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A complete and consistent procedure to generate evaluated nuclear data files and the associated
covariance matrices is presented. The novel procedure is fully based on Bayesian statistics and
makes use of the theoretically formulated prior for parameter uncertainties presented by Leeb and
Pigni recently. In addition the prior includes also model defects based on a statistical study of the
gross structure of experimental data. Furthermore, a so-called correlated Bayesian update approach
(CBUA) is proposed in order to account for a realistic treatment of systematic errors in experiments.

I. INTRODUCTION

Evaluated nuclear data files are essential ingredients
for the design and construction of nuclear facilities, the
radiation safety and the development of novel nuclear
technologies. They contain consistent sets of cross sec-
tion data and spectra, which cover for most isotopes the
energy range only up to 20 MeV according to the needs
of conventional technology. Associated uncertainty infor-
mation which is required for the optimization of designs
and the estimate of safety margins is available only for
few selected isotopes and reactions. Hence, there is an
ongoing effort to update the libraries with proper covari-
ance matrices, which provide the relevant information for
reliable uncertainty estimates of key quantities.

In addition to this general demand regarding uncer-
tainties, there is also the request for an extension of the
energy range up to about 150 MeV driven by the needs of
best suited materials in fusion research (IFMIF) as well
as the design of novel fission reactors, e.g. accelerator
driven systems (ADS). The extension of the energy range
is not trivial because of the limited set of available exper-
imental data and the increasing number of open reaction
channels. Hence, evaluated nuclear data files beyond 20
MeV rely substantially on nuclear model calculations.

Despite the strong and longstanding request from
users, the availability of covariance information of eval-
uated data is not satisfactory. A careful analyses of
experimental data has been performed for few isotopes
by Vonach and Tagesen [1–4] within the framework of
Bayesian statistics. They obtained almost diagonal co-
variance matrices associated with cross section mean val-
ues fluctuating with energy. An alternative approach is
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the Kalman filter technique [5] which has been used in
JENDL and the ENDF-VI evaluations. The method is
equivalent to the linearized Bayesian approach. However,
unrealistically small uncertainties are frequently reported
whose relevance might be questioned.

The proper determination of covariance matrices for
modelling is still an open question. It was pointed out in
Ref. [6] that three sources of uncertainties can be distin-
guished: (i) parameter uncertainties, (ii) model defects
and (iii) numerical errors. The latter are either known
or ignored and are not further considered. Most of the
studies on covariance matrices deal with the parameter
uncertainties, e.g. applications of the Kalman filter tech-
nique (e.g. [5]) and the Monte Carlo simulations with
TALYS performed by Koning [7]. A more sophisticated
Monte Carlo approach was implemented by Bauge [8]
who used the χ2-hypersurface to extract parameter dis-
tributions and correlations. All these methods refer to
experimental data assuming that they can be reproduced
by the model. Apart from ref. [6] model defects have not
been discussed so far. Only recently, Mercatali et al. [9]
presented a comparison of various criteria for the quality
of a model.

In this paper we consider the question of covariance
matrices for modelling from a fundamental point of view.
Therefore, we give a brief outline of statistics in Sect.
IIA and discuss the features of the so-called Bayesian
update procedure and its linearized version in Sect. II B.
In order to account for correlations between experiments
and keeping the simple form of an update procedure we
propose a correlated Bayesian update approach (CBUA)
which is outlined in Sect. II C. In Sect. III we focus on
the determination of a well determined prior for nuclear
data evaluation from modelling. First we summarize in
Sect. IIIA the ideas of ref. [10], which provide covariance
matrices associated with uncertainties in nuclear model
parameters. In Sect. III B we formulate procedures for

Nuclear Data Sheets 109 (2008) 2762–2767

0090-3752/$ – see front matter © 2008 Published by Elsevier Inc.

www.elsevier.com/locate/nds

doi:10.1016/j.nds.2008.11.006



Author's personal copy

Consistent Procedure... NUCLEAR DATA SHEETS H. Leeb et al.

the determination of model defects. Two methods are
proposed, whose covariance matrices are compared at the
example of neutron cross sections of 16O. In Sect. IV
some concluding remarks are given.

II. BAYESIAN STATISTICS

A. Basic relations

The assignment of uncertainties to scientific data was
discussed in detail by Fröhner [11]. It is essentially
a problem of statistics and requires the interpretation
of probability distributions of the Subjective School of

Thoughts, i.e. as degrees of plausibility [12], which can-
not be verified experimentally. Fröhner [11] addressed
primarily aspects related to uncertainty estimates of ex-
perimental data. Here we will focus on uncertainty esti-
mates of model calculations, which can be used as a prior
for nuclear data evaluation. In particular we consider co-
variance matrices 〈ΔσρΔση〉 of integral cross sections σρ

and ση, where ρ, η characterize both the reaction channel
and the energy.

Probability theory is built upon two fundamental re-
lationships for the probability distribution p

p(x, σ|M) + p(x̄, σ|M) = 1 , (1)

p(x|σ,M)p(σ|M) = p(σ|x,M)p(x|M) , (2)

where Eq. (2) is equivalent to the conditioned probabil-
ity distribution p(x, σ|M) that the propositions x and σ
are true under the conditions of the model M . Here we
use the propositions relevant in nuclear data evaluation,
i.e. x refers to the set of parameters, σ to the set of ex-
perimental data and M to the nuclear model used. The
bar below x and σ indicates that both quantities are vec-
tors, while x̄ means that the proposition x is ’false’. The
product rule, Eq. (2) leads directly to Bayes theorem [13]

p(x|σ,M) =
p(σ|x,M)

p(σ|M)
p(x|M) , (3)

which allows to update the prior distribution p(x|M)
with the information obtained by measurements ex-
pressed in the likelihood function p(σ|x,M). Thus the
aposteriori distribution p(x|σ,M) is the expected proba-
bility distribution of the set of parameters taking consis-
tently into account the experimental data and the avail-
able knowledge before the experiment.

The likelihood function p(σ|x,M) gives the probability
distribution of the data σ for a model M with parameters
x,

p(σ|x,M) = exp

[
−

1

2

(
σ − σM (x)

)T
B−1

(
σ − σM (x)

)]
,

(4)
where the upper index T denotes transpostion and B
is the covariance matrix of the experiment with elements
Bρη = 〈ΔσρΔση〉 which account for statistical uncertain-
ties and correlated (systematic) errors.

B. Linearized Bayesian update

Knowing the prior distribution, Bayes theorem (3) can
easily be implemented via Monte Carlo techniques. How-
ever, almost all applications in nuclear data evaluation
make use of a linearized version of Bayes theorem, which
assumes normal distributions of the prior,

p(x|M) = N exp

[
−

1

2
(x − x

0
)T A−1

0
(x − x

0
)

]
, (5)

where x
0

is the apriori mean value of the parameter vec-
tor x, A0 the apriori covariance matrix of the parameters
and N is an appropriate normalisation factor. Together
with the likelihood function (4) one obtains via Bayes
theorem the aposteriori distribution (3), which in this
case reduces to an exponentional function

p(x|σ,M) = Ñ exp

[
−

1

2
(x − x

0
)T A−1

0
(x − x

0
) (6)

−
1

2

(
σ − σM (x)

)T
B−1

(
σ − σM (x)

)]
.

Introducing the sensitivity matrix S with matrix ele-
ments

Sη,m =
∂σM

η

∂xm

(7)

allows via linearisation to extract from the exponent of
(6) the aposteriori mean value x

1
and the aposteriori co-

variance matrix A1 of the parameters,

x
1

= x
0

+ A0S
T (Q + B)−1(σ − σM (x

0
) , (8)

A1 = A0 − A0S
T (Q + B)−1SA0 (9)

with

Q = SA0S
T . (10)

The implementation of the linearized version becomes
particularly simple if the dimension of the inverted ma-
trix, i.e. Q + B is small. Therefore it is used to perform
a sequential process and to include one experiment after
the other. Thus in the n-th step the data of the n-th
experiment are included leading from xn−1

and An−1 to
xn and An. This linearized update procedure is applied
to nuclear data evaluations by Vonach and Tagesen [1, 2]
and is also used in the SAMMY code. In principle also
the Kalman filter technique employed by [5] corresponds
to such a linearized Bayesian update procedure.

We considered a schematic example to study the dif-
ferences between the Bayesian update procedure and the
application of (8,9) in one step. Especially we assume an
observable f(x) = a + bx + cx2 with simulated experi-
mental data given by

f̃(y) = (a + by + cy2)(1 + d ∗ r) + Δτ(y) , (11)

where a, b and c are parameters, r ∈ [−1,+1] is a uniform
random variable, d is the width of the random interval
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FIG. 1: The mean value (thick solid) and the error bands
(long dashed) of the function f(y) obtained from 400 sets of
simulated experimental data assuming d = 0.2 and Δτ(y) =
0.2. For comparison the mean value (thin solid line) and the
error band (dotted line) of the prior are shown.
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FIG. 2: Square root of the variance of the f(y)-values ob-
tained by Bayesian update (solid line), full Bayesian proce-
dure in one step (dashed line) and the prior (dotted line).

and Δτ(y) is a systematic error. The statistical variance
Δ2σ(y) and the systematic error are of the form

Δ2σ(y) =
4

3
d2f2(y) , (12)

Δτ(y) = e + f
√

(y) (13)

and are used to construct the covariance matrix of the
simulated experiment

Bi,j = Δτ(yi)Δτ(yj) + δi,jΔ
2σ(yi) . (14)

We constructed 400 sets of experiments, each consist-
ing of 8 f̃(yi)-values with a = 1, b = −1, c = 1, where
yi ∈ [0.2, 2.4] are 8 different but fixed argument values.
In Fig. 1 we show the mean values and the error band
obtained by a full Bayesian calculation in one step. Using
the same experimental data in a Bayesian update proce-
dure leads to a slightly different mean value, but also to
a different error band. A comparison of the variances is
given in Fig. 2, which indicates that the Bayesian up-
date procedure tends to too small uncertainties. It can
easily be shown that the origin for the difference between
Bayesian update and the full Bayesian calculation in one
step is the neglect of correlations between experiments
in the update procedure. This defect of the Bayesian

update procedure may also explain in part the unreal-
istically small uncertainties found in determinations of
covariance matrices based on modelling.

C. Correlated Bayesian update approach

The standard Bayesian update procedure is a simple
and efficient procedure to include new experimental data
into the evaluation. We therefore aimed at the formula-
tion of a similar approach which includes the correlations
between experiments in first order. Our starting point is
the consideration of two experiments of equivalent dimen-
sion, which should be included into the evaluation. For
these two data sets we performed in closed form the stan-
dard Bayesian update procedure and the full Bayesian
calculation. Comparison of the two results allows to ex-
tract the terms due to correlations between experiments.
Thus we obtain a modified Bayesian update formula

Ai = Ai−1 − Ai−1S
T (SAi−1S

T + Bi)
−1SAi−1

+ A0S
T

[
Ecor + Fcor + Gcor + GT

cor

]
SA0 , (15)

where the first two terms of Eq. (15) correspond to the
standard update procedure and Ecor, Fcor, Gcor are con-
tributions due to the correlations C between experiment
’1’ and ’2’. The terms are all of similar form. As an
example we give here Ecor

Ecor =
[
(Q + B1) − (Q + CT )(Q + B2)

−1(Q + C)
]−1

−
[
(Q + B1) − Q(Q + B2)

−1Q
]−1

. (16)

In an update procedure we do not want to keep the whole
history of the evaluation process. Hence B1 will not be
available and we use in the correlation term for this ma-
trix the covariance matrix B2 of the experiment which is
included in the current step.

In order to show the feasibility of the Correlated

Bayesian Update Approach we have applied it on the pre-
vious example. Since we do not know the correlations be-
tween experiments we have multiplied the block matrices
describing the correlations between different experiments
with an over all factor q. In Fig. 3 the variances for dif-
ferent q-values are shown. Although there is still place
for refinement of the CBUA this first example shows that
the variances show a saturation which in case of q = 1 is
the size of the smallest systematic error.

III. PRIOR DETERMINATION

The choice of the proper prior is of great importance
for nuclear data evaluations, which suffer from a scarcity
of experimental data. Thus the evaluation is essentially
given by the model prior providing mean values and asso-
ciated covariance matrices. Following [6] there are three
sources of uncertainties in model calculations. Thus the
total covariance matrix is a sum of three terms, i.e. (1)

2764



Author's personal copy

Consistent Procedure... NUCLEAR DATA SHEETS H. Leeb et al.

0 100 200 300 400 500 600 700 800
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

number of experiments

sq
ua

re
ro

ot
s 

of
 v

ar
ia

nc
es

 fo
r 

di
ffe

re
nt

q

q=1
0.6
0.4
0.2
0
0.8
0.1

FIG. 3: Square root of the variance of the f(y)-values ob-
tained by the Correlated Bayesian Update Approach assum-
ing different strength of the correlations.

the covariance matrix due to parameter uncertainties, (2)
the covariance matrix associated with numerical errors
and (3) the so-called model defects. In this paper we
outline the procedure developed in [10, 14] to account
for parameter uncertainties. The numerical errors can
usually be controlled and are not discussed here. The
major part of this section is devoted to the formulation
of model defects, for which no systematic treatment is
available at present.

A. Parameter uncertainties

Based on the concepts of maximum information en-
tropy and invariant measures Jaynes [15] formulated an
unambiguous criterion for the apriori distribution. These
ideas have been adapted and applied for nuclear data
evaluation in Refs. [10] and [14]. The basic idea is maxi-
mizing the information entropy S under constraints stem-
ing from apriori knowledge,

δ

{
−

∫
dx1 · · ·

∫
dxnp(x) ln

p(x)

m(x)
+

K∑
k=1

λkGk[p(x)]

−λ0

[∫
dx1 · · ·

∫
dxnp(x) − 1

]}
= 0 , (17)

where λi, i = 1, . . . , K are Lagrange parameters and Gk

are functionals, which contain apriori knowledge, e.g.

mean values and correlations of parameters. The func-
tion m(x) is an invariant measure ensuring the form in-
variance under change of variables. In the presented ver-
sion we have formulated the models with scaling parame-
ters for which the invariant measure is known to be 1/x.
Furthermore we did not solve the full variation princi-
ple, but consider the uncorrelated eigenparameters ξ for
which the probability is of simple product form. Assum-
ing the knowledge of the mean values the corresponding
apriori distribution is then given for each eigenparameter

p(ξ�) =
m(ξ�)

Z(λ�)
exp [−λ�ξ�)] (18)

with the partition function

Z(λ�) =

∫
dξ�m(ξ�) exp [−λ�ξ�] . (19)

An important step in this procedure is the determina-
tion of the admissible range of the parameters and their
correlations. In Ref. [14] several physics constraints have
been worked out especially for optical model parameters.

With the knowledge of the apriori distribution it is
straightforward to determine the covariance matrices as-
sociated with parameter uncertainties.

B. Model defects

The collision of a nucleon with a nucleus represents a
quantum mechanical many-body problem for which no
rigorous ab-initio calculations starting from the nucleon-
nucleon interaction are feasible at present. In order to
overcome this problem, nuclear models have been for-
mulated, which describe various aspects of the collision.
Usually these models contain effective parameters simu-
lating specific features of the many-body problem, but
obviously they cannot account for all pecularities of the
reaction processes. Especially it may happen that vari-
ation of the model parameters over the whole domain
does not match the actual value of the observable. This
so-called model defect has to be taken into account in an
evaluation of nuclear data based on modelling.

Estimates of the model defects and the associated co-
variance matrices are difficult because the failures are of
non-statistical nature and cannot be determined via theo-
retical considerations. In order to quantify model defects
one must take recourse to experimental data. However,
one must avoid double counting using e.g. only data from
neighbouring nuclei in the same energy range, which are
not used in a subsequent evaluation.

At present there exists no established method to de-
termine model defects. In the following we propose two
procedures: (i) the scaling procedure which defines for
each isotope energy independent scaling factors for each
reaction channel and (ii) remodelling which defines an en-
ergy dependent scaling factor for each reaction channel.

First let us define the common framework. We assume
that we use data from N neighbouring isotopes, from
which we believe that the applied model describes the
reaction channel of interest, c, equally well as for the iso-
tope actually considered. The energy region is divided
into M bins with energy Em,m = 1, · · · ,M at the cen-
ter of the m-th bin. We assume that for the reaction
considered there exist for most of the neighboring iso-
topes experimental data for each energy bin. Thus we
can introduce an index set Ebin(m,n) to classify the ex-
perimental data for the n-th isotope in the m-th energy
bin. We introduce the bin quantities

〈D(c)
n (Em)〉 =

∑
j∈Ebin(m,n)

w
(c,m,n)

j

σ
(c)
ex (Ej)

σ
(c)

th (Ej)
, (20)
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〈
(
D(c)

n (Em)
)2

〉 =
∑

j∈Ebin(m,n)

w
(c,m,n)

j

(
σ

(c)
ex (Ej)

σ
(c)

th (Ej)

)2

,

(21)

where w
(c,m,n)

j is the chosen weight, Ej is the energy
of the j-th experimental point and ex and th refer to
experimental and model cross section, respectively. In
this contribution we choose

w
(c,m,n)

j =
σ

(c)

th (Ej)∑
j′∈Ebin(m,n)

σ
(c)

th (Ej′)
, (22)

which emphasizes the scaling factors at the highest values
of the cross section. These definitions allow a compact
formulation of the two proposals for a covariance matrix
associated with model defects.

1. Model defects from scaling procedure

In this procedure one defines first an overall scaling
factor D(c) via averaging over all neigboring isotopes,

D(c) =
1

N

N∑
n=1

〈D(c)
n 〉 , (23)

with

〈D(c)
n 〉 =

M∑
m=1

w(c,n)

m 〈D(c)
n (Em)〉 . (24)

The weights w
(c,n)

m should be in correspondence with
those for the averages over the energy bins of Eqs. (20)
and (21). The covariance matrix for the reaction channel
of the considered isotope is then introduced via

〈 Δσ(c)(Em)Δσ(c)(Em′)〉 = σ
(c)

th (Em)σ
(c)

th (Em′)

×
1

N

N∑
n=1

[(
〈D(c)

n (Em)〉 − D(c)
)(

〈D(c)
n (Em′)〉 − D(c)

)

+ δm,m′

(
〈
(
D(c)

n (Em)
)2

〉 −
(
〈D(c)

n (Em)〉
)2

)]
. (25)

The first term of Eq. (25) is due to the defect of the
model, while the second term reflects the uncertainty in
the scaling factor due to the limited accuracy of the ex-
perimental data. However, it must be remarked that this
covariance matrix is not fully of statistical nature.

2. Model defects associated with remodelling

The formulation of an energy-dependent scaling factor

D(c)(Em) =
1

N

N∑
n=1

〈D(c)
n (Em)〉 (26)

changes the inherent features of the original model (e.g.
the energy dependence) and we denote this procedure as
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FIG. 4: (a) The scaling factor and (b) the square root of the
variances in % of the model cross section for n-16O total cross
sections for both methods. The results of the scaling method
are denoted in red and those of remodelling in green.
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FIG. 5: Correlation matrix of the model defects in the total
cross sections of oxygen using the scaling procedure of sub-
section III B. The model calculations are performed with the
TALYS code with adapted optical potential.

remodelling. A reasonable covariance matrix is given by

〈 Δσ(c)(Em)Δσ(c)(Em′)〉 = σ
(c)

th (Em)σ
(c)

th (Em′)

×
1

N

N∑
n=1

[
ΔD(c)

n (Em)ΔD(c)
n (Em′)

+ δm,m′

(
〈
(
D(c)

n (Em)
)2

〉 −
(
〈D(c)

n (Em)〉
)2

)]
.(27)

with

ΔD(c)
n (Em) = 〈D(c)

n (Em)〉 − D(c)(Em) . (28)

3. Example

The procedures defined in this section allow the esti-
mate of the model defects, comprising the corrections of
the mean value and the associated covariance matrix for
the relevant reactions. In order to show the feasibility we
apply the procedure to neutron-induced reactions of oxy-
gen in the energy range between 5 and 60 MeV. Apart
from a slightly adapted neutron-oxygen optical potential
we use the code TALYS with default parameters as nu-
clear model description. We tested both procedures using
total cross section data from the EXFOR library of the
neighbouring nuclei 12C, 14N, 19F, 23Na and 24Mg. In
Fig. 4a the scaling factor D(c) = 0.9735 as well as the
energy-dependent remodelling factor D(c)(Em) are dis-
played. The latter exhibits only a small energy depen-
dence beyond 20 MeV resulting in similar uncertainties
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FIG. 6: Correlation matrix of the model defects in the total
cross sections of oxygen using the remodelling procedure.

of the model defects for both methods (Fig. 4b). In Fig.
5 we show the correlation matrix due to model defects for
the total cross section obtained by the scaling method of
subsect. III B.

For comparison we show in Fig. 6 the corresponding
correlation matrix obtained via the remodelling proce-
dure of subsection III B. Both procedures yield a similar
gross structure of the correlations, which reflects the fact
that the scaling procedure is a fair approach for the total
cross section beyond 20 MeV.

IV. SUMMARY

We have outlined a consistent procedure for nuclear
data evaluations which rely heavily on modelling. The

considerations are based on Bayesian statistics and pro-
vides a theoretically well defined prior associated with
parameter uncertainties. In addition, it contains two pro-
posals for a proper formulation of model defects. These
procedures use available experimental information from
neighboring nuclei, but depending on the nature of the
nuclear model they can be extended to other projectiles.

An essential outcome of this contribution is the impor-
tance of the proper treatment of systematic errors. Ap-
plying Bayes theorem via an update procedure ignores
correlations between experiments and assumes a statis-
tical distribution of systematic errors, which may result
in unphysically small uncertainties of the evaluation. In
order to maintain the advantages of the update proce-
dure we have suggested a so-called Correlated Bayesian

Update Approach (CBUA), which contains essentials of
the correlations between experiments.

In summary, we have presented a complete and
consistent method to set up nuclear data evaluations
including covariance information for systems with scarce
experimental information. At present this method is
particularly useful for nuclear data evaluations beyond
20 MeV, where limited experimental data are available.
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Birkhäuser, Basel (1975).

[13] Th. Bayes Rev., “Essey Toward Solving a Problem in
the Doctrine of Chances”, Phil. Trans. Roy. Soc. 370
(1763); Reprint with biographical note by G.A. Barnard
in Biometrika 45, 293 (1958).

[14] M.T. Pigni, “Reliability of Optical Potentials for Nuclear
Data Evaluation”, PhD thesis, TU Wien (2006).

[15] E.T. Jaynes, Phys. Rev. 106, 620 (1957); 108, 171
(1957).

2767


