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The Diversity Order of the Semidefinite
Relaxation Detector
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Abstract—In this paper, we consider the detection of binary
(antipodal) signals transmitted in a spatially multiplexed fashion
over a fading multiple-input–multiple-output (MIMO) channel
and where the detection is done by means of semidefinite re-
laxation (SDR). The SDR detector is an attractive alternative
to maximum-likelihood (ML) detection since the complexity is
polynomial rather than exponential. Assuming that the channel
matrix is drawn with independent identically distributed (i.i.d.)
real-valued Gaussian entries, we study the receiver diversity and
prove that the SDR detector achieves the maximum possible diver-
sity. Thus, the error probability of the receiver tends to zero at the
same rate as the optimal ML receiver in the high signal-to-noise
ratio (SNR) limit. This significantly strengthens previous per-
formance guarantees available for the semidefinite relaxation
detector. Additionally, it proves that full diversity detection is
also possible in certain scenarios when using a noncombinatorial
receiver structure.

Index Terms—Detection, diversity, multiple-input–multiple-
output (MIMO), semidefinite relaxation (SDR).

I. INTRODUCTION

I N THIS PAPER, we consider the detection of binary sym-
bols transmitted over an multiple-input–multiple-

output (MIMO) channel modeled according to

(1)

where , , and . In
what follows, is referred to as the vector of received signals,

as the channel matrix, as the transmitted message, and
as the additive noise based on their physical interpretations in
the digital communications context [1]. The additive noise is
assumed to be white and Gaussian with a variance of per
component. It will also be assumed that the channel matrix
is known to the receiver.

The problem of detecting a vector of symbols (not necessarily
binary) transmitted over a MIMO channel is of general interest
as it arises frequently in digital communications. Examples in-
clude, but are not limited to, the multiuser detection problem
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in code division multiple access (CDMA) [2] and communi-
cations over a multiple antenna channel [1]. However, while
the detection problem is the same for many areas, the structure
and assumptions regarding the channel matrix will typically
differ depending on the specific context. In the interest of sim-
plicity, we will assume that the channel matrix may be mod-
eled using independent identically distributed (i.i.d.) Gaussian
entries with zero mean and finite variance, an assumption moti-
vated by the problem of wireless communication over a richly
scattered fading multiple antenna channel [1]. The signal-to-
noise ratio (SNR) of the channel is equal to and the analysis
will be focussed on the high SNR regime. The maximum-like-
lihood (ML) estimate of , , is given by

(2)

where denotes the Euclidean norm, i.e., the ML detector se-
lects the message , which minimizes the distance between the
received signals and the hypothesized noise-free message .
An error is declared whenever and it is well known
that the ML detector is optimal in the sense that it minimizes
the probability of error given that all transmitted messages are
a priori equally likely. However, for a general channel matrix

and vector of received signals , the ML detection problem
in (2) has been shown to be NP-hard [3] and the full search so-
lution has a complexity of where is the number of
symbols jointly detected. A similar result holds for the sphere
decoding algorithm which is able to provide exact solutions to
(2) at an expected complexity on the order of for some

[4]. The complexity is thus, although significantly
lower than the full search, still exponential for the sphere de-
coding algorithm.

The prohibitive complexity of the ML detector motivates the
study of suboptimal (but computationally advantageous) alter-
natives. Examples of such suboptimal alternatives are the zero
forcing (ZF) and linear minimum mean square error (LMMSE)
detectors [1] and their decision feedback counterparts and the
lattice reduction-aided (LRA) detectors [5], [6]. Herein, we
study the semidefinite relaxation (SDR) detector that obtains
an estimate of in polynomial time. The SDR detector was
(in the communications literature) first proposed in [7]–[9] for
CDMA multiuser detection but is straightforwardly applicable
to the detection problem considered herein. The basis of the
SDR detector is a convex relaxation technique where (2) is
simplified by expanding the feasible set (relaxing some of the
constraints). An estimate of is then obtained by mapping the
solution to the simplified optimization problem back into
by a suitable heuristic. Also, although generalizations of the
SDR detector to higher order constellations have appeared in
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the literature [10]–[13], we will herein only consider the binary
case.

In this paper, we focus on the error probability performance
of the SDR detector in the high SNR regime and provide an an-
alytical proof of that the detector achieves maximal diversity.
This result is formally stated by Theorem 1 in Section II-B and
represents a nontrivial extension of previously known perfor-
mance guarantees available for the SDR detector; see, e.g., [8],
[14], and [15]. It is also interesting to note that a similar re-
sult (regarding the maximal diversity) was recently provided for
the LRA detector [16]. However, the design philosophies under-
lying the LRA and SDR detectors are fundamentally different.
Whereas the LRA is combinatorial in nature the SDR detector
is based on the minimization of a continuous function over a
convex set.

After a review of the SDR receiver we introduce the main
contribution of this work, namely, Theorem 1 in Section II. A
short outline of the proof is given in Section III, while the full
proof is saved for Sections IV and V. Following is Section VI,
where we discuss possible generalizations of the result and pro-
vide numerical examples.

II. SEMIDEFINITE RELAXATION

The use of SDR for bounding the optimal value of a com-
binatorial optimization problem was first considered in the late
1970s [17] (where it was used to bound the Shannon capacity
of a graph). Theoretical work in the 1990s [18] along with the
introduction of practical methods for solving semidefinite pro-
grams [19]–[21] made the SDR a viable method for finding ap-
proximate solutions to many combinatorial problems.

A. The SDR Detector

The (nonconvex) optimization problem given by

(3)

where is the vector of all ones and where

(4)

is equivalent to (2) in the sense that the solution to (2) is easily
obtained from the solution to (3) and vice verse [7], [8], [22].
The optimal point of (2) is related to the optimal point of (3)
through as indicated by (4). Naturally, as (3) and (2) are equiv-
alent they are also equally difficult to solve from a complexity
theoretic point of view. In particular, it follows from [3] that (3)
is also NP-hard in general.

The SDR detector is based on solving

(5)

in the place of (3). In (5), indicates that is sym-
metric and positive definite and since implies
it follows that (5) represents a relaxation of (3). Because (5)

is a convex problem it can be efficiently solved in polynomial
time [20], [23]. In particular, there is an interior point algorithm
which solves (5) to any fixed precision in time [24];
see, also, [7], where this algorithm is presented in the digital
communications context. Additionally, there are algorithms and
implementations specifically optimized for the data model con-
sidered in this work; see, e.g., [25]. When the optimal solution
to (5) is rank one it is also an optimal solution to (3). The oppo-
site is, however, not generally true and the solution to (5) can at
most serve as a basis for obtaining an approximate solution to
(2) or (3) [7], [8].

There are several suggestions for obtaining an estimate of
based on the solution of (5). Among the more powerful ap-

proaches are a randomization technique [8], [26] and an approx-
imation based on the dominant eigenvector of the optimal
in (5)[7]. Numerical evidence suggests that the randomization
technique results in lower error probability. We will, however,
herein only consider the strategy of simply using the signs of
the last column of where is the optimal point of (5).
This approach was mentioned in [7], but discarded in favor of
the (superior) eigenvector approach. However, as the sign-based
approach already achieves the maximum diversity and is some-
what easier to analyze, we will only consider this method in de-
tail. It should, however, be noted that our proof extends to the
dominant eigenvector method in a fairly straightforward manner
and to the randomization technique given that the simple esti-
mate (obtained by considering the signs) is included in the list
of candidate solutions.

To summarize, we obtain the SDR estimate as follows.
Let be the minimizer of (5). Then, is defined according
to

(6)

where

is the sign function, i.e., is given by the signs of the last
column of . Note also that because

the procedure is guaranteed to yield the ML solution whenever
is rank one.

B. SDR Performance

The extraordinary performance of the SDR technique in many
areas have been a motivating reason for its study and there are
several results in the literature regarding the quality of the SDR
approximation. These include the bound of [14], which is a gen-
eralization of a previous result for the max cut problem [26].
There are also results relating the SDR to other relaxations [27].
In the context of digital communications it has been shown
that several low-complexity detectors may be viewed as further
relaxations of the SDR detector [8]. Notably, these low-com-
plexity detectors include both the ZF and LMMSE detectors and
give strong support for the SDR approach although the results
in [8] relate to the objective values of the relaxations rather than
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directly to the quality of the estimates. Further, a probabilistic
bound on the difference in optimal objective value between (5)
and (3) was given in [15] for the large system limit. Necessary
and sufficient conditions for the existence of rank one solutions
to (5) were given in [28], where it was also established that the
detector is free of an error floor when is full rank. How-
ever, the result in [28] does not extend to a statement regarding
diversity. Specifically, it is possible to show that an alternative
SDR receiver which calls an error whenever (5) is not of rank
one would not achieve the maximum diversity [29, Th. 7.3]. In
other words, the second phase of the SDR receiver where high
rank solutions are used to obtain symbol estimates is crucial
to the SDR performance and must be taken into account in the
analysis.

The main contribution of this work is a rather strong state-
ment regarding SDR performance when applied to a fading
channel, namely, that under the model in (1) with an i.i.d.
Gaussian channel for which the SDR detector will have
a diversity equal to that of the optimal ML detector. Loosely
speaking, although suboptimal, the SDR detector will have an
error probability which vanishes at the same rate as the ML
detector in the high SNR limit and the loss due to suboptimality
will be a shift in SNR and not a loss of diversity. We formally
state this as follows.

Theorem 1: Assume that in (1) consists of i.i.d.
Gaussian entries of zero mean and fixed (nonzero) variance. As-
sume further that . Then

It is important to note that the SDR (and maximum) diversity
is in this case and not . This is because we explicitly con-
sider a real-valued channel matrix (1) as opposed to the com-
plex channel case more frequently studied in the literature. It
is straightforward to show the maximum achievable diversity
in this case is by extending the proof of [30] to cover the
real-valued case. In the case of ZF and LMMSE, the diversity
is , which can be seen by following the argument of [1,
Sec. 8.5.1] with a real-valued channel matrix.

Following [31], throughout this work, we will make use of
the symbol to denote exponential equality, defined according
to

(7)

Similar definitions will also apply to the symbols and .
For reference, we list the most important properties of the expo-
nential equality in Appendix A. Using (7) generally allows for
a more compact (and suggestive) notation and in this notation
the statement of Theorem 1 becomes

Most of the remaining part of this work is devoted to the proof
of Theorem 1. The formal proof is divided into several lemmas

Fig. 1. Illustration of the feasible set X of the SDR detector in (5). The hyper-
planeH separates points in the feasible set that are close to and far fromXXX .

presented in Sections IV and V. However, before presenting the
proof in full, a short outline is given in Section III.

III. SDR DIVERSITY PROOF—OUTLINE

Due to the symmetry of the problem (and the detector), it can
be assumed without loss of generality that was trans-
mitted. This will also be done in the sequel. In the case,
it is possible to graphically illustrate the feasible set of (5)
in order to gain intuition. To this end, consider parameterizing

as in [32] or [7], i.e., according to

The feasible set is illustrated in Fig. 1. The rank one matrix
that corresponds to the transmitted message is also

indicated in the figure.
Intuitively, one can characterize the error events of the SDR

receiver as follows. When the optimal point of (5) is close
to , then the rounding procedure described in Section II will
be able to recover the correct rank one matrix, namely, . It is
only when the optimal point of (5) is far from that an error
can occur. In order to particularize the notion of “close to” in the
proof of Theorem 1, we makes use of a hyperplane as shown
in Fig. 1 to single out the points in that are “close to” .
Specifically, we let be the points in that are on the same
side of as and choose such that whenever

. In the zero noise case, i.e., when , is always
optimal in (5) with a criterion value equal to . It can also be
shown that for if

By allowing for while assuming that is significantly
smaller than , it will follow by continuity that is still
close to zero and that is not significantly smaller than

for any . This implies that there is a point in with
a criterion value close to zero, while all points have an
objective value on the order of , and therefore, the optimum
over must belong to in which case . In short, it
is sufficient that is large in comparison with the noise in order
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for the SDR detector to make a correct decision. This argument
is made rigorously in the proof of Lemma 1 in Section IV.

The overall proof of Theorem 1 is based on the heuristic ar-
gument described previously and is divided into two parts. The
first part is concerned with proving that the error probability
of the SDR detector is, in the high SNR regime, governed by
the probability that is atypically small rather than the proba-
bility that is atypically large. This statement is formalized by
Lemma 2 in Section IV. The second part of the proof, contained
in Section V, is concerned with bounding the probability that
is atypically small. In order for to be small there must be at
least one for which is small and in essence
the technique used to establish our bound can be summarized as
follows.

1) Cover (or, more precisely, a set isomorphic to )
with -balls and bound the probability that each specific
-ball contains an for which is small.

2) Count the number of -balls required to cover and
use the union bound to bound the probability that is
small.

One does need to be careful, however, and not naively apply
the union bound. This is because the probability that each -ball
contains an for which is small depends on where
in the -ball is located. Consequently, in order to ob-
tain a sufficiently tight bound, must first be split into
subsets with equiprobable coverings and the technically most
challenging part of the proof relates to counting the number of
-balls required to cover each such subset. The analysis of each

particular -ball is provided by Lemma 3 and the counting argu-
ment is captured by Lemma 4 in Section V. The proof of The-
orem 1, given at the end of Section V, then follows by combining
Lemmas 3 and 4.

IV. SDR DIVERSITY PROOF—PART I

We begin by giving rigorous justification to the first part of
the heuristic argument given in Section III and show that the
noise can effectively be removed from (or integrated out of)
the analysis of the receiver diversity. Let the feasible set of
(5) be given by

(8)

where denotes the set of symmetric matrices. Let be
the hyperplane (or affine subset of ) given by

(9)

where

(10)

It will be established later that chosen this way is sufficient
for drawing the conclusion that whenever .
The optimal value of over the intersection set
is under the zero noise assumption given by

(11)

where

and . Note that is equal to in (4) when
and .

We are now able to pose and prove the first lemma regarding
the error probability of the SDR detector. In essence, we wish
to establish that a large is sufficient for correct detection. The
statement is captured by Lemma 1 (note again that is
assumed to be the transmitted message).

Lemma 1: Let be given by (11). Then

Proof: It follows by the linearity of the objective function
that the optimal point of (5) must be on the boundary of and
rank deficient. Thus, consider an for which (
is positive semidefinite but not positive definite) and partition
as

where and . This is possible because has
at most rank . Note also that follows from
. Further, note that the matrix defined in (4) can be written as

Thus

where refers to the Frobenius norm. Now, the model of (1)
for yields (through )

Note that

where the last equality follows from . Thus, whenever

it follows that

(12)

At the same time, for
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it follows that

(13)

Thus, by (12) and (13), it follows that

(14)

which implies that cannot be optimal for (5) if

Now, note that

for defined in (10) and

(15)

where . Let be the optimal point for (5) and
note that

If this was not true, would not be optimal due to (14) and
(15).

The assumption of the lemma, i.e.,

implies that for any .
The same conclusion could be drawn for for which

. This follows due to the linearity of the cost
function and since . That is, if there were

for which and
, then for some

and contrary to the assumption. In
short

Now, partition as

and note that

As

since due to it follows by
that

which implies that all elements of are in the range of .
Thus, the rounding procedure given in (6) will round the last
column of to and it follows that .

Essentially, Lemma 1 states that for an error to occur in the
high SNR regime one of two thing must happen. Either is atyp-
ically small or is atypically large. As stated in Section III, it
can be argued that the probability of the former event outweighs
the probability of the latter. This is formally stated by the fol-
lowing lemma which concludes this section.

Lemma 2: Let be given by (11). Then

(16)

Proof: Assume (as was done in the lemma) that

This, combined with , implies that for any
arbitrarily small there is a constant , for which

for all . Now, by Lemma 1

Introduce a Gaussian vector with i.i.d. zero mean el-
ements of variance one and note that has the same
distribution as . Let denote the probability den-
sity function of . As is independent of (and ), it
follows that

for some independent of . Note that follows because
has finite moments. Thus

However, as the relation holds for arbitrary small , it fol-
lows that

which concludes the proof.
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V. SDR DIVERSITY PROOF—PART II

Let be given by (11). In light of Lemma 2, all that remains to
be done in order to prove Theorem 1 is to provide a sufficiently
tight bound on

in the high SNR limit. To this end, it is useful to again consider
the definition of (11). By noting that

if follows that is given by

(17)

where

(18)

We can thus equivalently view (17) as our definition of . The
main reason for doing so is simply that the objective function in
(17) has a somewhat simpler form than the one in (11).

Now, note that in order for , there must be at least
one for which . However, the probability
that for some particular will generally
depend on the specific considered (as briefly mentioned in
Section III). In order to deal with this, we will first partition
into a finite number of subsets

such that is more or less constant for all
within one such subset. Then, the probability that will
be bounded by applying the union bound according to

(19)

where

and where by property (36b) in Appendix A it is known that
the sum in (19) will be given (or completely dominated), in the
exponential equality sense, by its maximal term.

It is interesting to note that this corresponds to the identifica-
tion of typical error events (or classes of error events), which is
closely related to the analysis of typical outage events in [31].
However, in [31], typical events were identified by classifying
particularly bad channels , while here, we will use the concept
to identify particularly troublesome subsets of . In essence, we
will partition based on the eigenvalues of (or how
close to singular is). The subset which dominates (19) will
be found by optimizing over the possible eigenvalue combina-
tions. However, before considering the general partitioning of

into such subsets, we will treat two motivating, and relatively
simple, special cases to gain intuition.

A. Special Cases

1) Rank One Matrices: First, let us consider the set of rank
one matrices , i.e., the set given by

For any particular in this set, with an eigenvalue decomposi-
tion given by , where , we have

(20)

As due to the constraint it follows by (36d)
in Appendix A that

for this particular . It can also be shown that there
are exactly distinct . In essence, each such
corresponds to the point at which line (in ) connecting

and intersects the hyperplane , given in (9). Therefore,
by applying the union bound to the finite number of rank one

, it follows that

where

Note also that there is a one-to-one correspondence between the
rank one matrices and all possible messages (not equal to the
transmitted message) that are searched over by the
ML detector. This is also the reason why

2) Full Rank Matrices: Next, consider the set of full rank (or
more precisely well conditioned) given by

for some constant , and let

As the criterion function may be bounded according to

for any , it follows directly that

by applying property (36d) in Appendix A. This result can also
be strengthened to show that

3) Discussion: The implication of the result in Sections V-A1
and V-A2 is that the event that is (in the limit) much
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less likely to be caused by one of the matrices in than one
of the matrices in . The probability of the former is on the
order of while the later is only and
when is large (provided ). Thus, (in a very loose sense)
the reason for the high diversity of the SDR detector is that the
elements added in the relaxation (the ones in ) are less likely
to cause errors than the elements already present in the feasible
set of the ML detection problem (the ones in ).

The question which remains to be answered however is if
there is some other set of , somewhere between the full rank
and rank one matrices, which can cause to occur with
a probability substantially larger than . The answer to this
question is somewhat surprisingly no provided that (but
maybe in some cases). In fact, most of the remaining
part of this paper is concerned with the formal proof of this
statement.

B. The General Case

In the general case, we consider sets on the form given by

(21)

where , , and denotes
the th eigenvalue of . For notational convenience, in (21), we
will also interpret as for in order to allow one or
more eigenvalues to be identically equal to zero. We can assume
without loss of generality that the eigenvalues are ordered and
that , , and for

. Note that the assumption that can be made
because (21) would be empty otherwise, due to the
constraint of in (18). Further, we define the random variable

(22)

In what follows, a bound on the probability of
is obtained by first partitioning into even smaller sets
(essentially -balls) and then using the union bound to bound

. It will be more convenient to work with a
square root factorization of instead of with directly.
Thus, we define a function

(23)

(where denotes the set of symmetric, positive–semidefinite

matrices) for which satisfies and where
is the eigenvalue decomposition of . That is,

provides square root factors of , which have orthogonal
columns with norms equal to . Let be given by

(24)

i.e., is the set of square root factors which can be ob-
tained from . Note that , be-
cause and . The random variable ,
defined in (22), can thus be equivalently defined by

(25)

We are now ready to provide the first lemma regarding the
probability that for any in a spherical neigh-
borhood of some given center point .

Lemma 3: Consider and define

(26)

Further, let

(27)

Then

where

where .
Proof: Note that, due to the rotational symmetry of the

distribution of , it can be assumed without loss of generality
that is diagonal (and equal to where is a diagonal matrix
containing the eigenvalues of for which ).

Pick some and consider the event that

(28)

and where at least one column of , , satisfies

(29)

First, we will show that this event implies that and
next that the event fails to occur with a probability which is not

larger (in the sense) than . Hence

Note first that (29) implies

for at least one because . Note also that this implies

Now, consider for any satisfying .
Under the additional assumption of (28), it follows that

where the last inequality holds whenever . Note also that
implies . Therefore, (28) and (29)

implies that .
Now, consider the probability that (29) fails to hold, e.g., that
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for all . As the columns of are independent, this
probability can be upper bounded as

where we have used

according to (36d) in Appendix A. The probability that (28) fails
to hold can be upper bounded as

according to (36e) in Appendix A. Therefore, by applying the
union bound

However, as was arbitrary, it follows that

which concludes the proof.

The next lemma provides a bound on the number of such
-balls [defined as in (26)], which are required to completely

cover the set . Lemma 4 is the technically most difficult
result of this work and we discuss this lemma in the following,
but save the stringent proof for Appendix B.

Lemma 4: Let and be defined as in (24) and
(26), respectively. Then, there is a collection of points

, for which

and

where denotes the number of elements of and where

(30)

Proof: Given in Appendix B.

Essentially, the proof of Lemma 4 relies on a geometric ar-
gument based on the dimensionality of low rank subsets of .
Specifically, as part of the proof of Lemma 4 it is shown that the
set of rank matrices , i.e.,

is part of a -dimensional (smooth) manifold, where

and . The manifold containing is locally diffeomor-
phic (having a one-to-one differentiable relation) with the -di-
mensional unit cube in (this is a property of any smooth

-dimensional manifold [33] and not specific to ). The
volume covered by one -dimensional -ball is on the
order of

and, therefore, one needs on the order of

(31)

such -balls to cover the unit cube in . By exploiting that
there is a differentiable (and, therefore, continuous) map be-
tween the unit cube and the manifold this result carries over to
a covering of .

The set of rank matrices can thus be covered by a
collection of points , satisfying

where

Extending this line of reasoning from rank dimensional sub-
sets to subsets which are close to being low rank in the
sense that the singular values of are bounded by powers of

yields the result stated in Lemma 4. Note also that this is
similar to the discussion following Theorem 4 in [31].

Now, Lemmas 3 and 4 can be combined in order to bound the
probability that contains an for which .
Then, by optimizing over and , one can find the set of the
form of most likely to contain such an . It can also
be argued that this set will dominate the probability of error in
the high SNR regime. These ideas are captured by the following
lemma.

Lemma 5: Let be defined as in (11). Then

where

(32)

Proof: Consider picking some for which
and and choose a . Let

be given such that and
if or otherwise for . The
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probability that where is defined in (22)
can be bounded, using the union bound according as

where is chosen according to Lemma 4 and where is
given by (27). Each term in the sum is upper bounded by

where is given in Lemma 3. The number of terms in the sum
is upper bounded by

where is given by (30). Thus, the probability that
is bounded as

where

and where the property

(for chosen as previously) was used to establish the first in-
equality. The second inequality follows by the definition of in
(32) along with .

Now, let

where is given by (23). Note that we can pick a finite set of
, , such that

(33)

where according to the aforementioned. This follows,
because by specifying , we include the ma-
trices for which the th eigenvalue satisfies

if and if . Thus, we can
cover the entire range of with a finite number of

. For the special case of , we know that is
bounded away from due to , which implies that

for sufficiently large given that , which is
why can be assumed without loss of generality.

Using the union bound, it follows that

because each term in the sum satisfies

and the number of terms is finite. However, as was arbi-
trary, it follows that

which concludes the proof.

In light of Lemma 5, the proof of Theorem 1 is now almost
trivial. All that remains is to compute in (32) and apply Lemma
2. We give the proof as follows.

Proof (of Theorem 1): For the case where , all terms
in the sum appearing in (32) are nonnegative. Thus, the min-
imum in (32) is achieved for and it follows
that

This, combined with Lemma 2, proves that

Next, note that the error probability of the SDR receiver is lower
bounded by

because the ML detector achieves the minimum probability of
error. Therefore, it follows that

By noting again that can be assumed without loss of
generality, the statement of Theorem 1 follows.

VI. EXAMPLES AND EXTENSIONS

We conclude by providing numerical examples illustrating
the results obtained and discuss possible extensions and future
work.

A. Numerical Example

The overall performance of the SDR detector is illustrated in
Fig. 2 for the case when . For all the examples in this
section, the variances of the elements in are chosen to be ,
yielding unit energy symbols at the receiver. The performance
of the ML detector, the LMMSE detector, and a version of the
SDR detector with randomized rounding (denoted SDRR) are
also included for comparison. In SDRR, the final estimate of is
obtained by, in addition to the estimate already obtained, adding

random candidates generated according to the procedure
outlined in [8] and choosing the one with the smallest ML metric
as the final estimate. The probability that (5) does not have a
rank one solution is indicated by the dashed line.

As predicted by Theorem 1, it can be seen that the SDR de-
tector achieves the same diversity order as the ML detector, a
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Fig. 2. Probability of error when HHH 2 has i.i.d. real-valued
Gaussian entries, and where m = n = 4. The dashed line correspond to
P(Rank(XXX ) 6= 1), whereXXX is the optimizer of (5).

property not shared by the simpler LMMSE detector. In addi-
tion, it can be seen that the SDRR detector provides a significant
improvement over the somewhat simpler SDR detector consid-
ered herein. Also, as mentioned in Section II-B, we see that the
rank one solutions alone are not sufficient for explaining the
SDR performance.

B. The Case

By Theorem 1, full diversity has been established so far under
the condition that . However, a careful inspection of the
proofs shows that the only part which explicitly relies on this
assumption is when it is argued that is an
optimal point for (32) in the case. However, nontrivial
bounds on the diversity will follow whenever in (32) is strictly
positive. To exemplify this, the following theorem provides a
lower bound on the diversity for the case when .

Theorem 2: Given the assumptions of Theorem 1 but for
, it holds that

where

(34)

Proof: The result is established by finding the optimum in
(32) and applying Lemma 2. To this end, note that the optimum
of (32) is achieved for for all satisfying

and for satisfying

Fig. 3. Probability of error whenHHH 2 has i.i.d. real-valued Gaussian
entries, and where m = 4 and n = 2. The dashed line correspond to
P(Rank(XXX ) 6= 1), whereXXX is the optimizer of (5).

The value of in (32) is thus given as

This completes the proof.

It should be noted, however, that this result is only nontrivial
if

In addition, we have no specific reason to believe that the bound

is tight (in the sense that could be replaced by ) in the
case, even in the cases where the bound is nontrivial. At

the same time, we do not expect the bound to be very loose in
the sense that the SDR detector would maintain ML diversity in
the general case. The latter belief is supported by Fig. 3,
where the error probability of the SDR is significantly larger
than that of the ML detector. Also, in this case, the situation is
improved by the SDRR implementation although there is still a
significant gap to ML.

C. Complex Channel Matrices

Throughout this work, we have also assumed that the channel
matrix is real valued. It is well known, however, that the SDR
receiver is also applicable to the case where 4-quadratic-am-
plitude modulation (4-QAM) symbols are transmitted over a
complex-valued MIMO channel; see, e.g., [7]. The most direct
strategy is to rewrite the problem in an equivalent real-valued
form according to

(35)

where , , , and are the
corresponding complex-valued quantities and where and
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Fig. 4. Probability of error when HHH 2 has i.i.d. complex-valued
Gaussian entries, and where N = M = 2. The dashed line correspond to
P(Rank(XXX ) 6= 1), whereXXX is the optimizer of (5).

denote the real and imaginary parts. However, the proof
of Theorem 1 does not extend to cover this case. The specific
reason is found in Lemma 3, where the rotational symmetry of

is explicitly used. This symmetry is lost in the formulation
given in (35), even in the case where is i.i.d. complex, cir-
cularly symmetric, zero mean Gaussian. More importantly, nu-
merical simulations suggest that the extension of Theorem 1 to
this case may not even be true. An indication of this can be seen
in Fig. 4, where the basic SDR detector considered herein as
well as the SDRR detector appears to experience a small loss in
diversity.

Assuming that there indeed is a loss in diversity in the com-
plex case, an interesting topic for future work would be to in-
vestigate whether strengthening the relaxation as suggested in
[7] or [13] could increase the diversity order. Numerical results
in [13] suggest that this may be possible and that (35) may not
be the optimal way of dealing with the complex case. It may
also be that the suggested loss in diversity is in fact due to the
simple rounding procedure used to obtain estimates of from
the solution of (5). However, at this stage,it is not clear if these
questions could be fully answered using the analytic tools de-
veloped herein.

VII. CONCLUSION

In this paper, we have shown that when applied to a fading
channel, modeled by a real-valued matrix with i.i.d. Gaussian
entries of zero mean and finite variance, the SDR detector
achieves the maximum possible diversity. This provides a
strong performance guarantee for the SDR approach, when
applied in the communications context.

APPENDIX A
EXPONENTIAL EQUALITY

For the readers’ convenience, we list the most important prop-
erties associated with the definition of exponential equality in
(7) (for this work). These properties are easily derived from
the definition in (7) and can also be found (often implicitly) in

many texts; see, e.g., [1] and [31]. Thus, we state the properties
without proof.

1) Scaling property: For any and
, it holds that

(36a)

2) Summation property: For any , it holds that

(36b)
This property extends in the obvious way to the sum of
finitely many terms.

3) Multiplication property: For any , it holds
that

(36c)

if the cases where is not well defined are excluded.
4) Extremal realizations of Gaussian vectors: Let

be a vector of i.i.d. Gaussian elements of finite nonzero
variance. Then

(36d)

for , where and

(36e)

for . These properties follow by noting that is
distributed with degrees of freedom; see, e.g., [1, Sec.

5.4.2].
It should also be noted that the properties given in (36a)–(36c)

also hold with or in place of .

APPENDIX B
PROOF OF LEMMA 4

Before proving Lemma 4 we establish the following technical
result regarding the feasible set of (17).

Lemma 6: The set defined in (18) satisfies

(37)
Proof: Consider the transformation given by

(38)

or inversely

(39)

since . Note also that is given by as
by (10). Because for ,

it follows that for .
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Completing the matrix multiplication in (39) yields

Thus, the constraint for implies that
for . Further, using

which implies that

(40)

Thus, given a matrix , there is actually a unique
for which . In other words, the mapping

from to is one-to-one.
Because (and ) is invertible, the constraint is

equivalent to . However, if and only if its Schur
complement [23] is positive semidefinite, i.e., if

Thus, by combining (40) with and identifying ,
it is established that the set , originally
defined in (18), is equivalently given by (37).

We are now in a position to prove the statement given by
Lemma 4. For convenience the lemma is restated as follows.

Lemma 4: Let and be defined as in (24)
and (26), respectively. Then, there is a collection of points

, for which

and

where

Proof: Consider the triplet
and the system of equations given by

(41a)

(41b)

(41c)

(41d)

where . In what follows, the set of solutions to
(41) will be denoted by . The set of solutions to (41a)–(41c)
but not necessarily (41d) is denoted by and it follows that

. From (41a) and (41c) it follows that and in the

solution set are bounded. However, as is full rank due to (41c)
it follows through (41b) that is also bounded. Therefore, both

and are compact (closed and bounded) sets.
The constraints of (41) are such that any solution of

(41) satisfies and any eigenvalue decomposition
of solves (41) for and some

(unique) . To see this, consider the eigenvalue decomposition
of some , where is given by (18). Note

also that belongs to if and only if it satisfies the constraints
of (37) as proven in Lemma 6. The orthogonality of
is a property of the eigenvalue decomposition, and therefore,
(41c) is satisfied. For and ,
the constraint of (41b) is satisfied. As , it follows that

, where . Therefore,
implies

which means that (41d) is satisfied. Finally, the constraint
in (37) implies that and (41a) is

satisfied. Reversing the reasoning and applying Lemma 6
show that any solution to (41) must also have the property that

.
The value of introducing (41) is that it will provide, through

the implicit function theorem [34], a means of parameterizing
the eigenvalues and vectors of . To this end, let

and be given by

Define

according to

and note that corresponds to (41a)–(41c). In the
above, refers to the vector obtained by stacking the upper
triangular part of a symmetric matrix into a vector. Let

be a solution of (41) and be an index set satisfying

(42)

and

(43)
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Denote by the vector of components in indexed by
and let be the vector consisting of the remaining

components. The implicit function theorem [34] states that if

(44)

then there is a neighborhood containing and a differ-
entiable mapping

satisfying for any .
Further, (44) implies the existence of a differentiable mapping

for which , where , where is
an open subset of containing and where

. This mapping is easily obtained from by including the
components in and performing a translation to a neighbor-
hood of . Thus, assuming that (44) is satisfied, the solution set
of (41) is locally parameterized by scalar parameters. In
fact, it will be shown later that given any solution to (41) there
will be some index set satisfying (42) and (43) for which (44)
is satisfied. This implies that is a -dimensional (smooth)
manifold embedded in [35]. Note, however, that the specific
index set required to satisfy (44) will generally depend on
the particular chosen. This is analogous to the problem of
parameterizing the unit circle based on solving ,
where the choice of or as the free parameter depends on
if the parametrization neighborhood should include or

.
Note that it can be assumed without loss of generality that the

domain of is given by

(45)

i.e., that is an open hypercube for some [35]. Further,
because is compact, it can be assumed that is independent
of . It can also be assumed, without loss of generality, that is
Lipschitz continuous [36] on . This follows since the inverse
function theorem guarantees that has continuous derivatives
on the closure of , (actually, in its standard form, the inverse
function theorem guarantees continuous derivatives on but by
reducing if necessary the continuity can be extended to the
closure of ). Further, again due to the compactness of , it
can be assumed that the Lipschitz constant of is independent
of . In order to prove the existence of an index set , for which
(44) is satisfied, it is sufficient to prove that the Jacobian matrix

(46)

is full rank. In this event, the index set can be taken as the
indexes of any linearly independent columns of . For our
purposes, however, we will need to be a bit more specific about
how is chosen. Therefore, note again that it will be of partic-
ular interest to study parameterizations of (and ) around
solutions corresponding to rank deficient (see the dis-

cussion in Section V-A3). To this end, consider some ,
for which , i.e., corresponds to a
rank matrix . Here, and in what follows, and
refer to the th component of and , respectively. For any

, it follows by (41d) that for ,
and in particular, it follows that whenever . In
what follows, we will refer to any , which satisfies both

and as a rank
point, even in the case that . The reason for using this
terminology is that it is often difficult to verify that (41d) is sat-
isfied but sufficient to provide a parametrization around rank
points .

Let

and

and note that and . Further, let denote the
th column of . In what follows, it will be shown that , in

a neighborhood of a rank point , can be parameterized by
specifying and for , a subset of
parameters from for , and a subset of
parameters from

It is straightforward to verify that this amounts to a total of
parameters. The specific parameters chosen from for

and from will remain unspecified. In line
with the previous discussion, these must ultimately depend on
the specific around which or is parameterized. Before
proving the preceding statement consider first the slightly more
general system of equations given by

(47a)

(47b)

(47c)

where for some
, . For now, it is sufficient to view the addition

of and as (small) perturbations of the constraints in (47).
These will be used later to develop a perturbation analysis of
the solutions to (41) around the rank points.

Let

and define analogously. Define

according to
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and note that is equivalent to (47). In order
to establish that the solution set of (47) can [locally around a
particular solution ] be parameterized by

parameters, it is sufficient to establish that the Jacobian

(48)

is full rank when evaluated at satisfying .
Note that, similarly to as before, if in (48) is full rank then

this implies the existence of a Lipschitz continuous function

(49)

where for , where
is an open neighborhood of , and where

. Also, without loss of generality, it can be as-
sumed that

In order to establish the full rank property of consider the
matrix

where is the th row of , i.e.,

Note that is related to by a permutation of the columns
(due to a changed order of differentiation) and that is full
rank if and only if is full rank. Computing (semi) ex-
plicitly yields

...
. . .

...
...

...

where

for

and where denotes elementwise squaring of . Assume first
that for some , . This implies
through (47b) (and ) that

and in turn as . Further, it follows that
and that by inserting into (47b). However,
this violates (47a) and contradicts that is a solution to (47).
Thus, it can be assumed that for all

which implies that the first rows of are
linearly independent.

Establishing that the last rows of are lin-
early independent is a standard exercise in proving that the

-Stiefel manifold (the set of by unitary matrices) has
dimension

which is a well-known result [35]. For this reason, we will not
provide an explicit proof of this. In fact, the last rows
of are not only linearly independent but also orthogonal.
What now remains to be done, in order to show that is full
rank, is to prove that none of the first rows can be written
as a linear combination of the remaining rows. For
the first row, this is obvious due to the structure of together
with . For the next rows, the only potential problem
would be if for some . However, as

it follows that is linear in and equal to zero whenever
. Together with the property that ,

it follows that none of the first rows can be formed as
a linear combination of the remaining rows. This
establishes that and are full rank. Note that as

it also follows that the assertion of (44) has been proven.
Consider again the parametrization of around some rank

and consider the matrix

Note that is nothing more than with the columns corre-
sponding to and for removed. It is
straightforward to verify that is structured as

. . .
...

(50)

where

(51)

and where is the th column of in . The

structure of (51) follows by differentiating
with respect to the th column of (remember that forms
a vector of the upper triangular part of its matrix argument).
Note that is full rank for any , (as
the rows are orthogonal), and that is full rank
as proven earlier. By considering the structure of , it follows
that a linearly independent set of columns can be selected by
choosing columns form the set of columns containing and

columns from each set containing for . As
elaborated on earlier, this is however equivalent to the statement
that the set of solutions to (41) can be parameterized locally
around by specifying parameters from ,
parameters from along with and for .
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Now, we turn attention to the original problem posed by
Lemma 4, that is, the problem of obtaining a covering of
defined in (24) and where , ,
and . Let be the maximum integer for
which

As stated earlier, if , then will be empty for
sufficiently large . It is thus safe to assume that and

. Further, it can be assumed without loss of generality that
is arbitrary large. In particular, it can be assumed that

where is the constant introduced in (45).
Consider the set

The set is chosen such that any matrix can
be expressed as for some . Thus, the
parametrization of will also provide a parametrization of

. Let be a set of parameterizations (around
rank points) such that

(52)

where . The assumption that en-
sures that it is suffice to consider parameterizations around rank

points , in order to cover . Note also that by the
assumption in (45) the coordinate neighborhoods of are all
equal to . Further, because is compact (and be-
cause is open) it can be assumed that is finite [34]. Define

according to

and note that . Finally, define

where and note that

(53)

So far, the existence of a specific parametrization, given
by , has been proven. However, not much has been said
regarding the properties of this particular parametrization.
Thus, to specify the benefits of the particular parametrization
chosen, let the components obtained by selecting a subset of

, in the parameter vector , be de-
noted by . Similarly, let the components obtained
from , for be denoted by .
That is

Further, introduce and and partition these analogously.
Assuming that , let and

and let and , where
. Further, let , i.e., be the pertur-

bation in resulting from a perturbation of . The
objective is now to show that if , where

and is some (yet to be defined) constant, it will follow that

(54)

In the above and in the following, , , , and refer to the
th component of , , , and , respectively.
Let and denote the th columns of and . Let

and let denote the th column of . The first step is to prove
that for some constant . Note that
since it follows immediately from the Lipschitz
continuity of that for some constant

. This is because for implies
that and could simply be selected as the
Lipschitz constant (in -norm) of . For , let

be the matrix consisting of the first columns of , let
the vector of the first elements of , and let

be the vector of the first elements of . Assume that
for some and note that

must satisfy (47) for

and

Note also that, by the structure of in (50), it follows that

(55)
where is the function given by the implicit function theorem
in (49). By expanding

and

it is straightforward to show that and
satisfy

and

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 10, 2008 at 09:42 from IEEE Xplore.  Restrictions apply.



JALDÉN AND OTTERSTEN: THE DIVERSITY ORDER OF THE SEMIDEFINITE RELAXATION DETECTOR 1421

for some constant . In essence, the potentially large perturba-
tion (on the order or ) in for , , is always
multiplied by factors on the order of , which results in a
perturbation on the order of . Note also that it is implic-
itly assumed that is such that , or otherwise,

. However, as can be assumed arbitrary large,
this is not a problem.

By the Lipschitz continuity of in (49), it follows that

for some constant because the argument in (55) is bounded
by

By induction, it follows that for
and for , where

, , are constants independent of and . Now,
by expanding

it follows that satisfies for some
constant . Finally, by selecting according to , it
follows that

What has been shown so far is that a perturbation around a
point in the parameter space , given that , will result
in a perturbation of , , which satisfies . This
implies that given a set of , , for which

where

we will also have a covering of given by

(56)

where

, and where is defined in (26). How-
ever, as is simply a (rectangular) box centered at and
because

(57)

it follows that could be chosen such that

where

This follows from the general statement that in order to cover a
large -dimensional box with side lengths , ,
with small boxes of side length , , one needs
(in the sense)

small boxes in total. Note also that if the “small” boxes
are actually wider than the large box in the th dimension which
is the reason for the expression as opposed to

.
By noting that

and using the assumption that for it follows
that can be written as

Thus, it has been shown so far that it is possible to cover by

sets . By (53) and since was finite this result
extends to the covering of . That is, it has been shown
that there exists a covering , which satisfies

and

as was asserted by Lemma 4.
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