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Abstract. Due to its geometric nature Berry’s geometric phase exhibits stability
to a great extent when exposed to parametric noise fluctuations. Considering
an adiabatic evolution of a non-degenerate quantum system the variance of the
geometric phase resulting from fluctuations vanishes as the evolution time tends
to infinity. Here we present numerical data marking the domain of validity of the
adiabatic approximation. We notice that due to second-order effects the variance
does not vanish, but rather increases again for evolutions longer than a certain
critical time. Furthermore, the occurence of a shift of the mean geometric phase is
demonstrated and we give a simple geometrical description in terms of probability
distributions of this effect. Finally, an experiment utilizing ultra-cold neutrons is
proposed to verify the remarkable dephasing survival of the geometric phase.

1 Introduction

The first reference to a geometric phase in quantum mechanics dates already back to the
work of Pancharatnam in 1956 [1]. However, it was Berry who manifested the notion of the
quantum geometric phase accompanying the cyclic and adiabatic transport of a quantum state
[2]. His seminal paper lead to numerous further investigations in various directions [3], e.g.
to non-adiabatic [4], non-cyclic and non-unitary evolutions [5], degenerate subspaces [6], or
mixed states [7]. Especially the potential advantages of quantum geometric gates for quantum
information processing has been topic of recent investigation [8-10] since its geometric origin
provides protection against certain classes of noise influences [11,12].

The concept of the Berry phase can be illustrated most easily by means of a spin-1/2
particle in a magnetic field, for example a neutron. This is also the reason of an abundance of
experiments on Berry's geometric phase using neutrons [13]. In brief, the spin of the neutron
follows adiabatic variations of a magnetic field. If the spin is initially aligned with the magnetic
field and the field direction traces out a closed loop, the final and initial state will be equivalent
up to a phase factor. Simply solving the time-dependent Schrédinger equation and neglecting
non-adiabatic terms leads to two complementary contributions to the final phase factor, a
geometric part ¢, and a dynamical part ¢4. The latter depends on the evolution time and the
Zeeman energy, whereas the former depends only on the path traced out by the magnetic field
vector: It is proportional to the surface area of the path enclosed by the state in state space.
Put into equations, these phases are given by
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where the parameters R(t) denote the change of the Hamilton-operator H(R(t)) in the time
interval ¢ € [0.T]. T' denotes the period of the cyclic evolution. Its eigenstates In(t)) change
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Fig. 1. Bloch-sphere picture of the spin-1/2 state evolving adiabatically in a (fluctuating) magnetic
ficld. The vector denotes the polarization vector of the spin state M as well as the direction of the
magnetic field n.

accordingly and the instantaneous energy is given by E(t) = (n(t)|H(t)n(t)) (skipping the
dependency on the parameters R for notational convenience).
In the particular case of neutrons the Hamiltonian

H(t) = —pno - B(t) (2)

describes the coupling of the neutrons’ spin angular momentum to the magnetic field B(t) =
B(l)n(t) with magnitude B(t) = |B(t)| and direction determined by the unit vector n(t)
(sinfg(L) cos po(t), sinBg(t) sin po(t), cos6(t))T. o = {0z,0y,0.} denote the Pauli matrices
and f1, = —9.66 x 10727 ] /T the magnetic moment of the neutron. The instantaneous spin
state [@(t)) = cos(6(t)/2)|z+) + et(t) sin(f(t)/2)|z~) can be depicted on the Bloch-sphere in
the fixed basis {|2+),]2~)} which are the eigenstates to the o, operator, o.|z+) = +|z4). The
direction of the magnetic field and the polarization vector M — (ol coincide at all times
for an adiabatic transport. %4 can then be expressed in terms of the solid angle {2 enclosed
by the path on the Bloch sphere, ¢y = —2/2, stressing therewith its independence of energy
and time. For a path tracing out a conic section with constant polar angle y and ¢ € {0, 2n]
(c.f. solid red curve in Figure 1) the geometric phase is given by

il

tg = —m(1 — cos by), (3)

whereas the dynamical phase is given by the integral ¢q = p,, /N [()T B(#)dt.

2 Stability of the geometric phase

Fluetuations in the magnetic field will affect hoth phases, and the question is whether they show
different. characteristics. The statistical spreads of the geometric and the dynamical phase when
averagiug over scveral paths turns out to depend on the total evolution time T in a different
way. Whereas for the variance of the dynamical phase a usual diffusive behaviour is expected,
Le.a linear inerease of the variance with increasing T, caleulations in first-order perturbation
theory show that the variance of the geometric phase under the influence of adiabatic noise is
proportional to the inverse time and eventually vanishes as the change rate of the Hamiltonian
tends to zero [1] T is illustrative to explicate this feature with a geometrical picture in mindd.
Fhictuations iu the path lead to changes i energy and therefore the integral of these cnergy
changes i the thne domain Jeads to diffusion, just like a particle diffuses i a Brownian motion
process. In contrast, the geometric phase is neither determined by energy changes nor by the
evolntion time, but only by the area enclosed by the path on the Bloch-sphere. Extending the
evolution time translates into an increase of the relative frequency of the fluctuations with
respect to the constant path length. The wiggles have enough time to average out and the
area enclosed by the fuctuating path increasingly equals the unperturbed area in each noise
vealization.
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In detail, the modified Hamiltonian when adding (adiabatic) fluctuations is given by
H(l) = —punB(t) - 0 = pnZ(t)o.. (4)

The first term denotes the unperturbed evolution according to Eq. (2) and the second term
the noise fluctuations. Since - according to De Chiara and Palma [14] - there is no essential
difference in the behaviour of the variance of the geometric phase, instead of an isotropic noise
distribution we take the noise fluctuations pointing in z-direction, i.e. along the axis of the
cone formed by the path on the Bloch sphere. Assuming an Ornstein-Uhlenbeck noise process
(Gaussian, stationary and Markovian [16]) the variance of the geometric phase oriq can be

derived analytically in first-order perturbation theory [14] and is given by

) 2 —-IyT
2 op2 [ ®sin® 6y Ll —1+e™n 5

P = var(Z) denotes the variance of the Gaussian distributed random variable Z and, there-
fore, the strength of the noise. wy, = 2u|B|/A stands for the Larmor frequency determined by
the Zeeman energy splitting in the magnetic field of strength |B|, and I, for the bandwidth
(HWHM) of the Lorentzian noise power spectrum.

The following assumptions have been made: First, [, < wy, and w, = 27/T < wy, such that
neither the noise frequency bandwidth nor the angular velocity of the evolution w, exceeds the
Larmor frequencies in order to guarantee adiabaticity throughout the evolution time. Second,
the perturbations must be small compared to the magnitude of the magnetic field, P < wr,
or, in other words, the signal-to-noise ratio wy /P must be much larger than one. There are no
restrictions on the relative values of I';, and w,. However, we want the variance to vanish which
is the case for T » 1/I,, i.e. for a wiggly path instead of a merely quasi-static offset of the

initial magnetic field:
o TSIT' o (7sin?6 1 6
— 2P° | —— .
22, (=) 27 (6)
We recognize that U(qu tends to zero for (I, T)~! — 0, i.e. if T is large enough.

In the following, Eq. (6) is numerically validated showing two particular effects that are not
included in this first-order theory. On one hand we encounter a shift of the mean geometric
phase depending on the polar angle 0y as well as on the noise strength. This shift does not arise
from non-adiabatic terms, but arises also for perfectly adiabatic following: it can be explained
purely by geometric reasoning as discussed below (section 5). On the other hand we notice

the emergence of a finite time interval for the observation of the geometric phase, that is, the
variance does not vanish but increases again after a certain time.

3 Numerical simulation

From Eq. (5) we notice that the variance scales with the inverse signal-to-noise ratio squared
and due to the adiabaticity condition this quantity is much smaller than one. This in turn means
that the contributions to the dephasing of the geometric phase are rather small either and it
seems difficult to design an experimental test for the geometric dephasing. The parameters
have to be chosen carefully close to the borderline to non-adiabaticity, therefore, numerical
simulations are needed for the implementation of a prospective experiment. These consists of
two parts: the evolution of the spin state has to be simulated by computing the time-dependent
Schrodinger equation for the Hamiltonian in Eq. (4) numerically. Additionally, artificial noisc
with specific strength and controllable spectrum has to be generated.

3.1 Evolution algorithm for the spin state

Generally speaking, the task is to solve the time-dependent Schrodinger equation

o
ia'l//‘(a:,i‘) = Hi(zx, t), (7)
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where (x,t) € H, ® H, is a tensor product state with a spatial part represented in H,
and a spin angular momentum part element of #,. With regard to the intended experimental
setup (section 6) we can safely neglect the spatial dependency due to the differences in the
energy scales of up to a factor 10° between the Zeeman energy of the spin levels (for magnetic
fields in the Gauss-region) and kinetic energy terms. Moreover, we also assume a sufficiently
homogeneous magnetic field such that only the time-dependence of the field is of importance.
In this case, ¥; = 1(t) is a two dimensional normalized complex vector representing the spin
state of the neutron and the solution of Eq. (7) is simplified considerably.

As the fluctuations are sufficiently slow we do not have to solve a stochastic differen-
tial equation, but the entire evolution will be treated fully deterministic for each realisation
and the stochastic nature enters when averaging over several noise realisations. Formally
solving Eq. (7) yields ¥ a; = exp(—1H At/h)1hy where we assume that the Hamiltonian is approx-
imately time-independent during the small time intervall At. The Cayley form of the exponential
operator e 'H4t/% can be utilized to solve the Schrédinger equation by the Crank-Nicholson
scheme. In detail, the Cayley transform V of an Hermitian operator A is defined by [18] A =
i(1+V)(1—V)"! with unitary V allowing for a norm-preserving finite difference equation. Ex-
plicitly, the exponential operator can be written as e 'H 442 ~ (1 —iH At/2h)(1+1H At/2h) 1.
This approximation is accurate to second-order in time and leads to an evolution of the form

(1 + 2ihHAt>z/)(tn+1) - (1 - ﬁHAt)z/)(tn). (8)

The Hamilton operator taken from Eq. (4) is evaluated at the intermediate time t,, + At /2 with
ln = nAt. According to the total evolution time T" the state vector is iterated N = T /At times
with At chosen to be much smaller than the period of the Larmor frequency At < 2 /wr,. If all
the adiabatic constraints are satisfied by the specific choice of the parameters, the polarisation
of the final state should be aqual to the polarisation of the initial state, but with different
relative phase. Calculating the phase difference arg(ng-z/zT) and subtracting the accumulated
dynamical phase ¢y = 1/h ZJN arg(zj)fj ;) At yields the geometric phase.
3.2 Construction of the noise

As for the numerical simulation of the noise fluctuations we resort to a Fourier series represen-
tation to model an Ornstein-Uhlenbeck (0.-U.) stochastic noise process. Its power spectrum
is given by a Lorentzian curve with bandwidth I, = 1 /T proportional to the inverse of the
relaxation time 7,,. One method to obtain the wanted stochastic process is to decompose it
into a Fourier sum of trigonometric functions with random amplitudes and/or phases [19]. We
resort to the latter option and write down a sum of cosine functions with random phases ¢y,
uniformly distributed in the interval [0, 27] and fixed amplitude Ck,

X(t) = ZC’;“ cos(wgt ~ Pr). . 9)
d .

The amplitudes are determined by €, = v S{wr)Aw/m, where S(w) is the power spectral
density of the noise and Aw = (Wi — wy) denotes the constant angular frequency increment.

The O.-U. process is eventually obtained by inserting a Lorentzian distributed power spectral
density,
Tn

« _ 2
Sw) = 4P s

(10)
The integral [ S{w)dw/27r over all positive w gives the intensity of the noise I’? as a measure
of the strength of the Auctuations. As for the technical details, the sum in Eq. (9) has to be
terminated at some point where all significantly contributing frequencies are included and we
have decided on seven times the noise bandwidth for the maximum frequency, wmpae = 71%.
The division of the frequency band into Ny parts of width Aw is chosen such that the phase
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difference at the final time T of two adjacent partial waves is much smaller (a factor four turns
out to be sufficient) than 2w,

T
AT €2t = Njp=wpas/Aw > E)%rL (1D

3.3 Noise envelope function

To meet the condition of cyclicality we multiply the generated noise sequence by an envelope
function e(t) which vanishes for ¢ = 0 and t = T while showing a smooth transition to and from
unity in between. One might argue that terms due to the non-cyclicality lead only to correction
in second-order and should therefore be negligible. However, with regard to an experimental
“proof-of-principle” test a spin-echo type measurement has to be used and therefore we have
to assure that the final state is equivalent to the initial state up to a phase necessitating the
application of an envelope function. The particular function used in our simulations has the form
of a Fermi-step functions and a second inverted one in sequence yielding finally a smoothened
rectangular pulse of width T:

et) = (14 emet=0) 7 - (14 eetemm-n) T (12)

The parameters ¢ and d define the smoothness of the edges (corresponding to the temperature)
and the position of the step (Fermi-energy), respectively, which have to be chosen such that
the perturbations are switched on and off adiabatically.

4 Standard deviation of the geometric phase

Using the algorithms described above the mean and the standard deviation of the geometric
phase has been evaluated for different parameter sets. The particular values of the parame-
ters are selected also with respect to their relevance for a neutron experiment with the Lar-
mor frequency wy, of the order of 1800-18000rad/s (0.1-1 Gauss) and evolution times between
milliseconds and seconds. In Figure 2 the resulting data (dots) along with the theoretically
predictions (solid liney for the standard deviation of the geometric phase is shown. The com-
puted mean geometric phase (Zg is drawn on top, where the shaded region underneath indicates
the exact unperturbed geometric phase ¢2 = 2.65 rad which corresponds to an an opening angle
of 6y = 9m/20rad. The thickness of the bar refers to a region of +0.1rad about the mean. In
each figure the standard error is calculated for n = 80 noise realizations at each time step and
the error of the error is estimated via 0, = o4 /v/2n assuming Gaussian distributed values.
Both for 0y, and the mean value ¢, there is a very good agreement between the numerical data
and theory (Figure 2(a)).

Note, however, that the standard deviation of the geometric phase is quite small for the
weak noise scenario and the question is whether we can measure such weak contributions to
the dephasing. This fact is an obstacle for an experimental verification, but on the other side
this means that the geometric phase is stabilizing very quickly if the adiabaticity conditions
are fulfilled so that the geometric phase might indeed be a good candidate for error resilient
quantum state manipulations. In particular, when performing an interferometric measurement
of the geometric phase intensity oscillations I « 1 + cos(¢y) are observed and from averaging
over the Gaussian distributed phases of several noise realizations a damping of the amplitude
by the factor v = exp( -—»(T;“))q /2) follows , I x 1+ v cos((ﬁg). To resolve this decrease in amplitude
by experiment a variance ni,] close to one is preferable and therefore the signal-to-noise ratio
must not be too small.

Iu Figure 2(h) the Larmor frequency as well as the noise bandwidth is reduced and the
mtensity of the noise is enlarged in order to obtain a larger 74, which can eventually be tested
by experiment. There is still a good agreement with theory and the Larmor frequency can
be reduced even more (Figure 2(c)). Now we notice that the standard deviations drop from
the time where the velocity of the evolution becomes faster than the Larmor frequency. In
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Fig. 2. Standard deviation of the Berry phase for noisy paths plotted vs. the cyclic evolution time T
with different parameters of the Larmor frequency wr = 2unB/h, the noise bandwidth I, and the
noise strength P. On the top axis the angular velocity w, = 27/T is given. The solid line indicates
the theoretical curve from Eq. (5). On top the computed mean geometric phase is plotted shaded by

the exact geometric phase ¢y = m(1 ~ cos 97/20) = 2.65rad, where the thickness indicates deviations
+0.1rad.

this region also the mean geometric phase differs considerably from its unperturbed value and
it becomes also apparent that for a smaller energy splitting the theory breaks down for long
evolution times as well: a minimum of T4, s found at a critical evolution time. This effect has
already been pointed out in [12, 15], namely that there is a finite time-scale for a measurement
of the geometric phase which can be attributed to the broadening of the systems energy levels
duce to the coupling to an environment. This minimum depends on the signal-to-noise ratio and
on the noise spectrum - increasing the bandwidth of the noise leads to an even shorter time
interval where the adiabatic approximation is valid - c.f. Figure 2(d).

5 Shift of the mean geometric phase

In the numerical data a difference between the unperturbed geometric phase (/)2 = —7(l —
cosfp) and the mean geometric phase ¢, = —n(1 — cosfl) has been detected (Figure 3(b))

which depends on the intensity of the noise and the opening angle of the path. This result is
not meluded iy the Arst-order theory discussed above. Our aim is now to point out the very
mbwtive uatiye and geometric origin of this shift complementing the thorough calenlations of
the Berry phase in o' non-isolated system coupled to a bath of harmonical oscillators by Whitney
and Gefen [15].

The random variable Z in the Hamiltonjan in Eq. (4) has a Gaussian symmetric probability
distribution and therefore in the average we expect no contribution to the mean geometric
phase. However, since the geometric phase game plays on a manifold with intrinsic curvature,
a sphere, there arise non-linear terms in Z. The map of the stochastic process onto a sphere
leads to an asymnmetric probability distribution function that gives eventually rise to a shift of
the geomietric phase.
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Fig. 3. Fluctuating z-component of the magnetic field is mapped onto the spherical state space (a)
leading to a shift of the mean geowetric phase (b). The data points indicate the difference Agy between
unperturbed geometric phase and its mean value averaged over 400 noise realizations for each polar
angle . The solid line shows the fit to the theoretical value determined by Eq. (18).

In Figure 3(a) a function Z (t) is indicated that fAuctuates about some mean value Z; such
that the area above and below Zy are equal. Mapping this function onto a sphere such that the
former mean Z; is mapped to 6y we notice that the weights above and below 6 are not equal
anymore due to the curvature of the sphere. The new mean value § will therefore be different
from #g depending on the particular value of 8. In the limit where 6 = 0 or 7, i.e. at the north
or south pole, there is no enclosed area anymore and therefore no difference between 8, and
6. For 8y = /2, at the equator, we do not expect any difference either due to the symmetry
of the weights above and below the equatorial line. However, for all other values of o a slight
change of the mean polar angle and therefore of the mean geometric phase is anticipated.

In detail, assuming that the fluctuations in the z-component are Gaussian distributed with
mean z9 = B, and variance s2 the probability distribution function of the random variable 7
is given by

p2(z) = e = (2=20)2/25% (13)
2752

On the other hand the corresponding polar angle is given by

B,
tanf = =, B.=(B%+B2)/ (14)

and its probability distribution function Po follows from the substitution rule of calculus,

4=19)| B, B,
" sin? sz(tan(;’) i (1)

pe(l) =pz(f~'(9)) ’T
where [ denotes the map

;. {Z € (=20,0) = ¥ = 7 + arctan B¢ (n.7)2)

(16)
Z € (0,%) = 9 = arctan EZL € (r/2,0)-
Inserting Ecp. (13) into Eq. (15) finally yields
r r? 1 1 :
Peolfl) = x| 2 (17)
v 27 sinT ¢ 2 \tant  tand,
with the ratio ; = B /s of the magnitude of the magnetic field perpendicular to the noise

direction to the variance of the noise. Finally, the first moment of this distribution provides the
mesn polar angle

f = /9;)(_,,(9)(1,9 (18)

[ov calenlating the mean geometric phase o, = —7(1 - cos 7).
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In Figure 3(b) the difference A¢y = ¢, — (/)g between the computed mean geometric phase
</;g and the unperturbed geometric phase (/)2 is plotted for different cone opening angles 6. The
parameter values wy, = 3600rad/s, P = 112rad/s and I}, = 400 rad/s have been chosen for
the numerical simulation and the average is taken over 400 noise realizations for each polar
angle 6. The total evolution time is 3 seconds (w, & 2.1rad/s). The solid line indicates a least-
squares fit to the calculated difference A¢, using Eq. (18) with the single fit-parameter P as
the strength of the noise. The resulting reduced y2-value of 1.5 for P = 138.9 rad/s indicates
the very good agreement between theory and numerical data. The slightly larger noise strength
from the fit is due to the non-adiabatic evolution of the state vector leading to a stronger
effective perturbation. Note, that we did not take the temporal behaviour of the stochastic
process into account, just the static distribution of the random noise. Nevertheless this model
turns out to be an excellent approximation.

Numerically, A¢, is proportional to sin? #y cos 8, where the proportionality factor depends
on the signal-to-noise ratio. This is equivalent to the results found by Whitney and Gefen [15],
here based on a more intuitive geometric approach.

6 Proposed experiment

As already noted, due to their spin-1/2 degree of freedom and their weak interaction with the
environment neutrons are particularly suitable for experiments on the dephasing behaviour
explained above. In particular, ultra-cold neutrons can be stored in appropriate bottles and
magnetic fields can be used to manipulate their spin degree of freedom at will. Such a technique
is currently used for the precise investigation of a possible electric dipole moment of the neutron
[20}. A feasible experimental setup adapted to measurements of Berry's phase in a fluctuating
magnetic field is depicted in Figure 4.

Ultra-cold neutrons [21] are produced in a cold source (liquid deuterium at 25 K) and are
further decelerated at moving turbine blades resulting in a velocity of about 5 m/s. Those are
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Fig. 4. Schematic setup for storing ultra-cold neutrons and manipulating their spin via Helmholtz-coil
pairs,
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then guided through evacuated neutron guides to pneumatically controlled shutter and switch.
Depending on its position the switch connects the turbine to the storage vessel or the storage
vessel to a He-3 detector. A magnetized Fe-foi] allowing only for the transmission of neutrong
with polarization parallel to its magnetization is used for polarization and - together with a
gradient spin-flipper - for analyzation of the spin state. The storage volume itself sits upon a
second shutter mechanism and has to be made of hon-magnetic material, €.g. polyamide, with
an appropriate coating to retain neutrons inside for suﬁiciently long time without polarization
loss. Finally three mutually orthogonal pairs of coils are arranged in an Helmholtz, geometry in
order to produce 3 homogeneous field in the center region of the storage box.

After density equilibrium in the apparatus is reached the shutter underneath the storage
bottle closes and spin polarized neutrons are retained therein. The critica] time scales are then
the storage time determined mainly by wall collision losses, the -decay rate of free neutrons
and the longitudina] depolarization time (T1) in the magnetic guide field which is degraded
by interactions with stray magnetic fields. A magnetic shielding with 5 soft magnetic materia]
is advisable to reduce such environmental disturbances, Ramsey interferometry [22] can be
utilized to measure the phase difference hetween positive and negative energy-eigenstate hy
bracketing the intended cyclic Spin evolution in between two 7/2 pulses. The (geometric) phase
difference after the evolution can then he easured as a change in the degree of polarization.
Since we have ful control over magnetic fields it is possible to add artificially ﬂuctuating terms
with appropriate strength and frequency spectrum which leads then to a decrease or increase
in the visibility of the interference fringes depending on the variance of the phase.

serious flaw in such experiments is the dephasing time, Inhomogeneous broadening of

ceptual point of view due to its counterintuitive dephasing characteristics — without geometric
bicture at the back of one’s mind itg robustness is hardly explicable — and in terms of jts utility
for high fidelity quantum state manipulation. We have presented numerical data of the variance
of the geometric for several noise couplings in view of & prospective experiments] realization,
Those are in good agreement with a first-order theory, deviations ernerge in the non-adiabatic

operation. Thus, if one succeeds in eliminating the dynamical phage the remaining geometric
bhase might be 5 good candidate for error resilient quantum state manipulations.
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