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1 INTRODUCTION 21 IntrodutionSpherial symmetry plays a pivotal role in theoretial physis beause thesystem simpli�es suh that an exat solution is often possible; this in turnallows for an understanding of some basi priniples of the underlying dy-namial system and thus an be of onsiderable pedagogial value.1As ompared to other frequently used senarios, like the ultra-relativistilimit where the rest mass is muh smaller than the kineti energy or thestati limit where the rest mass is muh larger than the kineti energy,spherial symmetry has the advantage that it allows for dynamis suh assattering of s-waves as opposed to the stati ase and for bound states asopposed to the ultra-relativisti limit. Moreover, many physial systemsof relevane exhibit at least approximate spherial symmetry � to name afew: the l = 0 setor of the Hydrogen atom, non-rotating isolated stars, theuniverse on large sales (atually isotropi with respet to any point), et.Also semi-lassially spherially symmetri modes are often the dominantones � e.g. a. 90% of the Hawking �ux of an evaporating blak hole is dueto this setor (f. e.g. [1℄), the Balmer series stems from it (disregarding the�nestruture), et. From a tehnial point of view the suess of spherialsymmetry is related to the fat that systems in two dimensions d = 2 havemany favourable properties (f. e.g. [2℄).However, the advantages of simpli�ations due to spherial symmetrybeome most apparent in the ontext of (quantum) gravity. As an il-lustration four seleted examples are presented: Krasnov and Solodukhindisussed reently the wave equation on spherially symmetri blak hole(BH) bakgrounds [3℄. They found an intriguing interpretation in termsof Conformal Field Theory, at least in ertain limits (near horizon, nearsingularity and high damping), thus realizing 'tHooft's suggestion [4℄ of ananalogy between strings and BHs. In the framework of anonial quan-tum gravity reently the onepts of quantum horizons [5℄ and quantumblak holes [6℄ have been introdued for spherially symmetri systems.While the former work is inspired by the onept of isolated horizons [7℄,the latter invokes trapped surfaes and thus may be applied to dynamialhorizons. Both on�rm the heuristi piture that at the quantum level hori-zons �utuate. One of the present authors together with Fisher, Kummerand Vassilevih onsidered sattering of s-waves on their own gravitationalself-energy by means of two-dimensional methods, obtaining a simple butnontrivial S-matrix with virtual BHs as intermediate states [8℄ (for a reviewf. [9℄), in aordane with 'tHooft's idea that BHs have to be onsidered in1It is impossible to present a omplete list of referenes regarding spherial symmetry,beause ever sine Coulomb we estimate that a. 10
5 publiations appeared in thisontext. However, whenever a ertain tehnial detail is used of ourse some of theoriginal literature, or at least reviews for further orientation, will be provided.



1 INTRODUCTION 3the S-matrix together with elementary matter �elds [10℄. Finally, the sem-inal numerial work by Choptuik [11℄ on ritial ollapse was based upon astudy of the spherially symmetri Einstein-massless-Klein-Gordon model.Although similar features were found later in many other systems (for areview f. [12℄) we believe it is no oinidene that the ruial disoverywas made �rst in the simpler spherially symmetri ase.In the �rst, third and fourth example the oupling to matter degreesof freedom was essential. It is therefore of some interest to study the mostgeneral oupling to matter onsistent with observation, in partiular theStandard Model of partile physis [13℄ or a reent improvement thereof[14℄.The purpose of this work is 1. to larify what is meant by spherialsymmetry; three di�erent notions will be presented, 2. to review the basiformalisms that are useful in the ontext of spheri redution (Cartan-,Geroh-Held-Penrose (GHP) and metri-formalism), 3. to apply them toobtain the spherially symmetri Standard Model plus gravity (SSSMG) ina omprehensive manner, 4. to present an e�etive theory in d = 2 whihthen in priniple an be quantised. As byproduts several setors will bedisussed in tehnial detail. Neessarily, large part of this work have theharater of a review. Nonetheless, several new results are ontained in it:It is shown that stati perfet �uids an be regarded as generalised dilatongravity models. In the redution of the Einstein-Yang-Mills-Dira systemwe �nd an additional ontribution that might have been overlooked in pre-vious onsiderations. We disuss the symmetry restoration of spontaneoussymmetry breaking by giving an interpretation to the e�etive Higgs po-tential. The Yukawa interation is spherially redued without �xing theisospin diretion. We spherially redue the torsion indued four fermioninteration term present in Einstein-Cartan theory. Finally we ommenton the quantisation of the SSSMG.We would also like to point out that one of the main aims of our workis to provide a link between onepts from partile physis (like the matterontent inspired by the standard model) and input from general relativ-ity like the spin-oe�ient formalism that is partiularly adequate for theredution of spinors in a spherially symmetri ontext.This paper is organised as follows: in Setion 2 three di�erent notionsof spherial symmetry are disussed. Setion 3 �xes the notation and in-trodues the three formalisms (Cartan, GHP, metri) by means of relevantand rather expliit examples. A brief reapitulation of dilaton gravity withmatter by means of a disussion of stati perfet �uid solutions is given.Colleting them the spherially symmetri Standard Model plus gravityis onstruted in Setion 4. It is presented as an e�etive theory in twodimensions (Setion 5). The �nal Setion 6 ontains some onluding re-marks. The appendies provide supplementary material mostly related to



2 THREE WAYS OF SPHERICAL SYMMETRY/REDUCTION 4the GHP formalism.2 Three ways of spherial symmetry/redutionIn the following we will de�ne di�erent notions of spherial symmetry.0) In order to be able to talk about spherial symmetry one needs anation of the rotation group SO(3) on the spaetime manifold M underonsideration. For the geometry we require that the vetor-�elds of theation ξ leave the metri gab unhanged, i.e.,2
Lξgab = ∇(aξb) = 0 , ξ ∈ SO(3) , (2.1)or equivalently that they are Killing. (Let us remark that the ation is givenby spae-like vetor-�elds). This property will be assumed subsequently.It entails the form of the symmetry generators, a basis of SO(3), and themetri
ξφ = i∂φ , ξ± =

1√
2
e±iφ (∂θ ± i cotθ∂φ) , (2.2)

ds2 = gαβ(xα)dxα ⊗ dxβ −X(xα)dΩ2 , α, β = 0, 1 , (2.3)in adapted oordinates, where φ, θ are the standard oordinates of (theround) S2, dΩ2 = dθ2 + sin2θ dφ2. The Killing vetors (2.2) obey theangular momentum algebra [ξ±, ξφ] = ±ξ±, [ξ+, ξ−] = ξφ.The state of the physial systems under onsideration will in additionto the metri also ontain various matter �elds whih we denote by φα andwhih are taken to be setions of various (vetor-)bundles over spaetime.As long as those bundles are naturally tied to M, i.e., are tensor produtsof the tangent- and otangent bundles TM and T ∗M, the ation of ξ ontheir setions is well-de�ned.1) For these matter �elds strit spherial symmetry is de�ned by Lξφα = 0.Example 1.1 (Redution of salar matter I)The ation for salar matter in d = 4 reads
L(4) =

∫

(Gµν∇µφ∇νφ)ωG, (2.4)where φ is the salar �eld and ωG is the 4d volume form. Lξφ = 0 impliesthat in adapted oordinates φ = φ(t, r) and hene the ation (2.4) after2Beause from the ontext it will always be lear whether we mean a Lie-group or itsassoiated algebra we do not disriminate notationally between them.



2 THREE WAYS OF SPHERICAL SYMMETRY/REDUCTION 5integrating out the angular part simply leads to the redued ation with
2d volume form ωg

L(2) = 4π

∫

(gαβ∇αφ∇βφ)Xωg. (2.5)However, in general we are also interested in bundles more loosely tied tothe spaetime manifold (like Spin-bundles and prinipal SU(N)-bundles).For their setions the SO(3) ation on M does not automatially extend.However, in the above mentioned ases there exist ertain �natural� notions,whih allow an ation to be de�ned on the setions of these bundles. Ingeneral strit invariane will not be possible (or too restritive).Example 1.2 (No stritly spherially symmetri spinors)Let kA = k0oA + k1ιA be an arbitrary spinor. This spinor would be alledstritly spherially symmetri if one ould solve Lξk
A = 0 for non-trivial

k0 and k1. Diret alulation easily shows that this is impossible.2) For these �elds only �ovariant� transformation behaviour is possible.They will be alled spherially symmetri if
Lξφα = D(ξ)φα , (2.6)where D refers to a typially linear transformation, e.g. a derivative oper-ator.Example 2.1 (Gauge �elds)A gauge �eld obeying Lξi

A = DWi, where D is the gauge ovariant deriva-tive; thus, the �eld A itself need not be stritly spherially symmetri, onlyup to gauge transformations.Finally an even less stringent form, whih we all weak spherial symmetry,may be de�ned by expanding the �elds with respet to a omplete set ofeigenfuntions of the spherial Laplaian.3) For these �elds of spin s, we deompose
∆S2 sYj,m = −(j − s)(j + s+ 1) sYj,m , φα =

∑

jm

φα,jm sYj,m , (2.7)where sYj,m are the spin-weighted spherial harmonis (for s = 0 theyoinide with the standard spherial harmonis while for higher spin werefer the reader to subsetion 3.3). On the dynamial level, i.e., uponinsertion into the ation and integration of the angular part, this yields aspherially redued (two-dimensional) system.



2 THREE WAYS OF SPHERICAL SYMMETRY/REDUCTION 6Example 3.1 (Redution of salar matter II)The ation for salar matter reads
L =

∫

(Gµν∇µφ∇νφ)ωG, (2.8)where φ is the salar �eld. Expanding φ in terms of spherial harmonis
φ =

∑

lm φlmYlm, the salar ation (2.8) upon integration of the angularpart leads to
L =

∑

lm

∫
(

gαβ∇αφlm∇βφlm +
l(l + 1)

X
φlmφlm

)

Xωg, (2.9)where the s-wave setor l = 0 orresponds to (2.5).Example 3.2 (Spherially redued gravity)Spherially redued gravity (SRG) emerges from averaging over the angularpart,
< Rµν > −1/2 < gµνR >= κ < Tµν > ,where Rµν is the Rii tensor, Tµν is the energy-momentum tensor, κ is thegravitational oupling and the braket denotes integration over the angularpart � this system of averaged equations of motion an be dedued froman ation in d = 2, the geometri part of whih is just the spheriallyredued Einstein-Hilbert ation. For the Einstein-massless-Klein-Gordonmodel the matter part (2.9) ontains an in�nite tower of salar �elds withdilaton dependent (and l-dependent) mass.Eah of these notions is weaker than its predeessor:strit sph. sym. ≥ spherial symmetry ≥ weak sph. sym.For the rest of this paper we assume spherial symmetry aording to theseond notion, unless stated otherwise.Having de�ned spherial symmetry we would like to fous on spherialredution. By this proedure we mean the derivation of a redued ationin d = 2 the equations of motion of whih are equivalent (in a well-de�nedway) to the equations of motion of the original theory if the latter arerestrited to spherial symmetry. The fat that suh a proedure works isnot trivial in general (i.e., if the isometry group is di�erent from SO(3)).Due to the ompatness of SO(3), however, one an immediately applyTheorem 5.17 (or proposition 5.11) of [15℄ and employ the �priniple ofsymmetri ritiality� [16℄ whih guarantees the (lassial) equivalene ofthe redued theory to the original one (f. also [17℄). The main advantageof spherial redution is the possibility to exploit the simpliity of twodimensional �eld theories.



3 THREE FORMALISMS 73 Three formalismsThe purpose of this setion is threefold: the three relevant formalisms arereviewed together with their respetive advantages, relevant examples areonsidered and en passant our notation is �xed in detail.3.1 Cartan's form alulus and GravityIn the Cartan formalism one works in an anholonomi frame and usesthe vielbein 1-form and onnetion 1-form as independent variables. Withthese variables one an use the advantages of the form alulus, wheredi�eomorphism invariane is implied automatially, see e.g. [18℄.3.1.1 The 2-2 splitIn the Cartan formalism the line element an be written as
ds2 = gµν dxµ ⊗ dxν = em

µ e
n
νηmn dxµ ⊗ dxν = ηmn e

m ⊗ en . (3.1)Greek letters are used for holonomi indies and Latin letters for anholo-nomi ones. ηmn is the �at (Minkowski) metri with signature (+,−,−,−).The vielbein is denoted by Eµ
m,

Eµ
me

n
µ = δn

m , Emyen = δn
m , (3.2)where y means ontration. One similarly writes the vetor �eld Em =

Eµ
m∂µ. The ovariant derivative is written as

D̃m
n = δm

n d + ω̃m
n , (3.3)with the skew-symmetri onnetion 1-from ω̃mn = −ω̃nm, beause ofmetriity. The onnetion 1-form may be split aordingly

ω̃m
n = ωm

n +Km
n , (3.4)where ωm

n is the torsion free part and Km
n is the ontortion.Ating with (3.3) on the vielbein em and on the onnetion 1-form ω̃m

nde�nes the torsion 2-form and the urvature 2-form, respetively
Tm = (D̃e)m = dem + ω̃m

ne
n = Km

ne
n =

1

2
Tm

µν dxµdxν , (3.5)
Rm

n = (D̃2)m
n = dω̃m

n + ω̃m
lω̃

l
n =

1

2
Rm

nµν dxµdxν . (3.6)Note that we avoid writing out the wedge produt expliitly.



3 THREE FORMALISMS 8In ase of spherial symmetry one an separate the metri (3.1)
ds2 = ηmn e

m ⊗ en = ηab e
a ⊗ eb − δrs e

s ⊗ er , (3.7)where the indies (α, β, . . . ; a, b, . . .) denote quantities of the two-dimensionalmanifold L and letters (ρ, σ, . . . ; r, s, . . .) quantities onneted with thesphere S2. Moreover the dilatonX from (2.3) has been rede�ned asX = Φ2in order to avoid square-roots in subsequent formulas. Barred (�intrinsi�)and unbarred quantities are related by
ea = ēa, er = Φēr ,

Ea = Ēa, Er =
1

Φ
Ēr . (3.8)The torsion free onnetion 1-form ωm

n is given by
ωa

b = ω̄a
b, ωa

r = (ĒaΦ)ēr,

ωr
s = ω̄r

s, ωr
a = (ĒaΦ)ēr. (3.9)3.1.2 Redution of torsion and urvatureGauge ovariant transformation behaviour under spherial symmetry re-strits the possible ontributions of torsion [19℄ aording to

LξT
a = 0 , LξT

r = Ωr
sT

s , (3.10)where the skew-symmetri matrix Ω is de�ned by Lξe
r = Ωr

se
s. This �together with the non-existene of a rotationally invariant vetor �eld on

S2 � entails the deomposition
T a = T̄ a +

1

2
T a

rse
res , T r = T r

ase
aes . (3.11)Consequently, the sphere S2 has to be torsion free intrinsially, i.e., ĒtyK

r
s =

0. The onnetion need not be stritly spherially symmetri but onlysymmetri up to gauge transformations (muh like in the Yang-Mills asebelow). Expanding (3.10) aording to our 2-2 split the onditions read
dLξe

a + Lξ(ω̃
a

be
b) + Lξ(ω̃

a
re

r) = 0 , (3.12)
dLξe

r + Lξ(ω̃
r
ae

a) + Lξ(ω̃
r
se

s) = Ωr
sT

s . (3.13)Beause of Lξe
a = 0 = Lξω̃

a
b equation (3.12) establishes

LξK
a

r = k̃aer + h̃aεrse
s , k̃a = k̃a(xα), h̃a = h̃a(xα) . (3.14)



3 THREE FORMALISMS 9Plugging (3.4) and (3.9) into (3.13) yields
LξK

r
a = Ωr

sK
s
a , (3.15)This means that the right hand side of (3.14) is not only valid for Lξi

Kr
abut also for Ka

r, whih suggests the useful de�nitions of vetor valuedsalars
ka := ĒryK

r
a , ha := Ēs

yKr
aεrs . (3.16)The following observation is helpful: The intrinsi torsion T̄ a of the redued

2d theory is irrelevant as there is no way to ouple soures to it (beausethe 2d onnetion is not present in the ation of 2d fermions). Thus, it anbe demanded always ĒcyK
a

b = 0. Obviously, due to spherial symmetryalso ĒryK
a

b = 0. Thus, Ka
b an be set to zero.The urvature 2-form (3.6) an be alulated using (3.4), (3.9) andtaking into aount the previous onsiderations on torsion. The 2-2 splitfor urvature and torsion yields the result

Ra
b = R̄a

b + Ra
b , Rr

s = R̄r
s(1 + (ĒaΦ)(ĒaΦ)) + Rr

s , (3.17)
Ra

r = −ηabRrb , Rr
a = (ĒbĒaΦ)ēbēr − (ĒbΦ)ωb

aē
r + Rr

a , (3.18)
T a = Ka

re
r , T r = Kr

ae
a +Kr

se
s , (3.19)

Ka
b = 0 , Kr

s = εr
ssae

a , (3.20)
Ka

r = −ηabKrb , Kr
a = −1

2
(kaē

r + haε
rsēs) , (3.21)with R̄r

s = ērēs being the urvature 2-form of S2 and R̄a
b being theintrinsi urvature in 2d. The ontortion ontributions to urvature read

Rr
s = ωr

aK
a

s +Kr
aω

a
s +Kr

aK
a

s

+ dKr
s + ωr

tK
t
s +Kr

tω
t
s , (3.22)

Rr
a = dKr

a +Kr
bω

b
a +Kr

sK
s
a

+ εr
ssbē

b(EaΦ)ēs − 1

2
ωr

s(kaē
s + haε

sr ēr) , (3.23)
Ra

b = 0

− 1

4
ηac(2(Ē[cΦ) + k[c)hb]ērε

rsēs , (3.24)where we use T[µν] := Tµν − Tνµ. Note that in eah equation the seondline does not ontribute to the urvature salar beause the orrespondingontrations vanish. Thus, for instane, the ontortion ontribution Ra
bdoes not produe any terms in the Einstein-Hilbert ation.As ompared to the torsionless ase additional e�etive �elds are ob-tained: three vetor valued salars (depending on xα), ka, ha and sa. De-pending on the original ation in d = 4 some of these �elds might drop.



3 THREE FORMALISMS 103.1.3 Redution of the Einstein-Hilbert ationDouble ontration,̃
R = R + 2Ea

yEryRr
a + Es

yEryRr
s , (3.25)yields the torsion free urvature salar R in terms of the two-dimensionalone RL, terms oming from intrinsi and extrinsi urvature of S2 andtorsion terms

R̃ = RL − 2

Φ2

(

1 + (∇aΦ)(∇aΦ)
)

− 4

Φ
(∇a∇aΦ)

+
1

Φ2

1

2
(hah

a − kak
a) +

2

Φ
sah

a +
2

Φ2
∇a(kaΦ) . (3.26)The �rst line oinides with the torsion-free result (e.g. equation (A.8) ofreferene [20℄). Note that in (3.26) ∇a is the ovariant derivative operatorwith respet to L. The last term together with the volume form produesjust a surfae term. Thus, as an be expeted on general grounds [21℄torsion is not propagating in the Einstein-Hilbert ation.For easier omparability with later results the anholonomi omponentsof the ontortion 1-form Km

n = Kl
m

ne
l are deomposed into the ontor-tion vetor ka like in (3.16),

ka = ΦKra
r , Aa =

1

3!
εalmnKlmn , (3.27)and the axial ontortion vetor Aa. The remaining omponents of theontortion tensor are denoted by Ulmn. Then the urvature salar (3.26)an alternatively be written

R̃ = RL − 2

Φ2

(

1 + (∇aΦ)(∇aΦ)
)

− 4

Φ
(∇a∇aΦ)

− 1

Φ2

1

2
k2 − U2 − 6A2 +

2

Φ2
∇a(kaΦ) , (3.28)where

6A2 = −2

3
(sas

a +
1

Φ2
hah

a +
2

Φ
sah

a) , (3.29)
U2 =

2

3
(sas

a +
1

4Φ2
hah

a − 1

Φ
sah

a) . (3.30)This seond form of the urvature salar is used in setion 4.5. Moreoverthe separation of the ontortion tensor into its irreduible parts is oftenfound in literature [22℄.



3 THREE FORMALISMS 11In the absene of torsion spheri redution [23℄ of the Einstein-Hilbertation LEH =
∫

M
RωG yields the dilaton gravity ation

Ldil[gαβ , X ] = 4π

∫

L

(

XRL + (∇X)2/(2X)− 2
)

ωg , (3.31)where ωG = Φ2ωgd
2Ω. M denotes the four-dimensional manifold and L itstwo-dimensional Lorentzian part.It is onvenient to reformulate this seond order ation3 as a �rst or-der one [26℄ and to resale the dilaton as X → λ2X in order to make itdimensionless,

LFOG[ea, ω,X,Xa] =
2π

λ2

∫

L

[Xa(D ∧ e)a +Xdω + V(X,XaXa)ǫ] ,(3.32)with V = −XaX
a/(4X) − λ2. Whenever a �rst order ation in d = 2 ispresented for sake of ompatibility with [20℄ the following notation is used:in aordane with above ea is the zweibein 1-form, ǫ = e+ ∧ e− is thevolume 2-form. The 1-form ω represents the spin-onnetion4 ωa

b = εa
bωwith the totally antisymmetri Levi-Civitá symbol εab (ε01 = +1). Withthe �at metri ηab in light-one oordinates (η+− = 1 = η−+, η++ =

0 = η−−) the �rst (�torsion�) term of (3.32) is given by Xa(D ∧ e)a =
ηabX

b(D ∧ e)a = X+(d − ω) ∧ e− +X−(d + ω) ∧ e+. Signs and fators ofthe Hodge-∗ operation are de�ned by ∗ǫ = 1. The auxiliary �eldsX,Xa anbe interpreted as Lagrange multipliers for geometri urvature and torsion,respetively. X± orrespond to the expansion spin oe�ients ρ, ρ′ (bothare real in ase of spherial symmetry, see below).All lassial solutions an be obtained with partiular ease from (3.32)not only loally, but globally [27℄.Even in the presene of torsion the redued equations of motion enforevanishing torsion unless matter ouplings to torsion exist. Suh a disussionwill be postponed beause fermion �elds � whih are the topi of the nextsetion � will be needed as soures. It will turn out that the �eld ka,the ontortion vetor, deouples from the theory even in the presene offermions.3.2 Dilaton gravity with matterIn this subsetion dilaton gravity with matter is disussed. Although wespeialise to spherially redued gravity the following is still valid for generi3Alternatively, one an try to eliminate the dilaton by means of its EOM, thus ob-taining an ation whih depends non-linearly on urvature. Reviews on this approahare [24℄ and [25℄.4It should be noted that even in the absene of torsion in d = 4 the onnetion ωa
bin (3.32) is torsion free if and only if V depends on X only.



3 THREE FORMALISMS 12dilaton gravity theories, whih means for generi funtions U(X) and V (X),ombined in the potential V = X+X−U + V .Spherial redution produes (3.32) with V = −X+X−/(2X) − λ2,where λ is a physial parameter whih an be saled to 1 by rede�ningthe units. By a onformal transformation ea → ẽa = eaΩ with onformalfator Ω = X1/4 the transformed dilaton potential Ṽ = −2λ2
√
X beomesindependent of X±. Choosing suh a onformal frame is often helpful,however we will not speify the onformal frame for the time being.It will be assumed that X+ 6= 0 in a given path. If X+ = 0 and

X− 6= 0 everything an be repeated with + ↔ −. If both X+ = 0 = X−in an open region a onstant dilaton vauum is enountered, whih will notbe disussed here (but they are rather trivial anyhow). If X+ = 0 = X−at an isolated point typially this orresponds to a bifuration 2-sphere.This slight ompliation will be negleted here as it is not essential for thepresent disussion.5 X+X− = 0 orresponds to an apparent horizon, whihin the stati ase is a Killing horizon.The generi Ansatz for the energy-momentum 1-form is
W± = W±

X dX +W±
Z Z , (3.33)where the 1-form Z is de�ned by

Z :=
e+

X+
. (3.34)For the following it will make sense to further speify (3.33):

W+
X = X+T1 , W+

Z = X+T2 ,

W−
X = X−T3 , W−

Z = X−T4 , (3.35)whih is only allowed in the absene of horizons. The EOM
dX +X−e+ −X+e− = 0 , (3.36)
(d ± ω)X± ∓ Ve± +W± = 0 , (3.37)
dω +

∂V
∂X

ǫ+Wǫ = 0 , (3.38)
(d ± ω) ∧ e± +

∂V
∂X∓

ǫ = 0 . (3.39)Let us emphasise that ω is the Levi-Civitá onnetion only in a onfor-mal frame with U = 0, i.e., V = V (X). Together with (3.33) and (3.35)5One an desribe a path in whih X+ = 0 = X− at a ertain point e.g. bya oordinate system similar to the one introdued by Israel [28℄ or by Kruskal likeoordinates.



3 THREE FORMALISMS 13immediately imply the following relations:
e− =

dX

X+
+X−Z , (3.40)

ǫ = e+ ∧ e− = Z ∧ dX , (3.41)
ω = −dX+

X+
+ VZ − W+

X+
, (3.42)

dZ = (T1 + U(X))dX ∧ Z , (3.43)where in addition
d(X+X−) + V (X)dX +X+X−U(X)dX

+X+X−(T1 + T3)dX +X+X−(T2 + T4)Z = 0 , (3.44)indiates the existene of a onserved quantity. The line element an easilybe omputed to be
ds2 = 2e+ ⊗ e− = 2X+X−Z ⊗ Z + 2Z ⊗ dX , (3.45)whih follows from (3.34) and (3.40) and takes the usual Eddington-Finkelsteingauge,

gαβ =

(

2X+X− 1
1 0

)

, gαβ =

(

0 1
1 −2X+X−

)

. (3.46)By virtue of the previous relations one obtains the minus part of (3.39)
d(X+X−) ∧ Z + V (X)dX +X+X−U(X)dX

+ (2X+X−T1 − T2)dX ∧ Z = 0 , (3.47)whih together with (3.44) implies
T2 = X+X−(T1 − T3) . (3.48)Therefore we are left with three independent funtions. This is of ourseexpeted sine any symmetri two-dimensional energy-momentum tensorhas only three independent omponents.For later use it is important to relate the generi energy-momentum1-form (3.33) with the energy-momentum tensor Tαβ obtained by varyingthe matter Lagrangian with respet to the metri. It would be temptingto vary the matter Lagrangian with respet to the 1-form ea and relatethis objet diretly with the energy-momentum tensor. However, in thefour dimensional ase variation of the matter Lagrangian with respet to



3 THREE FORMALISMS 14the 1-form em gives a 3-form and its dual de�nes the energy-momentumtensor. Therefore one �nds
δLm =

∫

δea ∧Wa =
1

2

∫

δγδ
αβδe

a
γWaδ dxα ∧ dxβ

=

∫

Waαε
αβδea

βǫ =

∫

Tα
a δe

a
αǫ , (3.49)where δγδ

αβ is the permutation symbol, and whih together with (3.48) im-plies the following form the energy-momentum tensor Tαβ are related by
Tαβ = εγαW a

γE
β
a . (3.50)Hene we �nd the following energy-momentum tensor

Tαβ =

(

T1 −T2

−T2 X+X−(T2 − T4)

)

. (3.51)Note again, that we are working in the Eddington-Finkelstein gauge.So far all EOMs have been exploited exept for two; one of them yieldsthe loal Lorentz angle (i.e., it determines the ratio of X−/X+), whih isnot of interest here, while the other one yields the dilaton urrent W . Inaddition to the equations of motion one has one more equation, namely theovariant onservation of the energy-momentum tensor. In the non-statiase we annot do muh more but if in addition statiity is assumed, wean solve the equations of motion.3.2.1 Stati and spherially symmetri matterIn the following statiity is assumed. Then the equations of motion simplifyonsiderably and the onservations equation (3.44) an be integrated. Forstati solutions of generi dilaton gravity models f. e.g. [29�31℄. Statiityimplies that X+X− = X+X−(X) and Ti = Ti(X). Putting this into (3.44)immediately leads to
T2 + T4 = 0 . (3.52)Equation (3.38), whih yields the dilaton urrent, simpli�es to

T ′
2 + T1(T2 − V +X+X−U) +W = 0 , (3.53)where the prime means di�erentiation with respet to the dilaton. Further-more the ovariant onservation of the energy-momentum 1-form takes thefollowing form

Eay

(

dW a + εa
bω ∧W b

)

=
(

W +X+X−U(T1 + T3)
)

dX , (3.54)



3 THREE FORMALISMS 15where the above relation (3.48) implied the vanishing of the Z diretionand (3.52), (3.53) were used for simpli�ations. It should be noted that the
4d energy-momentum onservation equation is given by (3.54). Thus, oneonludes that the non-onservation of the 2d energy-momentum tensor isessentially given by the dilaton urrent W .The onservation equation (3.44) reads

d(X+X−) + V (X)dX +X+X−
(

U(X) + T1 + T3

)

dX = 0 (3.55)whih suggests the de�nitions
I(X) : = exp

∫ X

(U(y) + T1(y) + T3(y))dy ,

w(X) : =

∫ X

I(y)V (y)dy , (3.56)and the total onserved quantity an be integrated to
C = X+X−I(X) + w(X) = const. , (3.57)whih is preisely the form of ordinary dilaton gravity. The di�erene is, ofourse, that I and w depend on funtions present in the energy-momentumtensor. Note: If the term T1 +T3 sales with 1/X+X− one should rede�nethe potential V 7→ V + T1 + T3 and leave U unhanged. In the absene ofhorizons X+X− 6= 0 this rede�nition is well de�ned. This point does nothange the integrability feature.From (3.43) one �nds the Z an be written as

Z = eQdu , Q =

∫ X

(T1(y) + U(y))dy , (3.58)whih in turn gives
dX = e−Qdr . (3.59)Therefore the line element simpli�es to

ds2 = 2dudr +K(X)du2 , (3.60)where the Killing norm is given by
K(X) = 2e2QX+X−

= 2 exp
(

∫ X

(U(y) + T1(y) − T3(y))dy
)

(

C − w(X)
)

. (3.61)This is nothing but the most general solution of dilaton gravity (f. eq.(3.26) of [20℄). The aspet that stati matter solutions an be mapped onordinary solutions of dilaton gravity is disussed in subsetion 3.2.3, wherematter is assumed to be a stati and spherially symmetri perfet �uid.



3 THREE FORMALISMS 163.2.2 Spherially symmetri perfet �uidsA perfet �uid is haraterised by
T µν = (ρ+ P )uµuν − Pgµν , (3.62)where ρ and P denote the energy density and pressure respetively withrespet to the equal time frame (momentaneous) de�ned by uµ, the �uid'sfour-veloity. The gravitational �eld equations imply the vanishing of theovariant derivative of the energy-momentum tensor

∇νT
µν = 0 . (3.63)Its form is best known in spherially symmetri four-dimensional gravity indiagonal gauge ds2 = eνdt2 − eadr2 − r2dΩ2. By suppressing the spherialomponents it reads

T µν =

(

ρe−ν 0
0 Pe−a

)

, (3.64)whih in the Eddington-Finkelstein gauge beomes
T µν =

(

ρ+P
K −P
−P PK

)

. (3.65)Comparing the above energy-momentum tensor with (3.51) leads to thefollowing identi�ations
T1 =

ρ+ P

2X+X−
, T2 = P ,

T3 =
ρ− P

2X+X−
, T4 = −P . (3.66)Therefore one immediately �nds that T1 + T3 sales with 1/X+X− whihheneforth must be taken into aount if the onservation equation (3.44)is onsidered, see the disussion above.Lastly we denote the expliit form of the energy-momentum 1-form (3.35)for a perfet �uid

W± = ∓ρ− P

2
e± ± X±

X∓

ρ+ P

2
e∓ , (3.67)whih expliitly depends on X±. It is not surprising that we annot reovera perfet �uid ation from (3.67). However, with presribed equation ofstate the ation is given by the pressure and one an well de�ne what ismeant by an ation priniple [32℄.



3 THREE FORMALISMS 173.2.3 Stati and spherially symmetri perfet �uidsSpherially symmetri stati perfet �uid solutions have been studied inseveral publiations, f. [33℄ and referenes therein. As may be expeted,the disussion beomes partiularly easy within the redued theory. Thefat that a perfet �uid ouples minimally to the dilaton also in the reduedtheory is a ruial tehnial ingredient. Assuming statiity the EOMs aresolved. Integrability of this system an be dedued from a general disus-sion [34℄, but it will be made expliit below.By virtue of the identi�ation (3.56) one obtains
X+X−(T1 + T3) = ρ . (3.68)Assume ρ > 0, then the latter equation (3.68) implies the absene of Killinghorizons, X+X− 6= 0, if |T1 + T3| < ∞ holds. However at the boundaryof a perfet �uid sphere the energy density may vanish ρ = 0. Sine theexterior spaetime is matterless, i.e., T1+T3 = 0, there is no horizon loatedat the boundary. The ondition X+X− 6= 0 is weaker than the Buhdahlinequality [35℄ but su�es to show the non-existene of horizons.The stati onservation equation (3.55) gives

d(X+X−) + V (X)dX +X+X−U(X)dX + ρ(X)dX = 0 , (3.69)where we now see that rather than (3.56) one must hoose
I(X) : = exp

∫ X

U(y)dy ,

w(X) : =

∫ X

I(y)(V (y) + ρ(y))dy , (3.70)whih yields the total onserved quantity (3.57) to be
C = X+X−I(X) + w(X) . (3.71)The usual energy-momentum onservation (3.63) is enoded in equation (3.53)with vanishing dilaton urrent, W = 0. Hene we onlude that a statiperfet �uid ouples minimally to dilaton gravity. The onservation equa-tion (3.63) reads

P ′ + T1(P − V +X+X−U) = 0 ,

T1(P − V +X+X−U) =
K ′

2K
(ρ+ P ) , (3.72)where the seond relation of (3.72) an be obtained by di�erentiating (3.61)and using the identi�ation (3.66). The Killing norm for stati perfet �uids



3 THREE FORMALISMS 18beomes
K(X) = 2X+X− exp

(

2

∫ X

T1(y) + U(y)dy
)

, (3.73)where we expliitly see that X+X− = 0 orresponds to a Killing horizon.The identi�ation of T1 an be re-expressed with (3.71) and yields
T1 =

ρ+ P

2X+X−
=

1

2

I(X)(ρ+ P )

C −
∫X

I(y)(V (y) + ρ(y))dy
. (3.74)It should be noted that the energy-momentum onservation equation ofan anisotropi perfet �uid reads

P ′ +
K ′

2K
(ρ+ P ) =

X ′

X
(P⊥ − P ) , (3.75)where P⊥ is the orthogonal pressure omponent of the anisotropi per-fet �uid T µ

ν = diag(ρ,−P,−P⊥,−P⊥). If P⊥ = P then the onservationequations deouples from the dilaton and one is bak at the isotropi ase.Therefore one onludes that an anisotropi �uid an only be desribedwith non-minimal oupling to the dilaton.Therefore every stati, spherially symmetri, minimally oupled (W =
0) matter solution an be mapped onto solutions of a dilaton gravity model,see the disussion that follows. This in partiular inludes the disussedperfet �uid ase. For a olliding null dust this statement an already befound in [36℄, in our framework this orresponds to presribing the pressureto vanish.Starting from (3.60) and (3.61) with the rede�nition

dr = exp
(

∫ X̃

(U(y) + T1(y) − T3(y))dy
)

dX̃ = Ĩ(X̃)dX̃ , (3.76)yields the line element in the following form
ds2 = Ĩ(X̃)

(

2dudX̃ + (C − w̃(X̃))du2
)

, (3.77)where we furthermore rede�ned (3.56) to be
w̃(X̃) =

∫ X̃

Ĩ(y)Ṽ (y)dy ,

Ṽ (X̃) = V (X̃) exp
(

2

∫ X̃

T3(y)dy
)

. (3.78)Let us now, in ontrast to the perfet �uid ase, assume that the funtion
T1(X) is given, whih orresponds to the introdution of some generating



3 THREE FORMALISMS 19funtion [33℄. Note that for given T1(X) equation (3.53) yields T2(X) andtherefore T4(X) by (3.52) and �nally T3(X) is obtained from (3.48).Hene for eah hoie of T1 in the dilaton gravity setor there is exatlyone w̃ in the matter or perfet �uid setor. However, not every w̃ permitsa regular representation as a perfet �uid! Only if one allows for singularon�gurations all6 2d dilaton gravity theories an be mapped onto a statispherially symmetri perfet �uid model oupled to Einstein gravity in
d = 4. This an be seen most easily be heking that for regular T1 therelation between X and X̃ is invertible. The same holds for r and X .Thus, these three oordinates an be expressed as monotonous funtionswith respet to eah other (e.g. X(X̃)). Beause the original V (X) isalso monotonous, this means that also w̃ is monotonous. Moreover, thefuntion Ĩ annot be zero. Therefore, there an be at most one (non-extremal) Killing horizon, depending on the sign of C and eventual loweror upper bounds of w̃. Thus, the only possibility to express generi 2ddilaton gravity as a perfet �uid model is to allow for singular energydistributions. However, at a singular point of T1 all previous oordinaterede�nitions are not valid anymore. Only if one simultaneously performs aonformal transformation with ompensating singularities�thus hangingthe ausal struture in an essential way� �nally all dilaton gravity modelsan be reprodued.In this sense, generi 2d dilaton gravity orresponds to a (not nees-sarily regular) perfet �uid solution in a ertain (not neessarily regular)onformal frame. However, regardless of this minor interpretational issuethe partiular ease of this formalism should be emphasised and omparedwith the usually more involved alulations in d = 4.Further remarks and ommentsIn order to omplete the perfet �uid disussion some remarks are neessary.Firstly one should have in mind that the Einstein �eld equations for a statiand spherially symmetri perfet �uid redue to a system of two �rstorder di�erential equations for a given equation of state. Existene anduniqueness of the solution of this system was proved in [38℄ for an alreadywide lass of equations of state. Many assumptions on the equation of stateould later be weakened in [39℄ and [40℄.The power of dilaton gravity is to get equations of motion of the �rstorder, so it seems that in the perfet �uid ase only little an be won,namely the total onserved quantity C in (3.71). The disadvantage on theother hand is the more ompliated struture of the di�erential equationsif the density, the pressure or an equation of state is spei�ed. Already in6By �all� in the parlane of [37℄ it is meant that the �good� funtion w̃ an attain anyform. The �muggy� funtion Ĩ, however, annot be hosen independently.



3 THREE FORMALISMS 20the onstant density ase equations get more involved than with the usualapproah through the Tolman-Oppenheimer-Volko� [41, 42℄ equation. Asexpeted, the three equations (3.71)�(3.72) ontain four unknown fun-tions, namely ρ, P,K and X+X−, therefore one of these funtions an behosen freely.3.3 Spinor formalism and redution of fermionsSine spherial symmetry provides a foliation of spaetime by spaeliketwo-surfaes (round two-spheres) it is natural to adapt the Cli�ord alge-bra to this foliation. In partiular the Geroh-Held-Penrose (GHP) spin-oe�ient formalism [43,44℄ is partiularly well suited for this situation. Ituses a double-null tetrad (la, na,ma, m̄a) satisfying7
l · n = 1 , m · m̄ = −1 , l2 = 0 , n2 = 0 , m2 = 0 , m̄2 = 0 , (3.79)
madxa = − Φ√

2
(dθ − i sinθdφ) , (3.80)adapted to suh a foliation by notiing that the orthogonal omplementof the tangent spae of the two-surfaes is uniquely spanned by two null-normals la, na.

lana

< ma, m̄a >

S2Figure 1: Foliation of spaetime by two-spheres7We note that we follow here the usage of most of the literature, taking Latin indiesfor abstrat indies, whereas they were used for anholonomi indies in the previoussetion.



3 THREE FORMALISMS 21In the GHP formalism the null tetrad gives uniquely rise to a spinorbasis (dyad) via the identi�ation
la = oAoA′

, na = ιAιA
′

, ma = oAιA
′

, m̄a = ιAoA′

, (3.81)
gab = εABεA′B′ = lanb + nalb −mam̄b − m̄amb , (3.82)
εABoAιB = oAι

A = 1 . (3.83)This identi�ation allows us to onsider tensor �elds as a speial ase ofspinor-�elds, by identifying a tensor index a with a pair of primed andunprimed spinor indies AA′. Note that in the previous setion Latinletters were used for anholonomi indies, in this setion they are used asabstrat indies.The ovariant derivatives along the null diretions of the tetrad de�nethe 12 omplex spin oe�ients (taking into aount priming and omplexonjugation)
DoA = −γ′oA − κιA , DιA = γ′ιA − τ ′oA , (3.84)
δoA = βoA − σιA , διA = −βιA − ρ′oA , (3.85)where D = la∇a and δ = ma∇a. The GHP formalism and Cartan's formalulus an be linked by noting appendix B and espeially equations (B.2)and (B.3). They an be used to read of the spin oe�ients for a given nulltetrad.In a spherially symmetri spaetime 6 of the 12 spin oe�ients van-ish, see [45℄ for the stati and spherially symmetri ase. The vanishingoe�ients are κ = σ = τ = 0, together with their primed ounterparts.Furthermore γ and γ′ are real quantities desribing the 2d spaetime only.

ρ and ρ′, whih are also real, desribe the expansion of the sphere. Asalready said in the end of subsetion 3.1.3, they orrespond to X± respe-tively. The remaining two spin oe�ients are not independent and areexpliitly given by β = β̄′ = (cotθ)/(2
√

2Φ).The two-spinor equivalent Dira ation funtional [46℄ an be written
L =

∫

(

i Ψ̄ /∇Ψ −mΨ̄Ψ
)

ωG , (3.86)where Ψ̄ = Ψ
†γ0 is the Dira onjugate and /∇ = γa∇a. We take the spaeof Dira 4-spinors Ψ to be of the form Ψ = (ψA, χ

A′

), i.e., the diret sumof the dual with the omplex onjugate 2-spinor spae. Note that ψA and
χA′ are left- and right-handed fermions respetively. In this ombinationthe Dira onjugate is simply given by Ψ̄ = (χ̄A, ψ̄A′). The Cli�ord algebraassoiated with gab is follows from the identi�ation/v =

√
2

(

0 vAB′

vA′B 0

)

, /u/v + /v/u = 2(u · v)1 . (3.87)



3 THREE FORMALISMS 22Identifying the vetors of the null tetrad (3.81) leads to
l//n+ /nl/ = 21 , /m/̄m+ /̄m/m = −21 . (3.88)Thus the four-dimensional Cli�ord algebra is generated by two two-dimen-sional Cli�ord algebras. The �rst is generated by the orthonormal basis laand na, the seond by the basis vetors of the two-sphere S2, ma and m̄a.Furthermore we �nd

SI =

{(

oA

0

)

,

(

0

ιA
′

)}

, SII =

{(

0

oA′

)

,

(

ιA
0

)}

, (3.89)as invariant subspaes of the two-dimensional Cli�ord algebra generatedby la and na, hene one an write S = SI ⊕SII . With respet to this basisthe two-dimensional Cli�ord algebra is represented by
l/ → γ−I,II = ±

√
2

(

0 1
0 0

)

, /n→ γ+
I,II = ±

√
2

(

0 0
1 0

)

, (3.90)from whih the γa-matries in a loal Lorentz frame are given by
γ0

I,II = ±
(

0 1
1 0

)

, γ1
I,II = ∓

(

0 1
−1 0

)

, (3.91)
γ⋆ = γ0γ1 =

(

1 0
0 −1

)

, (3.92)where we used √
2γ0 = γ+ + γ−. The upper and lower signs refer to theinvariant subspaes SI and SII respetively.From the above the Dira ation funtional (3.86) an be written intwo-spinor form

L =

∫

(

i
√

2(ψ̄A′∇AA′

ψA + χ̄A∇AA′χA′

) −mψ̄A′χA′ −mχ̄AψA

)

ωG ,(3.93)whih by variation with respet to the spinors ψ̄A′ and χ̄A leads to theDira equation [47℄ in two-spinor form
i
√

2∇AA′

ψA −mχA′

= 0 , i
√

2∇AA′χA′ −mψA = 0 . (3.94)The Dira two-spinors are expanded in terms of the basis spinors ψA =
AoA + PιA, χA′

= BιA
′

+ QoA′ , where A, B, P and Q are funtions ofall four spaetime oordinates. The funtions A, B, P and Q have spinweights −1/2, −1/2, 1/2 and 1/2 respetively. Therefore one an rewrite



3 THREE FORMALISMS 23the �rst term of the Dira ation (3.93) in terms of weighted derivativeoperators [44℄
ψ̄A′∇AA′

ψA = Ā(þ− ρ)A+ Āð
′P + P̄ (þ′ − ρ′)P + P̄ðA , (3.95)where the weighted operators are given byþη = Dη +

w

2
(γ′ + γ̄′)η +

s

2
(γ′ − γ̄′)η , (3.96)

ðη = δη − w

2
(β − β̄′)η − s

2
(β + β̄′)η , (3.97)when ating on a weighed quantity η with spin weight s and boost weight

w. It was taken into aount that the spin oe�ients κ, σ and τ togetherwith their primed ounterparts vanish in ase of spherial symmetry.Sine the ation (3.93) must be a real funtional the real spin oe�ients
ρ and ρ′ drop out beause of the fator i in front. This yields
L =

∫

(

i
√

2
(

ĀþA+ Āð
′P + B̄þ′B + B̄ð

′Q
)

i
√

2
(

Q̄þQ+ Q̄ðB + P̄þ′P + P̄ðA
)

−m
(

ĀB + B̄A
)

+m
(

Q̄P + P̄Q
)

)

ωgΦ
2d2Ω . (3.98)Next the weighed funtions A, B, P and Q are expanded in terms ofspin weighted spherial harmonis with the appropriate spin weights, A =

∑

jm Ajm− 1
2
Y 1

2
1
2
, et. These are the eigenfuntions of the operator ð′ð foreah spin weight s. They are de�ned by [44,48℄

ð
′
ðsYj,m = − (j + s+ 1)(j − s)

2Φ2 sYj,m , (3.99)
ðsYj,m = −

√

(j + s+ 1)(j − s)√
2Φ

s+1Yj,m , (3.100)
ð
′
sYj,m =

√

(j − s+ 1)(j + s)√
2Φ

s−1Yj,m , (3.101)and, for eah spin weight s, enjoy the orthogonality ondition
〈sYj,m, sYj′,m′〉 =

1

4π
δjj′δmm′ , 〈f, g〉 =

1

4π

∫

f̄ gd2Ω . (3.102)Hene the spherial dependene of (3.98) an be integrated out. Inpartiular we obtain
∫

ĀþAd2Ω =
∑

jm

ĀjmþAjm , (3.103)
∫

Āð
′Pd2Ω =

j + 1
2√

2Φ

∑

jm

ĀjmPjm . (3.104)



3 THREE FORMALISMS 24Then the spherially redued fermion ation reads
LD =

√
2
∑

jm

∫

(

i
(

ĀjmþAjm+
j + 1

2√
2Φ

ĀjmPjm

)

+i
(

B̄jmþ′Bjm+
j + 1

2√
2Φ

B̄jmQjm

)

+ i
(

Q̄jmþQjm − j + 1
2√

2Φ
Q̄jmBjm

)

+ i
(

P̄jmþ′Pjm − j + 1
2√

2Φ
P̄jmAjm

)

− m√
2

(

ĀjmBjm + B̄jmAjm

)

+
m√
2

(

P̄jmQjm + Q̄jmPjm

)

)

Φ2ωg . (3.105)Two-spinor representationLet the two-spinors with respet to their invariant subspae SI,II respe-tively be8
ΨI

jm =

(

Ajm

Bjm

)

, Ψ̄I
jm = ΨI†

jmγ
0
I =

(

B̄jm , Ājm

)

, (3.106)
ΨII

jm =

(

Qjm

Pjm

)

, Ψ̄II
jm = ΨII†

jmγ
0
II = −

(

P̄jm , Q̄jm

)

. (3.107)The weighted derivative operators þ and þ′ are simply given by þ = la∇aand þ′ = na∇a. Therefore the dyads Ea
+ = la and Ea

− = na in light oneform are introdued.Thus the redued ation (3.105) written in an intrinsially 2d formbeomes
LD =

∑

jm

∫

(

Ψ̄I
jm

(

iEa
+∇aγ

+
I + iEa

−∇aγ
−
I −m1)ΨI

jm+

Ψ̄II
jm

(

iEa
+∇aγ

+
II + iEa

−∇aγ
−
II −m1)ΨII

jm+

j + 1
2

Φ

(

Ψ̄II
jmγ

⋆IΨI
jm + Ψ̄I

jmγ
⋆I−1ΨII

jm

)

)

Φ2ωg , (3.108)where I is the intertwiner between the representations of the two-dimensionalCli�ord algebra in SI and SII respetively. The unity matries in the �rstand seond line should also arry an index with respet to their spinor-spae, whih was avoided for larity. With respet to the bases hosen in
SI and SII we have

I : SI → SII , I =

(

i 0
0 −i

)

= iγ⋆ . (3.109)8If the spinor ψA is labelled by spinorial indies A,A′, . . . then ψ̄A′ denotes theomplex onjugate of the spinor ψA. In all other ases the quantity Ψ̄ is the Diraonjugate of the spinor Ψ.



3 THREE FORMALISMS 25This allows us to identify SI with the two-dimensional (irreduible) rep-resentation spae S of the (two-dimensional) Cli�ord algebra, whereas therepresentation in SII is equivalent under the ation of the intertwiner I. Werewrite the redued ation by denoting ΨI
jm = η (this means identifying Swith SI) and ΨII

jm = Iλ where λ ∈ S. Then the above expression (3.108)turns into
L =

∫

(

η̄
(

i /∇−m1)η + λ̄
(

i /∇−m1)λ+
j + 1

2

Φ

(

λ̄γ⋆η − η̄γ⋆λ
)

)

Φ2ωg ,(3.110)where the summation over the modes is understood and heneforth thekineti term is abbreviated using /∇ = Ea
+∇aγ

+
I,II +Ea

−∇aγ
−
I,II when atingon η or λ, respetively. In this formulation both spinors η and λ belong tothe same spinor spae. Finally we introdue an internal index u and write

ψu = (η, λ)

L =

∫

(

δuvψ̄u

(

i /∇−m1)ψv − j + 1
2

Φ
εuv
(

ψ̄uγ
⋆ψv

)

)

Φ2ωg , (3.111)whih display that the ation is in a SO(2) ≃ U(1) ovariant form.This remaining freedom is the two parameter subgroup of the Lorentzgroup at eah point and an be understood from the following. Onean resale the basis spinors by a omplex salar �eld oA 7→ ΛoA and
ιA 7→ (1/Λ)ιA, whih leaves the null diretions invariant. By writing
Λ2 = R exp(iφ) one �nds that the null diretions la and na are boosted,whereas ma and m̄a are rotated by an angle ±φ, respetively.Graphially the above spaes and their embeddings are summarised in�gure 2.3.4 Redution of Yang-Mills �eldsIn this subsetion we use the metri formalism to spherially redue Yang-Mills �elds, where Latin letters orrespond to abstrat indies. This for-malism uses a generi metri and does not speify the signature, in ontrastto the GHP formalism, in whih the signature is �xed.Before starting with the nonabelian ase it is worthwhile to onsider
U(1). In standard notation [44℄ the skew-symmetri �eld tensor

Fab = φABεA′B′ + εABφ̄A′B′ , (3.112)an be deomposed in terms of a omplex, symmetri bispinor φAB. If apotential exists the relation φAB = ∇A′(AAB)
A′ implies Fab = 2∇[aAb].Aording to our notion, spherial symmetry means that the Lie-derivativetaken into the Killing-diretions ating on the (in the present ase abelian)
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Cl(M, g)

TM

Cl(L, h)

TL

L

SM

γM

πM

γS

SL

πL

πSL

M

⊕

πSM

Figure 2: Embedding diagram for the spin-spaes of M = M,L. TM de-notes the tangent bundle and Cl(M, gM) the orresponding Cli�ord bun-dle with Cli�ord-map γM. SM refers to the respetive spin-bundles, i.e.,representation spaes of Cl(M, gM).Yang-Mills ation yields only surfae terms. A su�ient, but by no meansneessary ondition is strit spherial symmetry, LξFab
!
= 0, implying

LξφAB = 0 (sine LξεAB = 0 by onstrution). More expliitly this ondi-tion reads
(ξ · ∇)φAB + ΦA

CφCB + ΦB
CφAC = 0 . (3.113)Applying the deomposition with respet to the basis, φAB = φ00oAoB +

φ01o(AιB)+φ
11ιAιB , yields three onditions for the three oe�ients φij . Inthe same way in whih the nonexistene of stritly spherially symmetrispinors an be proved the relation φii = 0 an be shown. However, asopposed to spinors this does not imply a trivial �eld on�guration. Indeed,the equation

(ξ · ∇)(φ01o(AιB)) = 0 , (3.114)after ontration with oBιA redues to
(ξ · ∇)φ01 = 0 , (3.115)allowing for nontrivial �eld on�gurations (namely eletri monopoles andtheir dual). This is of ourse not unexpeted, sine the Coulomb-solution



3 THREE FORMALISMS 27is well-known for exhibiting spherial symmetry. This result an be gener-alised to the Yang-Mills ase. However, the ondition of stritness an berelaxed.Sine su(2) is the building blok of all other Lie-Algebras (and for sakeof simpliity) we will restrit ourselves to the gauge group SU(2). It an beexpeted that spherial redution yields a non-trivial result due to the fatthat the SU(2) ≡ S3 allows for a Hopf-�bration U(1) over S2 and beausethe isometry group of the metri by onstrution ontains SO(3) as sub-group with S2-orbits. Spherial redution of SU(2)-Yang-Mills theory hasbeen performed by several authors during the 1970's � the most prominentis probably referene [49℄. We will follow in our desription losely theapproah of Forgás and Manton [50℄. The ondition
Lξm

Aa
!
= DaWm , (3.116)provides spherial symmetry up to gauge transformations. For eah Killingvetor ξm a Lie-algebra valued salar �eld Wm = W i

mT
i is introdued,with T i being the generators of SU(2). Note that m is not a usual abstratindex, but just a label for the mth Killing vetor. Da is the gauge-ovariantderivative, i.e., DaW = ∇aW − ig[Aa,W ]. Equation. (3.116) is equivalentto gauge-ovariant transformation behaviour of the nonabelian �eld tensor

LξFab = ig[Fab,W ].Applying the ommutator of two Lie-derivatives establishes the (Wess-Zumino) onsisteny ondition
2Lξ[mWn] = [Wm,Wn] + fmnlWl , (3.117)with the struture onstants [ξm, ξn] = ifmnlξlThe general idea to solve (3.116) as advoated in [50℄ is as follows:instead of solving this equation on the oset-spae S2 = SO(3)/SO(2),it is solved using the whole symmetry group SO(3), thus introduing anadditional dimension. By a gauge transformation one an simplify (3.116)suh that the right hand side vanishes. Equations of this type an be solvedeasily (they must be ful�lled separately for eah generator). Afterwards agauge transformation is used to e�etively projet the gauge-�eld to theoset spae. Then one proeeds to �nd the most general solution to theonsisteny onditions.What has been explained in words will now be presented brie�y informulas. The abstrat index-set {ã, i, w} is split into the isometry part ã(�r − t-part�), the oset part i (�θ − φ�-part) and the phase part w (thethird Euler angle χ = xw). A generi index of the subset {i, w} is denotedwith â. A generi index of the subset {ã, i} is denoted by a. The solutionof

Lξm
Ai

â = 0 , ∀m, i , (3.118)
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Ai

â = Φi
mξ̃mâ , (3.119)where ξ̃ denotes left-translations (as opposed to the usual right-translations

ξ). The salars φi
m are independent of the phase xw. The ã-omponent istrivially given by

Ai
ã = Ai

ã(xã) . (3.120)Afterwards a gauge is hosen suh that Aw = 0 and the other omponentsbe independent of xw (so in fat the third Euler angle deouples and onean restrit to the oset spae).For expliit alulations one assumes that the generator of the SO(2)subgroup (de�ning the oset spae S2) is T 3. There are three possiblesolutions of the onsisteny equations
∇aΦi

3 − gεiβγAβ
aΦγ

3 = 0 , (3.121)
εm3lΦ

i
l + gεiβγΦβ

mΦγ
3 = 0 . (3.122)It is onvenient to �x a gauge where Φ1

3 = Φ2
3 = 0.There exists a degenerate solution when all Φi

m vanish, whih produessimply pure SU(2) gauge theory after redution (this is the analogue ofthe U(1)-example disussed before). Another solution is obtained for van-ishing Φ1 = Φ2 and onstant Φ3
3, orresponding to an abelian monopole ofarbitrary harge.The solution of the onstraint equations in the general ase is given by

Ai
a =

1

g
(0, 0, aa) , (3.123)

Φi
1 =

1

g
(Φ1,Φ2, 0) , (3.124)

Φi
2 =

1

g
(Φ2,−Φ1, 0) , (3.125)

Φi
3 =

1

g
(0, 0, 1) . (3.126)A gauge rotation whih makes Ai
w equal to zero for all i establishes an



3 THREE FORMALISMS 29equivalent form, the so-alled Witten ansatz:
Ai

t =
1

g
(0, 0, a0) , (3.127)

Ai
r =

1

g
(0, 0, a1) , (3.128)

Ai
θ =

1

g
(−Φ1,−Φ2, 0) , (3.129)

Ai
φ =

1

g
(Φ2 sin θ,−Φ1 sin θ, cosθ) . (3.130)It leads after redution to an abelian gauge theory, supplemented by aomplex salar �eld. The orresponding salar �elds W i

m read (f. equa-tion (3.116))
W 3

1 =
sinφ

sinθ
, W 3

2 =
cosφ

sin θ
, W i

m = 0 otherwise. (3.131)The real salars Φ1 and Φ2 are ombined to one omplex quantity w.Most onveniently [51℄, the spherially symmetri Lie algebra valued 1-form an be written as follows: Let us denote a = a0dt + a1dr and for
SU(2) we have Ti = σi/2, where σi are the Pauli matries. For SU(3)the above Witten ansatz has to be supplemented by just one additionalterm (b/2g)λ8, where b = b0dt + b1dr, Ti = (λ1, λ2, λ3)/2 and λi are thestandard Gell-Mann matries. Therefore
A = TiA

i
µdxµ =

a

g
T3 +

1

g
(ImwT1 + RewT2)dθ+

1

g
(ImwT2 − RewT1 + cotθT3) sinθdφ+

b

2g
λ8 . (3.132)We already introdued an additional ontribution in the simple SU(3) ase,where the SU(2) generators are the trivially embedded into the SU(3)group, alled isospin-1/2 embedding. There is a seond, more involved,isospin-1 embedding of the SU(2) group into the SU(3) group whih willnot be used here [52, 53℄.Equation (3.132) is invariant under U(1) gauge transformations gener-ated by U = exp(iΩ(t, r)T3), under whih

aa 7→ aa + ∂aΩ , w 7→ eiΩw , b 7→ b . (3.133)The four dimensional Yang-Mills ation reads
L = −

∫

1

2
Tr(F ∗F ) , (3.134)



4 THE SPHERICALLY SYMMETRIC STANDARD MODEL 30where the gauge �eld strength is given by F = dA − ig[A,A] and g is thegauge oupling onstant. This ation is invariant under gauge transforma-tions of A, under whih A 7→ UAU−1 + (1/g)UdU−1 and F 7→ UFU−1.Then the spherially redued Yang-Mills ation of the gauge �eld ansatz(3.132) reads [51℄
LYM = 4π

∫

(

− 1

4g2
f2 − 1

4g2
f2 +

1

g2

|Dw|2
Φ2

− 1

g2

(|w|2 − 1)2

2Φ4
ωg

)

Φ2 ,(3.135)where f2 = f ∗f , |Dw|2 = |Dw ∗Dw| and the 2d abelian �eld strengths aregiven by
f = da , (3.136)
f = db . (3.137)The gauge ovariant derivative is D = d − ia, when ating on salars. Inase of arbitrary magneti and eletri harge the Yang-Mills equationsimply w = 0. On the other hand, w 6= 0 only allows a magneti monopolewith unit harge but still an arbitrary eletri one [51℄.The �eld strength (3.137) does not emerge from the ommutator of thegauge ovariant derivative D = d−ia. Thus there is no oupling between wand b. This an be understood from the fat that λ8 in (3.132) ommuteswith the generators λ1, . . . , λ3 of the SU(2) Lie sub-algebra.Nonetheless the gauge ovariant derivative de�ned below, equation (4.22),when ating on spinors, has an ontribution due to b.4 The spherially symmetri Standard ModelThe aim of the last setion was to review the three formalisms neededfor spherial redution. This setion uses these to spherially redue theremaining parts of the SM of partile physis. Furthermore, with all themahinery already at hand, we spherially redue torsion generated byfermions, whih yields a four fermion interation term.Our proedure of spherial redution an easily be extended to alsoinlude the new terms of the reently proposed New Minimal StandardModel [14℄. For example, dark matter neessitates the introdution of anew real salar �eld, whih was already spherially redued in example 3.1,equation (2.9).4.1 Redution of the SU(2) Yang-Mills Dira systemThe spherial redution of the interation term was often performed byan ansatz for the Dira spinors [54, 55℄. With our methods we show that



4 THE SPHERICALLY SYMMETRIC STANDARD MODEL 31an additional term appears that may have been overlooked in previousalulations.The interation term is desribed by
L =

∫

(

Ψ̄Λ
α(γµ)α

β e
a
µ(gAa)Λ∆Ψ∆β

)

ωg , (4.1)where Λ and ∆ denote the group indies of the Yang-Mills �eld Aa, whereasthe indies α and β desribe the group indies of the Dira four-spinors Ψ.Writing ation (4.1) in the spinor formalism of setion 3.3 yields
L =

∫

(√
2ψ̄ΛA′

gAAA′Λ∆ψ
∆A
)

ωG , (4.2)sine only left-handed fermions are interating in the SM and where theminimal substitution
∇AA′ 7→ ∇AA′ − igAAA′Λ∆ , (4.3)was used. The Yang-Mills �eld in terms of spinor omponents beome

ιAιA
′

AAA′ =
1

g
(naaa)T3 , (4.4)

oAoA′

AAA′ =
1

g
(laaa)T3 , (4.5)

oAιA
′

AAA′ =
−i√
2gΦ

(w̄T− − cot θT3) , (4.6)
ιAoA′

AAA′ =
i√
2gΦ

(wT+ − cot θT3) , (4.7)where T± = T1 ± iT2 . (4.8)In analogy to subsetion 3.3 the left-handed spinor ψ∆A is written as
ψ∆A = A∆oA + P∆ιA , (4.9)where the two-omponent objets P∆ and A∆ are written as

P∆ =

(

P 1

P 2

)

, A∆ =

(

A1

A2

)

. (4.10)Putting in the omponents of the Yang-Mills �elds in (4.2) leads to
L =

√
2

∫

(

ĀlaaaT3A+ P̄ naaaT3P + P̄
−i√
2Φ

(w̄T− − cot θT3)A

+ Ā
i√
2Φ

(wT+ − cot θT3)P
)

ωG . (4.11)



4 THE SPHERICALLY SYMMETRIC STANDARD MODEL 32Next we expand the funtions A∆ and P∆ in terms of spin weighted spher-ial harmonis and integrate out the sphere. To simplify the followingalulations the spin weighted spherial harmonis are restrited to theases j = 1/2 and m = ±1/2

A∆ =
∑

m=± 1
2

A∆
1
2 m − 1

2
Y 1

2 m , P∆ =
∑

m=± 1
2

P∆
1
2 m

1
2
Y 1

2 m . (4.12)Spherial redution of the �rst two terms yields
L1 =

√
2

2

∑

m=± 1
2

∫

(

Ā1
1
2 ml

aaaA
1
1
2 m − Ā2

1
2 ml

aaaA
2
1
2 m

+ P̄ 1
1
2 mn

aaaP
1
1
2 m − P̄ 2

1
2 mn

aaaP
2
1
2 m

)

Φ2ωg . (4.13)In the remaining two terms of (4.11) the cotθ terms vanish if the integrationover the sphere is performed. T+ and T− projet out one omponent of A∆and P∆, respetively. Integrating out the sphere in the remaining termsgives ±π/4. Thus one �nds
L2 = i

π

4

∫

(

P̄ 2
1
2

1
2

w̄

Φ
A1

1
2

1
2
− P̄ 2

1
2 − 1

2

w̄

Φ
A1

1
2 − 1

2

− Ā1
1
2

1
2

w

Φ
P 2

1
2

1
2

+ Ā1
1
2 − 1

2

w

Φ
P 2

1
2 − 1

2

)

Φ2ωg , (4.14)where we needed the expliit form of the harmonis (.f. appendix A), toevaluate the integral over the sphere. L1 + L2 represent the spheriallyredued SU(2) Yang-Mills-Dira interation term.Two-spinor representation of the SU(2) interation termFollowing the notation of the former setions the two spinors are de�nedby
ΨI

jm =

(

Ajm

0

)

, ΨII
jm =

(

0
Pjm

)

, (4.15)where B = Q = 0 was taken beause only left-handed fermions oupleto SU(2)-Yang-Mills �elds in the SM. Rewriting (4.13) in terms of thesetwo-spinors leads to
L1 =

∑

m=± 1
2

∫

(

Ψ̄I
1
2 ml

aaaT3γ
−
I ΨI

1
2 m + Ψ̄II

1
2 mn

aaaT3γ
+
II ΨII

1
2 m

)

Φ2ωg ,(4.16)



4 THE SPHERICALLY SYMMETRIC STANDARD MODEL 33whereas for (4.14) we �nd
L2 =

π

4

∑

m=± 1
2

(−)
1
2+m

∫

(

Ψ̄I
1
2 m

w

Φ
T+I

−1Ψ̄II
1
2 m + Ψ̄II

1
2 m

w̄

Φ
T−IΨ̄

I
1
2 m

)

Φ2ωg .(4.17)Before fully writing out the redued interation term, we study the SU(3)ase.4.2 Redution of the SU(3) Yang-Mills Dira systemThe spherial redution of the interation of fermions and SU(3) Yang-Mills�elds is very similar to the SU(2) ase. The additional terms in (3.132) arejust
ιAιA

′

AAA′ =
1

2g
nabaλ8 , oAoA′

AAA′ =
1

2g
labaλ8 , (4.18)and all equations of the former subsetions hold if Ti denote the �rst three

SU(3) generators. This depends on the fat that we only onsider the sim-ple isospin-1/2 embedding of the SU(2) group into SU(3). In the isospin-1ase [53℄ things hange onsiderably, sine spaetime and group indiesmix and hene the spherial redution is muh more involved. However,the presented proedure an be applied straightforwardly.
PΛ is now a three-omponent objet and the only additional term inthe ation reads

L =

√
2

2

∫

(

Ālabaλ8A+ P̄ nabaλ8P
)

ωG , (4.19)where the sphere an be integrated out easily to give
L =

√
2

2

∑

jm

∫

(

Ājml
abaλ8Ajm + P̄jmn

abaλ8Pjm

)

Φ2ωg . (4.20)Combining the left-handed part of (3.108) with the redued terms �nallyleads to the redued Dira-Yang-Mills ation
LDYM =

∑

m=± 1
2

∫

(

Ψ̄I
1
2 miE

a
+γ

+
I DaΨI

1
2 m + Ψ̄II

1
2 miE

a
−γ

−
IIDaΨ

II
1
2 m

+
1

Φ
Ψ̄II

1
2 m(γ⋆ + (−)

1
2+mπ

4
w̄T−)IΨI

1
2 m

+
1

Φ
Ψ̄I

1
2 m(γ⋆ + (−)

1
2+mπ

4
wT+)I−1ΨII

1
2 m

)

Φ2ωg , (4.21)
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Da = ∇a − iaaT3 − i

ba
2
λ8 , (4.22)when ating on fermions. In ase of SU(2) Yang-Mills theory, i.e., b =

0, Ti = σi/2, the above ation (4.21) is in agreement with referenes [54,55℄if only one value of the 'magneti' quantum number m is onsidered.Exat solutions of the SU(2) and SU(4) Einstein-Yang-Mills-Dira sys-tems by redution methods were found in [56℄. In addition to spherialsymmetry these authors also assumed homogeneity, hene onsidered os-mologial solutions.4.3 The Higgs modelIn the ation of the Higgs model one onsiders a omplex salar �eld withmass and self-interation term
L =

∫

(

Gµν(DµH)†DνH − λ

4
(H†H − v2)2

)

ωG , (4.23)where the gauge ovariant derivative reads DµH = ∇µH − igAµH . Inspherial symmetry [51, 55, 57, 58℄ the Higgs �eld is given by9
H =

v

g
ϕ exp(iξTr)|a〉 , (4.24)where ϕ = ϕ(xα) and ξ = ξ(xα) are real funtions and |a〉 is a onstantunit spinor, 〈a|a〉 = 1. The radial Pauli matrix Tr is de�ned byTr = sinθ cosφT1 + sinθ sinφT2 + cosθT3 . (4.25)Note that the Higgs �eld ansatz (4.24) di�ers from the standard parametri-sation in partile physis. There the Higgs �eld is usually parametrised byits shift around the vauum expetation value H 7→ H0 + H ′, where H0denotes the vauum expetation value and H ′ is the shifted �eld. The las-sial potential in (4.23) vanishes for H†

0H0 = v2. Therefore one sees thatthe funtion ϕ represents the deviation around the minimum of the poten-tial, but in ontrast to the above, by multipliation rather than addition.The exponential exp(iξTr) written expliitly yields
exp(iξTr) = cos

ξ

2
1+ i sin

ξ

2

(

cosθ e−iφ sinθ
eiφ sinθ − cosθ

)

. (4.26)The seond term ontains the spherial harmonis with s = 0 and l = 1 (seeappendix A). Before performing the spherial redution it should be noted9We stik with the notation of [51℄.



4 THE SPHERICALLY SYMMETRIC STANDARD MODEL 35that one ould set ξ = 0 and �x the isospin diretion. The Higgs �eld (4.24)is still spherially symmetri is some sense but not spherially symmetriup to gauge transformations, so not aording to our seond notion. Whenwe analyse the e�etive theory in two dimensions in setion 5 we will hoosethe gauge ξ = 0 to simplify the further alulation.Spherial redution of the Higgs ation (4.23) using the ansatz (4.24)leads to
LH =

∫

(v2

g2
|Dh|2 − v2

2g2Φ2
ϕ2|w − eiξ|2 − λv4

4g4
(ϕ2 − g2)2

)

Φ2ωg , (4.27)where h = ϕ exp(iξ/2) and the gauge ovariant derivative reads Dα =
∇α − iaα/2. (For w reall the remark after equation (3.131)). The Higgsmass and the vetor boson mass are given byM2

H = 2λv2 andM2
W = g2v2,respetively.The spherial redution proedure yields an additional dilaton depen-dent term in the Higgs potential. Hene the e�etive potential in (4.27)reads

V =
v2

g2

( ϕ2

2Φ2
|w − eiξ|2 +

λv2

4g2
(ϕ2 − g2)2

)

, (4.28)whih has a global minimum if
Φ ≤

√
2
|w − eiξ|
MH

, (4.29)and its usual symmetry breaking form otherwise. Following e.g. [57℄ �niteenergy solutions require |w|2 < 1 and hene |w − eiξ| < 2. Thereforefrom (4.29) we onlude
Φ ≤ 2

√
2

MH
. (4.30)For MH ≈ 100GeV − 1TeV this yields a radius of a. 1016 − 1017 Planklengths.Restoration of symmetry at some small radius, e.g. near a blak holehorizon [59, 60℄, an be understood from the following onsideration. Anobserver would not see the Higgs �eld in some vauum state but rather ina thermal bath of Hawking quanta lose to a blak hole. Hene, if thattemperature is high enough, the potential smears out.4.4 Yukawa ouplingsIn the SM of partile physis fermion masses are introdued by Yukawaouplings and the Higgs mehanism. Therefore the expliit mass terms in



4 THE SPHERICALLY SYMMETRIC STANDARD MODEL 36the fermion setor, setion 3.3, an be ignored heneforth. The Yukawainteration term reads
L =

∫

χA′ ψ̄A′∆H∆ωG , (4.31)where the internal group index in the Higgs �eld indiates the presene ofthe unit spinor |a〉 in (4.24). Sine the ation (4.31) is not hermitian onemust add the hermitian onjugate, whih we do at the end.Following the proedure of the previous setions we �rst write thespinors χA′ and ψ̄A′∆ in terms of basis spinors and get
L =

∫

(v

g
ϕ(QP̄∆ −BĀ∆) exp(iξTr)|a〉

)

Φ2ωgd
2Ω . (4.32)Next we expand the oe�ients A,B, P,Q in terms of spin weighted spher-ial harmonis and use their expliit form (4.26). Furthermore, to simplifythe following, we hoose the unit vetor to be 〈a| = (0, 1). The �rst termof (4.26) is easily redued beause one an use the orthogonality ondi-tion (3.102) sine A,B and P,Q have the same spin weights respetively.This yields

L1 =
∑

m=± 1
2

∫

(v

g
ϕ cos

ξ

2
(Q 1

2 mP̄
2
1
2 m −B 1

2 mĀ
2
1
2 m)

)

Φ2ωg . (4.33)The seond and more involved term after spherial redution reads
L2 =

∫

v

g
ϕi sin

ξ

2

(2

3
(Ā1

1
2 − 1

2
B 1

2
1
2
− P̄ 1

1
2 − 1

2
Q 1

2
1
2
)

+
1

3
(Ā2

1
2

1
2
B 1

2
1
2
− Ā2

1
2 − 1

2
B 1

2 − 1
2
− P̄ 2

1
2

1
2
Q 1

2
1
2

+ P̄ 2
1
2 − 1

2
Q 1

2 − 1
2
)
)

Φ2ωg .(4.34)The last two terms plus their hermitian onjugates will be written interms of two-spinors. The latter are de�ned by (3.106) and (3.107), more-over (4.10) is taken into aount. Sine we wish to write the e�etive 2dation without the unit spinor |a〉, the expansion oe�ients B and Q areembedded in the omplex two-spinor spae by
Bjm =

(

0
Bjm

)

, Qjm =

(

0
Qjm

)

. (4.35)



4 THE SPHERICALLY SYMMETRIC STANDARD MODEL 37Then the spherially redued Yukawa term beomes
LY =

∑

m=± 1
2

∫

v

g
ϕ
(

− cos
ξ

2
(Ψ̄I

1
2 m1ΨI

1
2 m + Ψ̄II

1
2 m1ΨII

1
2 m)

+ i
1

3
sin

ξ

2
(−)

1
2 +m(Ψ̄I

1
2 mγ

⋆ΨI
1
2 m − Ψ̄II

1
2 mγ

⋆ΨII
1
2 m)

+ i
2

3
sin

ξ

2
(Ψ̄I

1
2 − 1

2
T+P−ΨI

1
2

1
2
− Ψ̄I

1
2

1
2
T−P+ΨI

1
2 − 1

2

+ Ψ̄II
1
2 − 1

2
T+P+ΨII

1
2

1
2
− Ψ̄II

1
2

1
2
T−P−ΨII

1
2 − 1

2
)
)

Φ2ωg , (4.36)where we added the hermitian onjugate. P± are the usual hiral projetionoperators de�ned by
P± =

1

2
(1± γ⋆) , (4.37)whih are needed sine left- and right-handed fermions are oupled to-gether.For later use we set ξ = 0 in the spherially redued Yukawa a-tion (4.36) whih �xes the isospin diretion. Then the last three linesvanish and one is left with the simple term

LY =
∑

m=± 1
2

∫

(

−v
g
ϕ
)

(

Ψ̄I
1
2 m1ΨI

1
2 m + Ψ̄II

1
2 m1ΨII

1
2 m

)

Φ2ωg . (4.38)Therefore the indued mass of the Yukawa oupling reads
mY =

v

g
ϕ , (4.39)by omparison with the spherially redued Dira ation (3.108). A smallonsisteny hek is to note that the negative sign of (4.38) is onsistentwith (3.108).4.5 Einstein-Cartan theoryAs in setion 3.1 torsion is most naturally inluded by assuming the exis-tene of a derivative operator ∇̃a that is not torsion-free. That derivativeoperator an be split into a torsion-free part ∇a and a torsion dependentpart by

∇̃aU
c = ∇aU

c +Kab
cU b , (4.40)whereKab

c is alled the ontortion tensor and where we follow the notationof Penrose [44℄. Kab
c is the holonomi version of (3.4) with an additional



4 THE SPHERICALLY SYMMETRIC STANDARD MODEL 38negative sign beause of the di�erent index positions used in the di�erentformalisms.Metriity of both ovariant derivative operators immediately impliesantisymmetry of Kab
c in the last index pair. Contortion and torsion arerelated by

T̃ab
c = Kba

c −Kab
c . (4.41)When ∇̃a is ating on spinors we write

∇̃AA′ψC = ∇AA′ψC + ΘAA′B
CψB, (4.42)

∇̃AA′χC′

= ∇AA′χC′

+ Θ̄AA′B′

C′

χB′

, (4.43)from whih the ontortion tensor an be reonstruted when the ation ona vetor U c = UCC′

Kab
c = ΘAA′B

CεB′

C′

+ Θ̄AA′B′

C′

εB
C , (4.44)is onsidered. Torsion an now be inorporated in the former equationsby replaing ∇a by ∇̃a. Then one uses (4.40) and (4.42), (4.43) and �ndsadditional ontributions ontaining the ontortion spinor. The latter anbe deomposed further into irreduible parts by

ΘA′ABC = ΘA′(ABC) +
1

3
εABΘA′C +

1

3
εACΘA′B , (4.45)where the trae terms are

ΘA′B = ΘDA′B
D, Θ̄AB′ = Θ̄D′AB′

D′

. (4.46)Using the above, a third way of writing the Einstein-Hilbert-Cartan ationis
LEHC =

∫

R̃ ωG =

∫

(

R+Kae
bKb

ae −Kbe
bKa

ae
)

ωG

=

∫

(

R+
4

3
ΘA′BΘA′B +

4

3
Θ̄AB′

¯ΘA′B

− ΘA′(ABC)Θ
A′(CAB) − Θ̄A(A′B′C′)Θ̄

A(C′A′B′)
)

ωG , (4.47)where the surfae term is omitted, see e.g. [61℄. The introdution of ∇̃a inthe Dira ation funtional (3.93) leads to an additional term
LDT =

i√
2

∫

(

ΘA′B(ψ̄A′

ψB − χA′

χ̄B) − Θ̄AB′(ψAψ̄B′ − χ̄AχB′

)
)

ωG .(4.48)



4 THE SPHERICALLY SYMMETRIC STANDARD MODEL 39From (4.47) and (4.48) one an derive the equations of motion for theontortion ontribution. Variation with respet to δΘA′(ABC) yields thetrivial equation of motion ΘA′(ABC) = 0. Variation with respet to δΘA′Byields
δLEHT

δΘA′B
=

8

3
ΘA′B ,

δLDT

δΘA′B
=

i√
2
(ψ̄A′

ψB − χA′

χ̄B) , (4.49)whih implies an algebrai equation of motion
ΘA′B = i

3

8
√

2
(ψ̄A′

ψB − χA′

χ̄B) , (4.50)for the trae of the ontortion spinor. We already argued in subsetion 3.1.3that this is expeted on general grounds. The ontortion spinor is given bythe fermion urrent and is purely imaginary.In the literature [21, 22, 62℄ the statement is often found that Dirafermions only ouple to the axial torsion vetor or that the ontortiontensor is totally skew-symmetri. This an easily be understood in thespinor formalism sine one easily heks that
Aa =

2

3
ImΘAA′

, ka = −Φ2ReΘAA′

, (4.51)where Aa and ka are the holonomi, not yet spherially redued versionsof (3.27). The vetor Aa given by the equation of motion for ontortionlearly has omponents along the ma , m̄a diretions. The minus sign in kais due to the di�erent onventions, already mentioned in the beginning ofthis subsetion. Sine fermions only ouple to the axial ontortion vetorvariation with respet to ka and Ulmn must vanish. The vanishing of Ulmnimplies that
sa =

1

2Φ
ha , (4.52)as an be seen from (3.30). Sine the equation of motion (4.50) is purelyalgebrai one an eliminate the ontortion terms from LEHT and LDT. Sine

4

3
ΘA′BΘA′B =

3

16
(ψ̄A′

ψBχA′ χ̄B) , (4.53)
i√
2
ΘA′B(ψ̄A′

ψB − χA′

χ̄B) =
3

8
(ψ̄A′

ψBχA′χ̄B) , (4.54)one �nds that the elimination yields τ = 2(3/16 + 3/8) = 9/8

LT = LEHC + LDT = τ

∫

(ψ̄A′

χA′ψB χ̄B)ωG , (4.55)



4 THE SPHERICALLY SYMMETRIC STANDARD MODEL 40an e�etively four-fermion interation term. It has the struture of a dilatondeformed Thirring model [63℄. If the fermion ation only onsists of hiralfermions, then either ψA of χA′ is zero, hene the ation (4.55) wouldvanish. Therefore torsion generated by fermions is nontrivial if and onlyif both four dimensional hiralities are present. However, only one of theinvariant two-spinors (3.106) or (3.107) is needed to generate torsion.If the Dira two-spinors are expanded in terms of basis spinors theation (4.55) beomes
LT = τ

∫

(P̄Q− ĀP )(PQ̄−AB̄)ωG . (4.56)As already pointed out the standard model with torsion is haraterised byone additional term only, namely the four-fermion interation term (4.55).This ation an be spherially redued by the above methods. We expandthe funtions A,B, P,Q in terms of spin weighted spherial harmonis sYjmwith the additional restrition j = 1/2 and m = ±1/2.Putting the expansion in the ation (4.56) gives 26 = 64 terms. Nextthe spherial dependene an be integrated out and one has to evaluateinner produts of four spin weighted spherial harmonis. 40 of these innerprodut vanish and one is left with 24 non-vanishing terms, whih equalsthe number of independent omponents of the torsion or ontortion ten-sor. Note that these 24 non-vanishing terms are not independent sinefor fermions the ontortion tensor has only four independent omponents.The inner produts are given in appendix C. As before these terms anbe written in terms of two spinors (3.106), (3.107), whih are also given inappendix C.For the moment we put ΨII
jm = 0 and moreover assume that onlyone 'magneti' quantum number m is present, say m = 1/2, in (C.12)and (C.13). Then the simplest non-trivial torsion term beomes

LT =
τ

3π

∫

(

Ψ̄I
1
2

1
2
P+ΨI

1
2

1
2
)(Ψ̄I

1
2

1
2
P−ΨI

1
2

1
2

)

Φ2ωg , (4.57)whih we simply state to show the general struture of those terms.Similar to the Yukawa oupling, the projetors (4.37) are needed sineleft- and right-handed fermions ouple together. The fator 1/3π entersbeause of the integration of four spin-weighted spherial harmonis.For sake of ompleteness we mention some additional aspets of Einstein-Cartan theory. The GHP spin-oe�ient formalism an be extended toinlude torsion [64℄. The idea is based on equation (4.40), one splits everyspin-oe�ient into two parts, ρ0 whih is torsion free and ρ1 that dependson the ontortion, where we adopted the notation of [64℄. Therefore theomplete spin-oe�ient is just the sum of those two parts. The extended



5 EFFECTIVE THEORY IN D=2 41formalism was then used in [62℄ to analyse neutrino �elds in Einstein-Cartan theory. There the torsion spin-oe�ients are
ρ1 = ikφ̄φ , γ1 =

ik

2
φ̄φ , (4.58)where φA = φoA is the neutrino �eld and k is the oupling onstant. Fur-thermore [62℄ ontains some interesting theorems, that we an use diretly.One of them states (see �(7) of [62℄) that ghost neutrinos, whih havevanishing anonial energy-momentum tensor, annot be onstruted inspherially symmetri spaetimes.The perfet �uid onsidered previously in subsetion 3.2.2 an be gen-eralised by a Weyssenho� �uid [65℄ whih permits a non-vanishing spindensity. It is haraterised by a lassial desription of spin, where thesoure term of torsion is written sκ

µν = uκSµν , with uκ the �uid's four ve-loity and Sµν the intrinsi angular momentum tensor. In [66℄ a Weyssen-ho� �uid determining torsion by one funtion S was onsidered within theframework of the extended spin-oe�ient formalism by the same authors.It was found that the torsion spin-oe�ient are
ρ1 = −ρ′1 = 2γ1 = −2γ′1 = iS . (4.59)By onsidering a stati and spherially symmetri Weyssenho� �uid in aosmologial ontext, one of the present authors ould suggest a mehanismto solve the sign problem of the osmologial onstant [67℄. Note that inequation (4.58) the torsion oe�ient ρ1 appears, although the torsion freepart ρ0 drops out of the Dira ation (3.98).Einstein-Cartan theory is derived from the usual Einstein-Hilbert a-tion without restriting to torsionless spaetimes. This ation is linear inurvature. However, the term εklmnR̃klmn is also linear in urvature andwas onsidered in [68℄. In ase of vanishing torsion this term identiallyvanishes whih was already mentioned in [69℄. If torsion is present then theterm gives additional ontributions to the �eld equations. In [68℄ it wasused to analyse parity violating ontributions in the ation. Fortunately itturns out that this term also vanishes identially if fermions are the soureof torsion as in the SM under onsideration. The �rst non-trivial ontribu-tions enters the �eld equations if massive spin one partiles are allowed togenerate torsion, whih is beyond the sope of the present work.5 E�etive theory in d=2The advantage of an e�etive theory in lower dimensions is twofold: at thelevel of equations of motion the theory is equivalent to the higherdimen-sional one, but the lassial analysis is muh simpler. Thus, exat solutions



5 EFFECTIVE THEORY IN D=2 42an be onstruted with partiular ease. However, there is more to thelowerdimensional theory than just a onvenient sheme for reprodution:it an be treated as a model on its own and semi-lassial and quantumaspets an be studied in detail. This an provide valuable insight intothe quantum regime of the higherdimensional theory, although one has tobe areful with interpreting the results beause spherial redution andrenormalisation need not to ommute [70℄.We now present the SSSMG as an e�etive 2d theory and address itsquantisation.5.1 The SSSMG as a 2d modelWe now ombine the spherially redued ations of the former setions intoan e�etively 2d ation whih represents the SSSMG in �rst order form
L = LFOG + L

U(1)
YM + L

SU(2)
YM + L

SU(3)
YM + LDYM + LH + LY + LT , (5.1)where the di�erent parts of the ation are given by (ǫ := e+ ∧ e−)

LFOG =
2π

λ2

∫

L

(

Xa(D ∧ e)a +Xdω + ǫV(X,XaXa)
)

, (5.2)
L

U(1)
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4π

g2
1

∫

L

(

z1da1 + ǫ
z2
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X

)

, (5.3)
L

SU(2)
YM =

4π
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2

∫

L

(

z2da2 + ǫ
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X
+ |Dw2 ∧ ∗(Dw2)| −
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2X
ǫ
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, (5.4)
L

SU(3)
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4π
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L
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z3da3 + ydb+ ǫ
z2
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X
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2X
ǫ
)

, (5.5)
LDYM =
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(

γ⋆ + (−)
1
2 +mπ

4
w̄T−

)

IΨI
1
2m

+ Ψ̄I
1
2m

(

γ⋆ + (−)
1
2 +mπ

4
wT+

)

I−1ΨII
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, (5.6)
LH =

v2

g2
2

∫

L

(

X |Dh ∧ ∗Dh| − 1

2
ǫϕ2|w2 − eiξ|2 −Xǫ

λv2

4g2
2

(ϕ2 − g2)2
)

.(5.7)



5 EFFECTIVE THEORY IN D=2 43New auxiliary �elds y, zi have been introdued in order to bring the Yang-Mills part (with gauge �eld 1-forms b, ai) into �rst order form. For on-veniene of the reader we reall the �eld ontent: (X,Xa, z1, z2, z3, y) aresalar �elds whih in the absene of matter an be interpreted as targetspae oordinated of a Poisson manifold [26℄; (ω, ea, a1, a2, a3, b) are on-netion, zweibein, U(1) onnetion, SU(2) onnetion, SU(3) onnetion,respetively. w2 and w3 are omplex salar �elds oming from the redu-tion of the SU(2) and SU(3) onnetion, respetively. The omplex salar
h = ϕ exp(iξ/2) is the Higgs �eld. Ψ represents all SM fermions.The gauge ovariant derivatives read

(D ∧ e)± = de± ± ω ∧ e± , (5.8)
Dw2 = dw2 − ia2w2 , (5.9)
Dw3 = dw3 − ia3w3 , (5.10)neutrinos: DΨ = dΨ − i

a2

2
σ3Ψ , (5.11)harged leptons: DΨ = dΨ − ia1Ψ − i

a2

2
σ3Ψ , (5.12)quarks: DΨ = dΨ − ia1Ψ − i

a2

2
σ3Ψ − i

a3

2
λ3Ψ − i

b

2
λ8Ψ , (5.13)

Dh = dh− i
a2

2
h . (5.14)(5.11)�(5.13) over all ovariant derivatives with and without SU(2) ou-plings.Di�erent parts of the above ations and permutations thereof were arih soure of analytial and numerial investigations during the last 15years. The likely starting point was [71℄. In reent years the inlusion ofthe osmologial onstant with its non-�at asymptoti struture motivatedfurther studies of the above system, going bak probably to [72℄.The remaining terms of the standard model are
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Xǫ . (5.15)



5 EFFECTIVE THEORY IN D=2 44Finally the torsion terms are
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Xǫ . (5.16)In ase of Riemannian manifolds rather that Lorentzian ones, the ationof the torsion free standard model with gravity was formally expressed interms of Dira-Yukawa operators in [73℄.As an illustration why the reformulation as a 2D model is useful weonsider now its lassial solutions. Surprisingly, up to the very last stepthe onstrution of geometry works exatly as for the matterless ase andthe relevant details have been spelled out in setion 3.2. So assuming thateitherX+ orX− are non-vanishing in an open region the line element reads
ds2 = 2dudr + 2X+X−du2 − r2dΩ2 , (5.17)where r ∝

√
X and the produt X+X− ful�ls the onservation equa-tion (3.44). Of ourse, in general it is quite hopeless to integrate thatequation whih ontains the information of all matter ontributions de-sribed above; nevertheless, the simpliity of (5.17) allows for some generalstatements, independent from material details: Apparent horizons are en-ountered for X+X− = 0. If both X+ = X− = 0 at an isolated pointthe region around that point behaves like the region around the bifura-tion 2-sphere of the Shwarzshild BH; in that ase instead of (5.17) oneshould use a di�erent gauge, e.g. Kruskal gauge or Israel gauge [28℄. Theonstrution of an atlas by means of �large� Eddington-Finkelstein pathesand �small� Kruskal pathes has been introdued by Walker [74℄. By tun-ing the matter ontributions in a speial way it may be possible to ahieve

X+ = 0 = X− in an open region whih implies that also the dilaton �eld X(and thus the surfae area) has to be onstant in that region. For minimaloupling to the dilaton it follows from (3.38) that suh a region has on-stant urvature and thus may be only Minkowski, Rindler or (A)dS. Notethat in the absene of matter and osmologial onstant it is not possible toahieve suh a onstant dilaton region for �nite X . Thus, the appearaneof suh regions is a non-trivial onsequene of the presene of matter.



5 EFFECTIVE THEORY IN D=2 455.2 Quantisation of SSSMGThere are two basi strategies: either to quantise �rst and to impose sym-metries later or the other way round. The �rst one appears to be preferableoneptually, but it is more di�ult to implement. Sine one of the pointsof imposing spherial symmetry is to simplify the quantisation proedureitself it is also tempting to take the seond route. At least some of the basioneptual problems arise even in this simpli�ed framework and providedthey an be solved one an learn something for the full theory withoutintroduing unneessary tehnial di�ulties. Atually, the preferene foreither of the two strategies depends on whih kind of question one wouldlike to ask; it is not just a matter of taste. We would like to be moreonrete on this: First of all, one should reall that in both ases thereare no propagating physial modes in the gravity setor. Thus, if one isinterested e.g. in sattering problems where virtual BHs may arise as inter-mediate states one has to add matter degrees of freedom if one would liketo keep spherial symmetry, as there are no spherially symmetri gravi-tons. Adding matter is muh simpler following the seond route. On theother hand, if one is interested in questions that may be addressed withoutmatter the �rst route seems to be the better one as it allows for slightlymore struture in the geometrial setor than the more restritive �rst one.As we are interested in interations with SM �elds and ensuing questionsof information loss, sattering problems, virtual BH prodution et. we im-pose spherial symmetry �rst and quantise later. Thus, we take (5.1) as ourstarting point and try to quantise this e�etive ation in two dimensions.There are still two alternatives: either one �xes a geometri bakgroundbefore quantisation and applies methods from quantum �eld theory on aurved bakground (f. e.g. [75℄), thus enountering the phenomenon ofHawking radiation, or one quantises geometry exatly �rst and applies per-turbative methods in the matter setor afterwards (f. e.g. set. 7 of [20℄).As there exists an extensive amount of literature devoted to the �rst route(even in the more general ase when spherial symmetry is absent) the fo-us will be on the seond path. Along these lines the simple ase with asingle salar �eld in the matter setor has been studied extensively [76,77℄,for reviews f. [9, 20℄. The extension to the SSSMG is straightforward, al-beit somewhat lengthy. Thus, we will merely present the algorithm andnote espeially where di�erenes to the previous ases arise, rather thanpresenting all alulations in detail.The �rst step, a Hamiltonian analysis inluding a disussion of on-straints, their algebra and the onstrution of the BRST harge and theghost setor fortunately essentially remains the same. The algorithm worksas follows: as starting point delare the zero-omponent as �time� and intro-due anonial oordinates q = (ω1, e
−
1 , e

+
1 , a1, b1,matter) with assoiated



5 EFFECTIVE THEORY IN D=2 46momenta p = (X,X+, X−, y, z,matter) and q̄ = (ω0, e
−
0 , e

+
0 , a0, b0) pro-duing primary �rst lass onstraints p̄ ≈ 0. In addition, there will be theusual seond lass onstraints from the fermions, whih may be dealt within the standard way, i.e., by introduing Dira brakets. Then, take theDira braket of the �rst lass onstraints with the Hamiltonian to alu-late the seondary onstraints denoted by G (whih are also �rst lass). Itis then notied that the Hamiltonian is a sum over onstraints, H = Σq̄G,as expeted for a reparameterisation invariant theory [78℄. No ternary on-straints arise. Next, one should onsider the struture funtions arisingin the Dira algebra of �rst lass onstraints. They will enter the BRSTharge, whih may be onstruted straightforwardly and does not reeiveany higher order ghost ontributions, i.e., no quarti ghost terms arise. Atleast in the geometri setor no ordering ambiguities arise, as disussed inappendix B.2 of [77℄. A onvenient gauge-�xing fermion is one that leadsto �temporal� gauge

ω0 = 0 , e−0 = 1 , e+0 = 0 , a0 = 0 , b0 = 0 . (5.18)In the geometri setor this amounts to Eddington-Finkelstein gauge. Notethat it is not possible to set all zero omponents to zero beause this wouldamount to a singular metri. The hoie (5.18) exploits the maximumamount of simpli�ation and onsequently the gauge �xed Hamiltoniansimpli�es drastially as most of the terms drop out. The most onvenientorder of path integrations seems to be the following one: all non-geometrigauge �elds, their related auxiliary �elds and the orresponding ghost se-tors are integrated out exatly. Then, the remaining ghost setor is elim-inated yielding some (ontribution to the Faddeev-Popov-)determinant inthe measure. As a next step eventual matter momenta are integrated out,if this an be performed exatly by linear or Gaussian path integration.The ensuing ation will be linear in the remaining zweibein and onnetionomponents. Thus, path integration over geometry an be performed yield-ing funtional δ-funtions. They an be used to perform the integrationover the auxiliary �elds X,X±, anelling exatly the �rst ontributionto the Faddeev-Popov-determinant mentioned above. Beause the fun-tional δ-funtions ontain �rst derivatives ating on the auxiliary �eldsat this point homogeneous solutions arise whih have to be �xed onve-niently. In ordinary QFT often �natural boundary onditions� are invoked,but learly they annot be implemented for all �elds as the metri mustnot vanish asymptotially. Instead, a very natural and simple ondition isasymptoti �atness, whih indeed �xes the relevant homogeneous ontri-butions. Irrelevant ontributions may be absorbed by �xing the saling-and shift-ambiguity of the dilaton �eld. The path integral measure for the�nal matter integrations an be adjusted in aordane with [79℄. The en-suing e�etive ation will be nonloal and non-polynomial in the matter
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B LINKING GHP AND CARTAN FORMALISM 48We deeply thank W. Kummer and D. Vassilevih for useful disussions.A Spherial harmonisSpherial harmonis for s = 0 and j = 1 are
0Y1 0 =
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√

3

π
cosθ , 0Y1±1 = ∓1

2

√

3

2π
sinθe±iφ . (A.1)The spin weighted spherial harmonis are given for spin weight s = ± 1

2and j = 1
2 . Sine −j ≤ m ≤ j one only has m = ± 1

2 . With
sYj,m = (−1)m+s

−sYj,−m, (A.2)one �nds that there are only two independent spin weighted spherial har-monis if s = ± 1
2 , j = 1
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2 , (A.6)are obtained by using (A.2). One an easily hek that these funtionsobey the orthogonality ondition (3.102).B Linking GHP and Cartan formalismUsing basis 1-forms l, n, m, m̄ the metri an be rewritten to
ds2 = 2 l ⊗ n − 2 m ⊗ m̄ , (B.1)where the notation is the same as for the null tetrad (3.81). Note that thehoie of the basis 1-forms is not unique and an be hanged in many more



C INNER PRODUCTS 49or less pratial ways. The spin oe�ients an be read of from
dl = m ∧ l

(

β′ − β̄ + τ̄
)

+ m̄ ∧ l
(

β̄′ − β + τ
)

+ l ∧ n (γ′ + γ̄′)

+ m ∧ m̄ (ρ− ρ̄) + m ∧ n κ̄+ m̄ ∧ n κ, (B.2)
dm = m ∧ l (γ̄ − γ + ρ̄′) + m̄ ∧ l σ̄′

+ m ∧ n (γ′ − γ̄′ + ρ) + m̄ ∧ n σ

+ l ∧ n (τ̄ ′ − τ) + m ∧ m̄
(

β + β̄′
)

. (B.3)C Inner produtsThe notation is shortened by writing ± for ±1/2. Furthermore the expan-sion oe�ients A,B, P,Q are left out in the integrands beause one anread them of by looking at the spin weighted spherial harmonis.Terms of type (P̄Q)(PQ̄) and (ĀB)(AB̄) for s = ±1/2 respetivelyread
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. (C.6)Terms of type (ĀB)(PQ̄) immediately follow from omplex onjugation.Thus on gets

∫

P̄QPQ̄Φ2dΩ2ωg(2) =
1

3π

∫

(

(P̄+±Q+±P+±Q̄+±)

+
1

2
(P̄+±Q+±P+∓Q̄+∓ + P̄+±Q+∓P+±Q̄+∓)

)

Φ2ωg , (C.7)
∫
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REFERENCES 50For the mixed ones one �nds
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Φ2ωg , (C.9)together with its omplex onjugate.The terms of the inner produts an be written in terms of two-spinors
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Φ2ωg , (C.12)where the �rst and seond term of the left-hand side is obtained if ΨI or
ΨII is onsidered respetively.For the mixed terms we �nd
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Φ2ωg , (C.13)where the upper sign of the projetor orresponds to the �rst term of theleft-hand side and the lower to the seond.Referenes[1℄ V. P. Frolov and I. D. Novikov, Blak hole physis: Basi oneptsand new developments. Dordreht, Netherlands: Kluwer Aademi,1998.
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