αx(EHF

x − ELDA
x ), where EHF

x and ELDA
x are the Hartree–Fock and LDA [38] exchange

energies of the electrons of angular momentum � and αx ∈ [0,1]. We chose the values αx = 0.35 and 0.15 for CoO and Ce2O3, respectively.
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Fig. 1. The upper panels show the total energy E (E = 0 is set at the minimum of the curve) of wurtzite CoO as a function of the z coordinate of the Co atom in the unit
cell, for (a) LDA + U (U = 6.9 and J = 0 eV) and (b) Fock-0.35 functionals. The solid curve represents a cubic spline interpolation of the data. The lower panels show the z
component of the force acting on the Co and O atoms for (c) LDA + U and (d) Fock-0.35 functionals.

We should mention that the Hartree–Fock energy and potential were implemented into the WIEN2k code using several approximations
(see Refs. [24] and [26] for details). For instance, the implementation was done only inside the MT spheres, while outside them, the
calculations are done with LDA or GGA exchange–correlation functional and potential. It is also worth to remind the reader that for
any hybrid functional, the different terms (E loc

xc and EHF
x ) are evaluated with orbitals calculated with the corresponding hybrid potential,

therefore the numerical value of EHF
x is not the same as the one calculated with the true Hartree–Fock orbitals.

The computational details are the following: The calculations on CoO and Ce2O3 were done for the ferromagnetic phase and the lattice
constants a and c were kept fixed at the experimental values given above. The Brillouin zone integrations were performed on 9 × 9 × 5
special point grids and Rmin

MT Kmax = 6 (the product of the smallest of the atomic sphere radii RMT and the plane wave cutoff parameter
Kmax) was used for the expansion of the basis set. The sphere radii were chosen as (RCo

MT, RO
MT) = (1.8,1.6) and (RCe

MT, RO
MT) = (2.1,1.86)

bohr for CoO and Ce2O3, respectively.
The upper panels of Fig. 1 ((a) for LDA + U and (b) for Fock-0.35) show the total energy of wurtzite CoO plotted as a function of

the position of the Co atom in the unit cell (zCo). Also shown are solid curves which represent the cubic spline interpolations of the
calculated points. From the spline interpolation, the minimum of the total energy is calculated to be at zCo = 3.756 bohr (uCo

z = 0.382)
and 3.753 bohr (uCo

z = 0.382) for LDA + U and Fock-0.35 functionals, respectively. From the lower panels (c) and (d) of Fig. 1, which show
the force acting on the Co and O atoms, we can observe that omission of Forb

α (Eq. (22)) violates the action–reaction principle, i.e., the
z component F Co

z of the force on Co is not equal to the force F O
z acting on O. The latter coincides with the numerical derivative of the

total energy (solid lines in Fig. 1(c) and (d)). However, if we now include Eq. (22) in the calculation of F Co
z , agreement is obtained, i.e.,

F Co
z = −F O

z = −dE/dzCo, for both LDA + U and Fock-0.35 functionals. The equilibrium positions of the Co atom given by the forces and the
total energy agree within 0.0005 bohr, thus demonstrating the correctness of Eq. (22).

The results for the second test case, Ce2O3, are shown in Fig. 2. The coordinate zCe of the Ce atom was varied while keeping the two
O atoms fixed. Similarly as for CoO, the force calculation including Eq. (22) leads to very good agreement between F Ce

z and the numerical
derivative of the total energy −(1/2)dE/dzCe, whereas without Eq. (22) the force on the Ce atom is clearly wrong. In Fig. 2(d) we note the
somewhat erratic behavior of the force on the Ce atom calculated with the Fock-0.15 functional but without the correction (Eq. (22)).
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Fig. 2. The upper panels show the total energy E (E = 0 is set at the minimum of the curve) of Ce2O3 as a function of the z coordinate of the Ce atom in the unit cell, for
(a) LDA + U (U = 4 and J = 0 eV) and (b) Fock-0.15 functionals. The solid curve represents a cubic spline interpolation of the data. The lower panels show the z component
of the force acting on the Ce atom for (c) LDA + U and (d) Fock-0.15 functionals.

4. Summary

The derivation of the force formalism for DFT + U and hybrid functionals (which lead to orbital-dependent potentials) within the
FP-(L)APW + lo basis sets has been presented. Test calculations on CoO and Ce2O3 using the WIEN2k code have demonstrated the relia-
bility of this formalism and its implementation. We would like to mention that the forces have also been tested for complicated problems
with more than 100 atoms per unit cell, and were found to work well. Nevertheless, we also observed (with any type of functional) that
using very large MT spheres (∼2.2 bohr) could eventually lead to a slight inconsistency between total energy and forces, which could
arise from an incomplete convergence in the representation of, e.g., the electron density inside the spheres that becomes more crucial for
large spheres. Therefore, we do not recommend using such large spheres for force calculations.

Acknowledgements

This work was supported by the projects IAA100100803 of the Grant Agency of the ASCR, P20271-N17 of the Austrian Science Fund,
and WP 15 of the Austrian Grid. One of us (L.D.M.) acknowledges support by the US-NSF on grant number DMR-0455371/001. We also
thank Dr. G.K.H. Madsen for useful discussions.

References

[1] W. Kohn, L.J. Sham, Phys. Rev. 140 (1965) A1133.
[2] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864.
[3] D.J. Singh, Planewaves, Pseudopotentials and the LAPW Method, Kluwer Academic, Boston, 1994.
[4] E. Sjöstedt, L. Nordström, D.J. Singh, Solid State Commun. 114 (2000) 15.
[5] O.K. Andersen, Phys. Rev. B 12 (1975) 3060.
[6] J.M. Soler, A.R. Williams, Phys. Rev. B 40 (1989) 1560.
[7] J.M. Soler, A.R. Williams, Phys. Rev. B 42 (1990) 9728.
[8] R. Yu, D. Singh, H. Krakauer, Phys. Rev. B 43 (1991) 6411.



Author's personal copy

790 F. Tran et al. / Computer Physics Communications 179 (2008) 784–790

[9] J.M. Soler, A.R. Williams, Phys. Rev. B 47 (1993) 6784.
[10] H.G. Krimmel, J. Ehmann, C. Elsässer, M. Fähnle, J.M. Soler, Phys. Rev. B 50 (1994) 8846.
[11] M. Fähnle, C. Elsässer, H. Krimmel, Phys. Stat. Sol. (b) 191 (1995) 9.
[12] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties, Vienna

University of Technology, Austria, 2001.
[13] P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Comput. Phys. Comm. 59 (1990) 399.
[14] K. Schwarz, P. Blaha, G.K.H. Madsen, Comput. Phys. Comm. 147 (2002) 71.
[15] K. Schwarz, P. Blaha, Comput. Mater. Sci. 28 (2003) 259.
[16] B. Kohler, S. Wilke, M. Scheffler, R. Kouba, C. Ambrosch-Draxl, Comput. Phys. Comm. 94 (1996) 31.
[17] E. Sjöstedt, Ph.D. thesis, Uppsala University, 2002.
[18] G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, L. Nordström, Phys. Rev. B 64 (2001) 195134.
[19] S. Goedecker, K. Maschke, Phys. Rev. B 45 (1992) 1597.
[20] A. Di Pomponio, A. Continenza, R. Podloucky, J. Vackář, Phys. Rev. B 53 (1996) 9505.
[21] V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44 (1991) 943.
[22] V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys.: Condens. Matter 9 (1997) 767.
[23] I. de P.R. Moreira, F. Illas, R.L. Martin, Phys. Rev. B 65 (2002) 155102.
[24] F. Tran, P. Blaha, K. Schwarz, P. Novák, Phys. Rev. B 74 (2006) 155108.
[25] P. Blaha, K. Schwarz, P. Novák, Int. J. Quantum Chem. 101 (2005) 550.
[26] P. Novák, J. Kuneš, L. Chaput, W.E. Pickett, Phys. Stat. Sol. (b) 243 (2006) 563.
[27] A.B. Shick, A.I. Liechtenstein, W.E. Pickett, Phys. Rev. B 60 (1999) 10763.
[28] P. Pulay, Mol. Phys. 17 (1969) 197.
[29] C. Brouder, Phys. Rev. B 72 (2005) 085118.
[30] W. Jauch, M. Reehuis, H.J. Bleif, F. Kubanek, P. Pattison, Phys. Rev. B 64 (2001) 052102.
[31] M.J. Redman, E.G. Steward, Nature 193 (1962) 867.
[32] A.S. Risbud, L.P. Snedeker, M.M. Elcombe, A.K. Cheetham, R. Seshadri, Chem. Mater. 17 (2005) 834.
[33] J.F. Liu, S. Yin, H.P. Wu, Y.W. Zeng, X.R. Hu, Y.W. Wang, G.L. Lv, J.Z. Jiang, J. Phys. Chem. B 110 (2006) 21588.
[34] H. Bärnighausen, G. Schiller, J. Less-Common Met. 110 (1985) 385.
[35] S. Fabris, S. de Gironcoli, S. Baroni, G. Vicario, G. Balducci, Phys. Rev. B 71 (2005) 041102(R).
[36] D.A. Andersson, S.I. Simak, B. Johansson, I.A. Abrikosov, N.V. Skorodumova, Phys. Rev. B 75 (2007) 035109.
[37] C. Loschen, J. Carrasco, K.M. Neyman, F. Illas, Phys. Rev. B 75 (2007) 035115.
[38] P.A.M. Dirac, Proc. Cambridge Philos. Soc. 26 (1930) 376.
[39] J.P. Perdew, Y. Wang, Phys. Rev. B 45 (1992) 13244.
[40] A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Phys. Rev. B 52 (1995) R5467.
[41] V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyżyk, G.A. Sawatzky, Phys. Rev. B 48 (1993) 16929.


