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VIRTUAL BLACK HOLES AND THE S-MATRIX

D. GRUMILLER∗

Institute for Theoretical Physics

Leipzig University

Augustusplatz 10-11, D-04103 Leipzig, Germany

A brief review on virtual black holes is presented, with special emphasis on phe-
nomenologically relevant issues like their influence on scattering or on the specific heat
of (real) black holes. Regarding theoretical topics results important for (avoidance of)
information loss are summarized.

1. Introduction

The definition of “Virtual Black Holes” needs two ingredients, namely “Virtual”

and “Black Holes”.

One of the basic lessons of Quantum Field Theory (QFT) is the prediction of

virtual particles. “Virtual” means, roughly speaking, that the particle is sufficiently

off the mass shell. Probably the most spectacular macroscopic physical consequence

of virtual particles is the Casimir effect [1]: in the simplest setup with two infinitely

large parallel conducting planes the latter induce boundary conditions upon the

quantum fields which change the spectrum of virtual particles. Consequently, the

vacuum energy in the configuration with the plates is smaller than in the configu-

ration without, and thus an attractive force between the plates is generated. It can

be measured with great accuracy and experiments coincide well with theoretical

predictions (for a review cf. [2]). Also in scattering experiments virtual particles

can mediate measurable interactions between real ones, although the former do not

enter the asymptotic states by definition in contrast to the latter. Moreover, every

unstable particle is “slightly virtual”. It is not very clear where to draw the line

between various degrees of virtuality (for instance, stable: no decay; metastable: de-

cay width Γ very small, sharp Breit-Wigner resonance; unstable: large decay width

but still small as compared to mass m; almost virtual: decay width comparable

to mass; virtual: far off the mass shell), but the rough definition above will be

sufficient for the present work. A nice example displaying various degrees of virtu-

ality is provided by toponium [3] (particle properties are taken from [4]). Toponium

is built from a top and an anti-top. Mass and decay width of the top quark are

mt ≈ 178.0 ± 4.3 GeV and Γt ≈ 1.5 GeV , respectively; thus, mt ≫ Γt and the top

quark, if it existed freely, would be considered as unstable particle (but probably not

∗E-mail: grumiller@itp.uni-leipzig.de

1

http://arXiv.org/abs/hep-th/0409231v2


February 1, 2008 19:19 WSPC/Guidelines main

2 D. Grumiller

as metastable one because mt ≫ Γt is not valid). For toponium bound states the

relevant energy scale is the Bohr energy EB = mtα
2
s (natural units c = ~ = 1 are

used in this work), where αs ≈ 0.11. But since EB ≈ Γ toponium bound states are

“almost virtual”. The decay products are unstable by themselves (in the preferred

channel W bosons and b quarks are produced together with their anti-particles)

and eventually decay into metastable and stable particles. Radiative corrections to

all these processes are governed by virtual particles. While it may be a somewhat

semantic issue whether virtual particles should be considered as “real”, they are

definitely “real” as far as their relevance to Nature is concerned.1

Regarding the second ingredient, there is no reasonable doubt that Black Holes

(BHs) are real objects in Nature (see [6]; for a review on BH binaries cf. e.g. [7]). As

QFT tells us that for each real object a corresponding virtual one should exist there

is no question as to the existence of Virtual Black Holes (VBHs). So in principle

VBHs are of interest for physics. However, it is less obvious that they are of practical

relevance to experiments, especially to those accessible in the near future. After all,

macroscopic BHs are so massive that “virtuality” becomes as irrelevant as it does for

stars like our sun – the impact of virtual stars on physical experiments is negligible.

While for physics of real BHs the most relevant objects are macroscopic ones, for

the physics of VBHs the microscopic ones dominate.

Besides purely experimental issues there is considerable theoretical interest con-

cerning VBHs. After all, “virtual” implies, at least to some extent, the application

of QFT-like methods, while “BH” implies that the theory to be quantized should

be General Relativity or one of its generalizations. It is well known that quantiza-

tion of gravity is a difficult task (for recent reviews cf. e.g. [8]). Thus, conclusions

drawn from the study of VBHs may lead to valuable insight into quantum gravity.

In particular, there is the famous information paradox (for reviews cf. e.g. [9]).2 So

a natural question to ask is whether VBHs lead to information loss, and if they do,

what are the consequences e.g. for scattering of ordinary particles.

This paper is organized as follows: in Section 2 two notions of VBHs are recalled,

starting with Hawking’s Euklidean version [11] and ending with our Minkowskian

one [12]. For technical reasons the Minkowskian definition is restricted to the context

of 2D dilaton gravity, which contains (among many other models) the Schwarzschild

BH. It is fair to say that this review naturally is biased towards the second definition.

Section 3 is devoted to VBHs in scattering experiments and implications for the

problem of information loss. Quantum corrections to thermodynamical observables

are the topic of Section 4. After a brief review of thermodynamics in 2D dilaton

gravity the quantum corrected specific heat of the Witten BH/CGHS model is

1In fact, there seems to be so much “reality” involved that sometimes even issues like the parton
distribution of virtual photons are discussed [5].
2The information paradox recently attracted some attention beyond the physics community due
to the “betrayal” of one of the most prominent and persistent members of the “Information loss
party”, S. Hawking, who appears to have joined the “Unitarity party” [10].
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presented. Some open points are addressed in the concluding Section 5, which also

mentions the possibility of VBHs in Loop Quantum Gravity and String Theory.

Although most of this work has the character of a review there are a few new

comments and results in Sections 3 and 4. In particular, the formula for the specific

heat (31) to the best of my knowledge is new, as well as the related brief discussion

of Hawking-Page like transitions in generic 2D dilaton gravity. Finally, it should be

mentioned that in order to be able to appreciate some of the technical points in

Sections 2.2, 3.2 and 4 a review on 2D dilaton gravity [13] may be recommended.

2. Definitions of VBHs

2.1. Hawking’s Euklidean version

Ever since John Wheeler’s proposal of “space-time foam” [14] physicists have toyed

with the idea of quantum induced topology fluctuations. This has culminated not

only in spin-foam models, which are considered as a serious candidate for quantum

gravity (cf. e.g. [15]), but also in Hawking’s bubble approach of VBHs [11].

In that paper Hawking finally abandoned the wormhole picture of spacetime

foam [16] and went back to an earlier idea, referred to as “quantum bubble pic-

ture” [17]. So instead of regarding the first homology group as relevant, as for

topologies that are multiply connected by wormholes, the second homology group

was considered. The corresponding Betti number just counts the number of 2-

spheres that may not be shrunk to zero (cf. e.g. [18]). Hawking then argues that for

simply connected 4-manifolds for mathematical and physical reasons only S2 × S2

has to be taken into account.3 The question then arises, what has S2 × S2 to do

with a VBH? It is answered by analogy to electrodynamics: in an external electric

field pair creation may occur and one way to describe this process is by gluing in

a sufficiently smooth way the Minkowskian solution of an electron and a positron

accelerating away from each other to the Euklidean solution describing a virtual

electron-positron pair (see Fig. 1).

The final ingredient to Hawking’s construction is the Ernst solution [20] describ-

ing the pair creation of charged BHs in an external electric or magnetic field. By

analytic continuation to the Euklidean domain one finds the topology of S2×S2 mi-

nus a point. Analogy to electromagnetism suggests correspondence to a BH loop in

a spacetime asymptotic to R
4. Because S2×S2 minus a point is the topological sum

of S2×S2 and R
4 Hawking concludes that the S2×S2 bubbles found by topological

3Actually, the argument is not very explicit in the original work, but it appears that Hawking
invokes Wall’s theorem [19] which states that after taking the connected sum with sufficiently
many copies of S2 ×S2 any two simply connected 4-manifolds with isomorphic intersection forms
become diffeomorphic to each other. Consequently, simply connected 4-manifolds may be built
by gluing (copies of) three basic units which Hawking calls “bubbles”: projective planes (CP 2),
Kummer-Kähler-Kodaira surfaces (K3) and VBHs (S2 × S2). Hawking dismisses CP 2 because it
does not allow spin structure and K3 because it contributes to anomalies and helicity changing
processes.
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Fig. 1. e+e− pair creation by tunneling through Euklidean space

considerations summarized above may be interpreted as VBH loops. Elaborations

on Euklidean VBHs include the study of loss of quantum coherence [21], of higher

spin fields in VBH backgrounds [22], of quantum evolution in spacetime foam [23], of

effects relevant to neutrino-oscillations [24] and of non-standard Kaon-dynamics [25]

(the latter being inspired also by earlier work [26]).

Physical consequences The almost purely topological considerations above led

Hawking to present several surprising physical implications [11]: he argued in favor

of loss of quantum coherence4 (see also [27]) and derived several consequences from

it: the fact that the θ angle of QCD is zero, non-existence of fundamental scalar fields

(and thus the prediction that the Higgs particle does not exist unless it is composed,

for instance, of fermions) and the suggestion that at end of BH evaporation the

Planck size remnant eventually disappears into the sea of VBHs. The last point is

less relevant experimentally. But theoretically it appears to imply that 2D models

of BH evaporation cannot describe the disappearance of BHs in a way that is non-

singular. Another crucial remark is that in Hawking’s picture VBHs may only be

created in pairs. While a similar property holds for e+e− – for a good reason,

namely charge conservation, which applies even to virtual particles – it is slightly

difficult to comprehend why VBHs may not be produced in singles – after all, there

does not seem to be any violation of global charges when a single BH is produced,

be it real or virtual. Because it is an interesting task by itself, VBHs in Minkowski

space will be considered next, where it is found that no such restriction arises.

2.2. VBHs in Minkowski space

Although clearly VBHs by the very definition of “virtual” do not satisfy classical

field Eqs., Hawking’s Euklidean definition of VBHs reminds of instantons (which

are non-singular solutions of the classical field Eqs. with finite Euklidean action,

cf. e.g. [28]), because in both cases topology of an Euklidean configuration plays a

crucial role. It is well-known that instantons may also be described in Minkowski

4Because of this, together with Hawking’s U-turn regarding information loss [10] VBHs may soon
share the fate of wormholes to be abandoned by one of their creators.
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space (although it is not necessarily a convenient way to describe them [28]), so

naturally the question emerges whether VBHs have a Minkowskian counterpart.

As shown below this turns out to be the case. For simplicity, the discussion will be

restricted to 2D dilaton gravity which contains, among other models, spherically

reduced gravity, i.e., the phenomenologically relevant Schwarzschild BH. Another

reason to restrict to 2D is that, as Hawking and Ross state in ref. [21], “one can

neither calculate the scattering in a general metric, nor integrate over all metrics”

(in D=4). Fortunately, in D=2 one can, as shown in the extensive work starting

from the two basic papers of Kummer and Schwarz [29].

2.2.1. A brief review of classical 2D dilaton gravity

The purpose of this brief collection of well-known results is merely to fix the no-

tation.5 For background information and refs. the extensive review [13] may be

consulted (for earlier reviews cf. refs. [30]). Thus, without further ado definitions

will be listed: ea = ea
µdxµ is the dyad 1-form dual to Ea – i.e. ea(Eb) = δa

b . Latin

indices refer to an anholonomic frame, Greek indices to a holonomic one. The 1-

form ω represents the spin-connection ωa
b = εa

bω with the totally antisymmetric

Levi-Civitá symbol εab (ε01 = +1). With the flat metric ηab in light-cone coordi-

nates (η+− = 1 = η−+, η++ = 0 = η−−) it reads ε±± = ±1. The torsion 2-form

is given by T± = (d ± ω) ∧ e±. The curvature 2-form Ra
b can be represented by

the 2-form R defined by Ra
b = εa

bR, R = d ∧ ω. The volume 2-form is denoted by

ǫ = e+ ∧ e−. Signs and factors of the Hodge-∗ operation are defined by ∗ǫ = 1. The

quantities ω, ea are called “Cartan variables”. Since the Einstein-Hilbert action
∫

M2

R ∝ (1− γ) yields just the Euler number for a surface with genus γ one has to

generalize it appropriately. The simplest idea is to introduce a Lagrange multiplier

for curvature, X , also known as “dilaton field”, and an arbitrary potential thereof,

V (X), in the action
∫

M2

(XR + ǫV (X)). Having introduced curvature it is natural

to consider torsion as well. By analogy the first order gravity action [31]

L(1) =

∫

M2

(XaT a + XR + ǫV(XaXa, X)) (1)

can be motivated where Xa are the Lagrange multipliers for torsion. It encompasses

essentially all known dilaton theories in 2D. Actually, for most practical purposes

the potential takes the form

V(XaXa, X) = V (X) + X+X−U(X) . (2)

The action (1) is equivalent to the frequently used second order action [32, 38]

L(2) =

∫

M2

d2x
√−g

[

X
−r

2
− U(X)

2
(∇X)2 + V (X)

]

, (3)

5Signs of mass M and curvature scalar r have been fixed conveniently such that M > 0 for positive
mass configurations and r > 0 for dS. This is the only difference to the notations used in ref. [13].
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with the same functions U, V as in (2). The curvature scalar r and covariant deriva-

tive ∇ are associated with the Levi-Civitá connection related to the metric gµν , the

determinant of which is denoted by g. If ω is torsion-free r ∝ ∗R.

It is useful to introduce the following combinations of U, V :

I(X) := exp

∫ X

U(y) dy , w(X) :=

∫ X

I(y)V (y) dy (4)

The integration constants may be absorbed, respectively, by rescalings and shifts

of the mass M . Under dilaton dependent conformal transformations Xa → Xa/Ω,

ea → eaΩ, ω → ω + Xaea d ln Ω/ dX Eq. (1) is mapped to a new action of the

same type with transformed potentials Ũ , Ṽ . Thus, it is not invariant. It turns out

that only the combination w(X) as defined in (4) remains invariant, so conformally

invariant quantities may depend on w only. Note that I is positive apart from

eventual boundaries (typically, I may vanish in the asymptotic region and/or at

singularities). It can be shown that there is always a conserved quantity (dM = 0),

M = −X+X−I(X) − w(X) . (5)

The classical solutions are labelled by this constant of motion. In the absence of

matter there are no propagating physical degrees of freedom.

The line element in Eddington-Finkelstein gauge reads

ds2 = 2 du dX̃ − 2I(X)(M + w(X)) du2 , (6)

with dX̃ := I(X) dX . Evidently there is always a Killing vector k · ∂ = ∂/∂u with

associated Killing norm k · k = −2I(M + w). Since I 6= 0 Killing horizons are

encountered at X = Xh where Xh is a solution of

w(Xh) + M = 0 . (7)

In the simple conformal frame I = 1 the curvature scalar may be expressed as

r = 2w′′ . (8)

Note that the independence of curvature from the mass M and from I(X) is an

artifact of the conformal frame chosen.

For sake of completeness it should be mentioned that in addition to the 1-

parameter family of solutions, labelled by M , isolated solutions may exist, so-called

constant dilaton vacua, which have to obey X = XCDV = const. with w′(XCDV ) =

0. The corresponding geometry has constant curvature, i.e., only Minkowski, Rindler

or (A)dS are possible spacetimes for constant dilaton vacua. Incidentally, for the

generic case (6) the value of the dilaton on an extremal Killing horizon is also

subject to these two constraints.

2.2.2. A brief review of quantum dilaton gravity with matter

Adding a matter action for a scalar field φ, coupled to the dilaton via F (X),

L(m) =
1

2

∫

M2

F (X)dφ ∧ ∗dφ =

∫

M2

d2x
√
−gL(m) , (9)
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to (1) makes the theory non-topological. Hamiltonian analysis yields primary and

secondary first class constraints. The latter (Gi) form a non-trivial algebra with

respect to the Poisson-bracket [33, 34]:6

{

G1(x
1), G2(x

1′)
}

= −G2 δ(x1 − x1′) , (10)
{

G1(x
1), G3(x

1′)
}

= G3 δ(x1 − x1′) , (11)

{

G2(x
1), G3(x

1′)
}

= − dV
dX i

Gi δ(x1 − x1′) +
d lnF

dX
L(m)G1 δ(x1 − x1′) . (12)

Here, X i denotes (X, X+, X−) and x1 is one of the world-sheet coordinates (the one

that has not been used as “time”). The simpler case F = const. (minimal coupling)

had already been studied before in ref. [36]. A BRST analysis reveals that the BRST

charge is nilpotent at “Yang-Mills level”, i.e., without higher order ghost terms;

thus, retrospectively, one may use instead the simpler Faddeev-Popov prescription.

Another crucial observation is that the geometric part of the constraints is linear in

the Cartan variables. Together with a gauge-fixing fermion that implies Eddington-

Finkelstein gauge

ω0 = 0 , e−0 = 1 , e+
0 = 0 , (13)

these features allow an exact path integral quantization, i.e., schematically7

W (sources) =

∫

Dea
µ Dωµ DX i D(ghosts)Dφ

× exp

[

i

∫

d2x
(

Leff(ea
µ, ωµ, X i, ghosts, φ) + sources

)

]

, (14)

of all fields but matter without introducing a fixed background geometry. Thus, the

quantization procedure is non-perturbative and background independent. However,

there are ambiguities coming from integration constants the fixing of which selects

a certain asymptotics of spacetime; two of them are trivial while the third one

essentially determines the ADM mass (whenever this notion makes sense).8 Thus,

background independence holds only in the bulk but fails to hold in the asymptotic

region; we regard this actually as an advantage for describing scattering processes

because there is no “background independent asymptotic observer”.

6It should be observed that the algebra closes on δ, rather than δ′; nevertheless, by combining
the constraints linearly in a certain way one may obtain an algebra closing with δ′, namely the
Virasoro algebra (times an abelian one corresponding to Lorentz transformations, cf. e.g. [35]).
7The term “ghosts” denotes the whole ghost and gauge-fixing sector. It should be noted that
the path integral (14) involves positive and negative values of the dilaton and both orientations
sign e+

1 = ±. Further details on the quantization procedure may be found in appendix E of [34]
and in Section 7 of [13].
8The issue of mass is slightly delicate in gravity. For a clarifying discussion in 2D see [37]. One of
the key ingredients is the existence of the conserved quantity M in (5) [38] which has a deeper
explanation in the context of first order gravity [39] and PSMs [31]. A recent mass definition
extending the range of applicability of [37] may be found in appendix A of [40].
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What one ends up with is a generating functional for Green functions depending

solely on the matter field φ, the corresponding source σ and on the integration

constants mentioned in the previous paragraph [41]:9

W (σ) =

∫

(Dφ) exp (iLeff) , (15)

Leff =

∫

d2x
[

F (X̂)∂0φ∂1φ − g̃w′(X̂) + σφ
]

. (16)

The constant g̃ is an effective coupling which turns out to be inessential and may be

absorbed by a redefinition of the unit of length. For minimal coupling (F = const.)

w′ is the only source for matter vertices. It is a non-polynomial function, in general.

Moreover, the quantity X̂, which is the quantum version of the dilaton X , depends

not only on integration constants but also non-locally on matter; to be more precise,

it depends non-locally on (∂0φ)2. Thus, in general the effective action (16) is non-

local and non-polynomial in the matter field.

2.2.3. Emergence of VBHs

A consequence of the quantization procedure sketched above is the possibility to

reconstruct geometry from matter. That is, if one had an exact solution to the

effective Eqs. of motion following from (16), one obtained not only the behavior

of the matter field but simultaneously the geometry on which it propagates by

solving relatively simple constraints. In general (15), (16) cannot be treated exactly

but only perturbatively. Despite of the perturbative treatment no a priori split

of geometry into background and fluctuations is invoked. Rather, to each order in

perturbation theory geometry may be reconstructed self-consistently up to the same

order, including back reactions. In the following it will be outlined briefly how to

obtain contributions from the lowest non-trivial order in matter without going into

technical details [12], i.e., how to obtain the non-local 4-point vertices and the

corresponding VBH geometries.10

Of course, one can apply the straightforward but somewhat tedious standard

methods to derive their Feynman rules [36]. Fortunately, there is an equivalent,

albeit much easier, way to derive the Feynman rules, namely by considering matter

localized in the following way

(∂0φ)(∂1φ) = c1δ
(2)(x − y) , (∂0φ)2 = c0δ

(2)(x − y) , (17)

9(Dφ) denotes path integration with proper measure. In the context of VBHs questions regard-
ing the measure and source terms for geometry are mostly irrelevant. Therefore, the generating
functional for Green functions simplifies considerably as compared to the exact case [13, 36].
10 In a perturbative treatment of (15), (16) vertices with an arbitrary number of external ∂0φ
legs are created; in addition, there may be a single ∂1φ leg provided F (X̂) 6= const. Note that the
total number of external legs always is even. Thus, to lowest non-trivial order in a perturbative
expansion in powers of φ there are two 4-point vertices, one with four ∂0φ legs and one with three
∂0φ legs and a ∂1φ leg. Non-locality implies their dependence on two sets of coordinates, x, y.
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and by solving the classical Eqs. of motion up to lowest order in ci. It can be

shown [13,36] that this mimics the effects of functional differentiation. So in short,

instead of taking the nth functional derivative of the generating functional (15)

with respect to bilinear combinations of the scalar field – the brute force method to

obtain the Feynman rules for the vertices – one may localize matter on n points. For

lowest order one point is sufficient. Consequently, it turns out that the conserved

quantity (5), which in the absence of matter determines the BH mass, no longer is

constant. In fact, it is not even local due to interactions with matter but rather a

function depending on two points xi, yi on the world-sheet [41]:

M → Meff(x, y) = M − 2c0F (y0)(M + w(y0))θ(y0 − x0)δ(y1 − x1) . (18)

Thus, even if M = 0 there may be intermediate states with Meff 6= 0. These

intermediate states have been called VBHs in ref. [12].

Why is it justified to infer the production of VBHs from (18)? First of all,

Meff is an off-shell quantity because clearly the field configuration in Eq. (17) does

not satisfy the Eqs. of motion. Moreover, this quantity does not influence directly

the asymptotics x0 → ∞ because of the θ-function. So the attribute “virtual”

is adequate. In addition, the classical interpretation of M is as mass of a BH,

so M plays a role similar to the charge in electrodynamics (there, when off-shell

particles with a certain charge appear they are referred to as virtual ones). To settle

this issue convincingly one has to reconstruct geometry as outlined above and to

check whether or not it corresponds to something resembling a BH. Using a simple

coordinate transformation dr ∝ I(x0) dx0, du ∝ dx1 the general result is

ds2
VBH = 2 dr du + K(r, u; r0, u0) du2 , (19)

with some complicated expression for K(r, u; r0, u0) that may be found explicitly

in ref. [41]. For spherically reduced gravity (19) simplifies to [42]

ds2
VBH = 2 dr du +

(

1 − 2M(r, u; r0, u0)

r
− a(r, u; r0, u0)r + d(r, u; r0, u0)

)

du2 .

(20)

Remarkably, this looks like the Schwarzschild metric with a Rindler term. Therefore

also the notion of “black hole” is justified. The quantities M (essentially given by

(18)), a and d are localized11 on the cut u = u0 with compact support r < r0.

The non-local vertices consist of integrals over both sets of coordinates with an

integrand containing both pairs of external matter legs at different points x and

y, and a non-local kernel producing the VBHs (cf. Fig. 4 below). For instance, the

integrated vertex with no ∂1φ leg reads

V (4)
sym =

∫

x

∫

y

(∂0φ(x))2 V (4)
a (x, y) (∂0φ(y))2 . (21)

11The localization of “mass” and “Rindler acceleration” on a light-like cut is not an artifact of
an accidental gauge choice, but has a physical interpretation in terms of the Ricci-scalar [43].
Incidentally, the Ricci-scalar is such that the Einstein-Hilbert action in D=4 vanishes for all VBH
configurations.
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A similar expression holds for the integrated vertex with a ∂1φ leg, with the kernel

denoted by V
(4)
b . The explicit form of the kernels V

(4)
a , V

(4)
b for spherically reduced

gravity may be found in ref. [42], while the general case is derived in [41].

i0

i-

i+

ℑ -

ℑ +

y

Fig. 2. CP diagram of a single VBH; the point y corresponds to u = u0, r = r0 in (20)

A Carter-Penrose (CP) diagram corresponding to the coherent sum of all VBHs

can be constructed as follows (cf. figs. 2-3; all symbols have their standard meaning,

i.e., i0, i± and I ± are spatial, time-like and light-like infinity, respectively) [43,44]:

• Take Minkowski spacetime (or whatever corresponds to the geometry im-

plied by the boundary conditions imposed on the auxiliary fields X i) and

draw N different points in its CP diagram; see left diagram of Fig. 3.

• Draw N copies of this CP diagram and add one light like cut to each

(always ending at a different point); remove the other N − 1 points; the

line element is given by (20); see middle diagram of Fig. 3. Note: each of

these CP diagrams is equivalent to the one depicted in Fig. 2 with varying

endpoint y, which is nothing but the CP diagram associated with a single

VBH with line element (20).

• Glue together all CP diagrams at I ± and i0 (which is a common boundary

to all these diagrams); see right diagram of Fig. 3.

• Take the limit N → ∞. Thus, the full CP diagram consists of infinitely

many layers, each of which resembling Fig. 2, the only difference being the

end point y. Asymptotically all layers coincide. This is a pictorial realization

of Everett’s “Many world interpretation”.

One should not take the effective geometry at face value – this would be like over-

interpreting the role of virtual particles. Nonetheless, the simplicity of this geometry

and the fact that all possible configurations are summed over are nice qualitative

features of this picture. Because all VBH geometries coincide asymptotically the
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... ...

Fig. 3. Constructing the CP diagram of all VBHs

boundaries of the diagram, i0, i± and I ±, behave in a classical way12, thus enabling

one to construct an ordinary Fock space like in fixed background QFT. Heuristically,

the more one zooms into geometry the less classical it becomes.

The situation is complementary to Kuchař’s proposal of geometrodynamics13 of

BHs: while we have fixed boundary conditions for X i (and hence a fixed ADM mass)

but a “smeared geometry” (in the sense that a continuous spectrum of asymptoti-

cally equivalent VBHs contributes to the S-matrix), Kuchař encountered a “smeared

mass” (obeying a Schrödinger Eq.) but an otherwise fixed geometry [45].

Below it will be shown how the VBHs described above enter the S-matrix to-

gether with some consequences which are observable, at least in principle.

3. VBHs in scattering experiments

3.1. Low scale quantum gravity

In the past years the possibility of BH production at future colliders [46], like LHC

[47], and in cosmic rays has been studied in great detail (for reviews cf. e.g. [48]).

A necessary ingredient to experimental verification is the assumption of low-scale

quantum gravity, where “low” refers to about 1 TeV [49]. If one considers this

scenario seriously one should also contemplate the possibility of VBH production.

In fact, even if it turned out that the scale explored at LHC is slightly below the

quantum gravity scale, and thus real BHs may not be produced with a rate sufficient

for detection, in principle effects from VBH production could still be accessible

experimentally. As compared to the excitement caused by real BH production the

number of studies devoted to VBH production is small. Apart from considerations

regarding proton decay14 the only work I am aware of is an unpublished e-print

[53].15 Thus, regarding VBH production at future colliders or in cosmic rays it

12Clearly the boundary conditions imposed play a crucial role in this context. They produce
effectively a fixed background, but only at the boundary.
13This approach considers only the matterless case and thus a full comparison to our results is
not possible.
14Since BHs may be responsible for the violation of global quantities such as baryon or lepton
number [50] there was some concern that VBHs might rule out the possibility of TeV range
quantum gravity due to proton decay [51] which was refuted in [52].
15In ref. [53] a Hawking temperature is assigned to VBHs and effects from Hawking radiation are
calculated. This is hard to justify for genuine VBHs but might apply to “nearly virtual” BHs.
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seems that there are many issues of potential phenomenological interest awaiting

to be discovered.

3.2. S-matrix for s-wave gravitational scattering

The idea that BHs must be considered in the S-matrix together with elementary

matter fields has been put forward some time ago [54]. The approach [12, 34, 36,

41–44, 55–57] reviewed here, for the first time allowed to derive (rather than to

conjecture) the appearance of VBH states in the quantum scattering matrix of

gravity and to predict consequences for certain physical observables.

Qualitatively it is clear what has to be done in order to obtain the S-matrix:

Take all possible VBHs of Fig. 3 and sum them coherently with proper weight

factors and suitably attached external legs of scalar fields. To be more precise,

one has to take the vertex (21), calculate the kernel V
(4)
a and perform a mode

decomposition of the scalar field (which is well-defined because the asymptotic

region allows the construction of a standard Fock space), thus introducing creation

and annihilation operators a±
k obeying [a−

k , a+
k′ ] ∝ δ(k − k′). Then do the same for

the non-symmetric vertex and calculate the amplitude for scattering of two ingoing

modes with momenta q, q′ into two outgoing ones with momenta k, k′:

T (q, q′; k, k′) ∝ 〈0|a−
k a−

k′

(

V (4)
sym + V

(4)
non−sym

)

a+
q a+

q′ |0〉 (22)

This had been done quantitatively [42] in a straightforward but rather lengthy

calculation [34,55]. The physical model behind these detailed calculations is Einstein

gravity in D=4, minimally coupled to a massless Klein-Gordon field, truncated to

the s-wave sector. Therefore, spherical reduction may be applied and a 2D model of

the type discussed above emerges. Thus, one is able to study gravitational scattering

of matter s-waves in the framework reviewed above. For that model to lowest non-

trivial order the tree-graph S-matrix (22) is given by

T (q, q′; k, k′) = − iκδ (k + k′ − q − q′)

2(4π)4|kk′qq′|3/2
E3T̃ , (23)

with the total energy E = q + q′, κ = 8πGN ,

T̃ (q, q′; k, k′) :=
1

E3

[

Π ln
Π2

E6

+
1

Π

∑

p∈{k,k′,q,q′}

p2 ln
p2

E2

(

3kk′qq′ − 1

2

∑

r 6=p

∑

s6=r,p

(

r2s2
)

)]

, (24)

and the momentum transfer function

Π(k, q, k′) = (k + k′)(k − q)(k′ − q) . (25)

Here are some remarks regarding the result (23)-(25):
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Scale independence The interesting part of the scattering amplitude is encoded

in the scale independent (!) factor T̃ in (24). This issue will be addressed in more

detail below. Note that scale invariance does not apply to the full amplitude (23).

Forward scattering The forward scattering poles occurring for Π = 0 should

be noted. Their appearance may have been anticipated on general grounds from

classical scattering theory.

Simplicity As a brief glance at the details shows [34, 55] there are actually two

contribution to the amplitude which have to be added (cf. footnote 10 and see

Fig. 4). Each of them is not only vastly more complicated than (24) but also diver-

gent. These somewhat miraculous cancellations urgently ask for some explanation.

The one we have found to be convincing is gauge-independence of the S-matrix.

Thus, the complicated expressions for single Feynman-diagrams are an artifact of

our gauge choice (6) which has been a prerequisite for the exact path integration

over geometric degrees of freedom, auxiliary fields and ghosts. It remains a challenge

to find a simpler derivation of (24).

V(4)
a (x,y)

x y

∂0 φ

q’

∂0 φ

q

∂0 φ

k’

∂0 φ

k

+

V(4)
b (x,y)

x y

∂0 φ

q’

∂0 φ

q

∂1 φ

k’

∂0 φ

k

Fig. 4. The total V (4)-vertex (with outer legs) contains a symmetric contribution V
(4)
a and

(for non-minimal coupling) a non-symmetric one V
(4)
b . The shaded blobs depict the intermediate

interactions with VBHs.

Scattering on self-energy and decay of s-waves Physically the s-waves of the

massless Klein-Gordon field are scattered on their own gravitational self-energy. By

rearrangement of the outer legs also a decay of an ingoing s-wave into three outgoing

ones is possible and the corresponding decay rate may be calculated [34, 42, 55].

CPT invariance By switching from outgoing to ingoing Eddington-Finkelstein

gauge it has been argued in ref. [43] that the amplitude is CPT-invariant. This is a

non-trivial feature because one might expect CPT violation from interactions with

VBHs on general grounds and because the effective action (16) is non-local.

Cross section With the definitions

k = Eα , k′ = E(1 − α) q = Eβ , q′ = E(1 − β) , (26)
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where α, β ∈ [0, 1] and E ∈ R
+, a quantity to be interpreted as a cross-section for

spherical waves can be defined [42]:

dσ

dα
=

1

4(4π)3
κ2E2|T̃ (α, β)|2

(1 − |2β − 1|)(1 − α)(1 − β)αβ
. (27)

The forward scattering poles are clearly visible in Fig. 5.
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0.2

0.4
0.6

0.8
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Fig. 5. Kinematic plot of s-wave cross-section dσ/dα for constant E

Pseudo self-similarity Another property discovered and discussed in ref. [43] is

the apparent equivalence of completely different kinematical sectors of the scat-

tering amplitude, i.e., if one zooms into the central region of Fig. 5 one obtains

another plot which is (almost) identical to that figure. Self-similarity is broken only

at next-to-next-to-leading order in an expansion around a reference point close to

a forward scattering pole.

VBHs regularize QFT Often it is claimed that gravity may regularize (some

of) the divergences of QFT (for the classical example invoking the self-energy of

a charged point particle cf. e.g. the first chapter in ref. [58]). It is thus of inter-

est that VBHs confirm this hope. To this end consider a generic amplitude in

a scattering process in QFT. Typically, in D dimensions one would expect from

energy-momentum conservation the appearance of two δ-functions in the ampli-

tude, δ(E−E′)δ(p−p′), where p is a D-1 vector, the sum over all ingoing momenta;

similarly, p′ is the sum over all outgoing momenta and E (E′) is the sum over all

ingoing (outgoing) energies. For massless particles in 2D the singular expression

δ(E−E′)δ(0) emerges.16 However, it turns out that for scattering based upon fully

16Similar problems arise for the mass zero propagator in 2D [59]. Note that the intermediate
divergencies mentioned in the paragraph “Simplicity” above resemble this type of divergency as
they occur for any values of ingoing (outgoing) momenta, but they are “milder” than δ(0), namely
ln 0 [34,55]. So already for individual Feynman diagrams gravity attenuates the divergences, while
for the gauge independent amplitude it eliminates them completely.
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quantized gravity (15) one of the δ-functions is absent, essentially because of the

non-local nature of the interactions mediated by VBHs. Thus, the amplitude (23)

contains only one δ-function and consequently it is finite.

Symmetry properties of the amplitude It has been noted already in [34, 42]

that, somewhat surprisingly, the interesting part of the amplitude, T̃ , is scale inde-

pendent, i.e., T̃ (q, q′; k, k′) = T̃ (λq, λq′; λk, λk′) for any non-vanishing λ ∈ R. Here I

would like to elaborate on that observation and to discuss also other symmetry prop-

erties of the amplitude. To this end it is helpful to introduce the dimensionless quan-

tities α, β together with the scale E defined in (26). In terms of these, together with

the abbreviations A = α(1 − α), B = β(1 − β), one gets Π(α, β, E) = E3 (A − B).

Plugging this into (24) it is simple to show its independence from the scale E by

collecting all terms containing E: 3 lnE2[A − B + (2AB(1 − A − B) − 1
2 (2A(1 −

2B) + 2B(1 − 2A)))/(A − B)] = 0. Thus, it is established that the interesting part

of the scattering amplitude, T̃ as defined in (24), does not depend on E at all but

only on the kinematic factors α and β. The discussion in ref. [60] suggests to take

this scale independence seriously and to look for further symmetries.17 Boosts of all

modes E → γE, p → γp (where p = k, q, k′, q′,) just amount to an energy rescaling

because particles are massless so the Lorentz angle does not change; therefore, the

analysis above applies and boosts are a symmetry of the amplitude. There seem to

be no further continuous symmetries. However, there are discrete symmetries: one

may permute within the set of ingoing and/or outgoing particles. Consistently, (23)

is invariant under α ↔ (1 − α) and β ↔ (1 − β). This residual invariance may be

fixed trivially by restricting α ∈ [0, 1/2], β ∈ [0, 1/2]. Exchanging in- with outgoing,

i.e., α ↔ β swaps the sign of T̃ and therefore the full amplitude (23) gets complex

conjugated, as expected for a theory exhibiting CPT invariance.

4. On the specific heat of BHs

From a thermodynamical point of view the specific heat of the father of all BHs,

the Schwarzschild BH, is quite remarkable, namely negative. This leads one to ask

the question how quantum corrections due to VBHs influence the specific heat. To

this end it is recalled briefly how to obtain the specific heat from entropy for generic

dilaton gravity (for a brief review on the latter see above). The final Subsection is

devoted to VBH corrections of the (inverse) specific heat for the CGHS model.

4.1. BH thermodynamics in 2D dilaton gravity

Before being able to appreciate the relevance of quantum corrections to the specific

heat it is worthwhile to collect a few classical results first.

17I am grateful to N. Pinamonti and D. Vassilevich for discussions on this subject after a talk of
the former at the MPI Leipzig. It should be pointed out that the SL(2, R) symmetry regarding
the energy spectrum found in ref. [60] relies on scale reparameterization of the total scattering
amplitude, which does not apply to (23).
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Hawking temperature There are many ways to calculate the Hawking temper-

ature, some of them involving the coupling to matter fields, some of them being

purely geometrical. Because of its simplicity we will restrict ourselves to a cal-

culation of the geometric Hawking temperature as derived from surface gravity

(cf. e.g. [61]).18 The latter can be calculated by taking the normal derivative d/ dX

of the Killing norm K(X ; M) evaluated on one of the Killing horizons X = Xh,

where Xh is a solution of K(Xh; M) = 0 = (M + w(Xh)), thus yielding

TH =
1

2π

∣

∣

∣
w′(X)

∣

∣

∣

X=Xh

. (28)

The numerical prefactor in (28) can be changed e.g. by a redefinition of the Boltz-

mann constant. It has been chosen in accordance with refs. [13, 63].

Entropy In 2D dilaton gravity there are various ways to calculate the Beken-

stein-Hawking entropy [64]. Using two different methods Gegenberg, Kunstatter

and Louis-Martinez were able to calculate the entropy for rather generic 2D dila-

ton gravity [65]. Later, Cadoni and Mignemi confirmed their result for a particular

model using the Cardy formula and counting microstates19 [71]. Finally, Carlip red-

erived the general result by applying CFT methods [72] and later also by virtue of

the Cardy formula [73]. These considerations are based upon earlier observations

regarding near horizon conformal symmetry for the Schwarzschild BH [74]. Surpris-

ingly enough, the naive derivation which employs only the thermodynamic relation

dS = dM/T yields the correct result: Entropy equals the dilaton field evaluated at

the Killing horizon,20

S = 2πXh . (29)

18If defined in this way Hawking temperature turns out to be independent of the conformal frame.
Although for the main application below only asymptotically flat spacetimes are encountered it
should be noted that identifying Hawking temperature with surface gravity is somewhat naive for
spacetimes which are not asymptotically flat. But the difference is just a redshift factor and for
quantities like entropy or specific heat actually (28) is the relevant quantity as it coincides with
the period of Euklidean time (cf. e.g. [62]).
19As opposed to String Theory, where the microstates are D-branes (for reviews cf. [66]), or to
Loop Quantum Gravity, where the microstates are quanta of area (for a review cf. e.g. [67]), it is
fair to say that in the context of 2D dilaton gravity it is not quite clear what these microstates
actually are – cf. e.g. the recent discussion in ref. [68]. If one employs Hod’s conjecture [69] one is led

to consider quasi-normal modes in the limit of high damping. This has been performed recently by
Kettner, Kunstatter and Medved [70] (cf. Eq. (36) in that ref.). Their result is remarkable insofar
as it is rather insensitive to geometry and depends solely on the scale set by surface gravity and
on the way matter is coupled to the dilaton field. Thus, taking Hod’s conjecture seriously, it
appears that one cannot avoid to conclude that the microstates in 2D dilaton gravity are built
from matter degrees of freedom. This is in accordance with the theory being topological in the
absence of matter, but it does not explain why the derivations of entropy which do not employ
matter at all work so well. So alternatively, one might conclude that Hod’s conjecture is not
applicable (to 2D dilaton gravity). I thank G. Kunstatter for correspondence on [70].
20Up to a multiplicative constant which may be absorbed by a redefinition of Newton’s constant.
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Specific heat By virtue of Cs = T dS/ dT the inverse specific heat reads

C−1
s =

1

2π

d

dX
lnw′(X)

∣

∣

∣

∣

X=Xh

. (30)

It is also independent of the conformal frame, but in the simple frame I = const.

an intriguing reformulation exists:

Cs =
8π2s

−rh
TH , (31)

where rh is given by (8) evaluated on the horizon. The sign s = ±1 is positive if w′

is negative on the horizon, otherwise it is positive.21 In all examples below s = +1.

Thus, the sign of rh defines whether the specific heat is positive (e.g. for AdS) or

negative (e.g. for dS). On a curious sidenote it is mentioned that (31) behaves like

an electron gas at low temperature with Sommerfeld constant γ = 8π2s/(−rh).

However, this analogy does not go too far because the (Planck version of the) third

law of thermodynamics is not fulfilled necessarily, i.e., entropy need not vanish as

TH → 0 – for instance, the only model of the whole ab-family in Fig. 6 which obeys

the third law, and consequently S = Cs, is the Jackiw-Teitelboim model.

Model w(X) Xh = S/(2π) TH Cs

Schwarzschild BH [75] −λ
√

X M2/λ2 λ2/(4πM) −λ2/(4πT 2
H)

Witten BH/CGHS [76] −λX M/λ λ/(2π) ∞
Jackiw-Teitelboim [77] −λX2

√

M/λ
√

λM/π 2π2TH/λ

ab-family [78] −λXb+1 (M/λ)1/(b+1) α(M/λ)b/(b+1) 2πb−1(TH/α)1/b

Schwarzschild-AdS [79] −λ
√

X(1 + X/ℓ2) soluble alg. λ
4π

√

1/Xh(1 + 3Xh/ℓ2) −4πXh
1+3Xh/ℓ2

1−3Xh/ℓ2

Reduced CS [80] −λ(X2 − c)2
√

c +
√

M/λ 2λ
π

√

M/λ
√

c +
√

M/λ π2

λ
TH/(3X2

h − c)

Fig. 6. Table of examples. Note the (irrelevant) scale factor λ > 0 and the abbreviation α =
λ(b+1)/(2π). For simplicity X is assumed to be positive. In the penultimate example Xh is given
uniquely by the real root of a cubic Eq. In the last example all expressions refer to the outermost
horizon. In the first five examples horizons exist iff M > 0, in the last one iff M ≥ 0.

Free energy et al. Once entropy S is known as a function of temperature T and

energy M due to the absence of pressure it is straightforward to calculate other

thermodynamical quantities of interest. For instance, the free energy is given by

F = M − TS; the Euklidean action follows from I = F/T ; the partition function

is given by Z = e−I . If more than one horizon is present one can assign an entropy

to each of them, but of course the thermodynamical discussion of the whole system

becomes more complicated.

21If w′ vanishes on the horizon then TH = 0 and s is irrelevant, unless simultaneously w′′ = 0.
In that special case – which arises if and only if the Killing norm has at least a triple zero – it is
better to use (30).
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Hawking-Page like phase transition In their by now classic paper on ther-

modynamics of BHs in AdS, Hawking and Page found a critical temperature sig-

nalling a phase transition between a BH phase and a pure AdS phase [79]. This

has engendered much further research, mostly in the framework of the AdS/CFT

correspondence (for a review cf. [81]). This transition is displayed most clearly by

a change of the specific heat from positive to negative sign: for Schwarzschild-AdS

according to Fig. 6 the critical value of Xh is given by Xc
h = ℓ2/3. For Xh > Xc

h the

specific heat is positive, for Xh < Xc
h it is negative.22 By analogy, a similar phase

transition may be expected for other models with corresponding behavior of Cs.

For instance, the last example in Fig. 6 exhibits also a critical value of Xh, namely

Xc
h = ±

√

c/3. Notably, this value can never be reached for outer horizons, but may

be reached for inner ones.

By virtue of the reformulation (31) a candidate for a Hawking-Page like tran-

sition arises at a certain critical value of M ∈ (0,∞) such that rh = 0 at the

(non-extremal) Killing horizon.

Summary The function w(x) + M encodes all thermodynamical properties dis-

cussed above: its zeros yield the value of the dilaton at horizons and thus entropy, its

first derivative is proportional to the Hawking temperature, and its second deriva-

tive (together with the first) determines the specific heat. If w′′ vanishes on the

horizon for a finite value of M a Hawking-Page like phase transition may occur.

4.2. Quantum corrections to the specific heat

In general, quantum corrections are, well, corrections to some classical result in the

sense that the dominant contribution is classical. However, there exist instances

where quantum corrections become pivotal and compete with (or even beat the)

classical contribution.

The table in Fig. 6 reveals that for the CGHS model the inverse specific heat

vanishes classically. Thus, any non-vanishing contribution to C−1
s must be purely of

quantum origin. Therefore, it is of some interest to study these corrections in more

detail. This has been undertaken23 in ref. [84] by coupling geometry to a single mass-

22Actually, in the original work [79] Hawking and Page did not invoke the specific heat directly.
The consideration of the specific heat as an indicator for a phase transition is in accordance with
the discussion in ref. [82].
23Several years before our derivation Zaslavskii has performed a comparable calculation [83].
Although the specific heat is not calculated explicitly in that work it is a trivial excercise to
extract it from the quantum corrected expressions for mass and temperature. Comparing his
result to ours agreement is found up to an overall sign. Extensive discussions and cross-checkings
of pesky signs have not revealed any obvious sign error in either of the publications. It should be
mentioned, however, that there is actually a difference between our calculation and Zaslavskii’s
concerning the boundary conditions imposed: while he used Hartle-Hawking boundary conditions
we have employed Unruh boundary conditions. It is not clear whether this difference is responsible
for the relative sign. In any case, the important conclusion remains unchallenged by such details:
interactions with VBHs produce crucial corrections to the inverse specific heat of the CGHS BH.
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less scalar field and peforming path integration over geometry non-perturbatively

as outlined in Section 2.2. It has been found that the interaction with matter in-

duced VBHs24 effectively amounts to a shift of the Killing norm from its classical

value Kc = 1 − (M/λ)e−2λr (with X = exp (2λr)) to

Kq = 1 − M

λ
e−2λr +

M

48πλ
e−4λr . (32)

This implies an effective shift of w from its classical value wc = −λX to

w(X) = wc

(

1 +
M

48πλX2

)

, (33)

leaving I = Ic = 1/(2λX) uncorrected. The results above are valid provided M ≫
λ. Here are some consequences of (and remarks to) the result (32):

Positive specific heat The most dramatic implication of quantum corrections

arises for the inverse specific heat: while it vanishes according to the standard

analysis (see Fig. 6), it turns out to be positive when interactions with VBHs are

taken into account,

Cs =
96π2

λ2
M2 . (34)

This implies that quantum effects tend to stabilize the system (see, however, foot-

note 23).

Violation of area law The behavior of the Killing norm (32) implies that the

horizon is shifted to slightly smaller values of r due to quantum corrections from

VBHs. Therefore, Hawking’s area theorem [85] is violated.

Corrections to radiation loss Applying the 2D Stefan-Boltzmann law yields to

leading order a decrease of the BH mass linear in “time”, proportional to T 2
H . This

is modified according to

M(t) ≈ M0 −
π

6
(T 0

H)2(t − t0) +
λ

24π
ln

M(t)

M0
, (35)

where t > t0, M0 = M(0) and T 0
H = λ/(2π) (in accordance with Fig. 6). Terms of

higher order in λ/M have been neglected. The last term in (35) is the one which is

due to corrections from VBHs. Note that M(t) may be expressed in terms of the

Lambert W-function [86].

Conformal non-invariance The quantum corrections crucially depend on the

conformal frame – for instance, if one uses the simple conformal frame I = const.

24Classically, for the CGHS model VBHs have no observable effect [41]. Note that the VBH
interpretation need not be adopted – indeed, neither [83] nor [84] mention this notion explicitly –
but it is in the spirit of the present work.
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then no quantum corrections to the Killing norm arise. The feature of classical con-

formal invariance of certain quantities but quantum non-invariance is in accordance

with the general discussion in [87]. Fortunately, for the CGHS model there exists

a preferred way to choose a conformal frame, a so-called Minkowski ground state

frame;25 it is this frame that has been used in the derivation of (32).26

Logarithmic entropy corrections By a simple thermodynamical calculation

based upon (32) corrections to the entropy have been calculated in ref. [57]:

S = S0 −
1

24
lnS0 + O(1) , (36)

where S0 = 2πM/λ (cf. Fig. 6). The logarithmic behavior is in qualitative agreement

with the one found in the literature by various methods [88] (cf. [89] for a brief and

recent summary); the factor 1/24 is in accordance with [90].

5. Outlook

Several interesting physical consequences from interactions with VBHs can be de-

duced, both in the Euklidean and in the Minkowskian approach, as reviewed in

Sections 2-4. I conclude briefly with a couple of open issues.

Experimental challenges Having established that real BHs are part of Nature

it seems natural to consider experiments sensitive to virtual ones. Although the

hope has been expressed in Section 3.1 that such experiments may be feasible if

the quantum gravity scale is at low energies, a thorough study of VBHs in that

framework still is lacking. By the same token that real BHs may lead to observable

effects at near future colliders or in high energy cosmic rays one could argue that

VBHs will imply observable consequences. This might play a pivotal role if the

quantum gravity scale turns out to be low, but not low enough to yield convincing

evidence for real BHs.

Regarding a verification of the scattering amplitude (23) prospects do not look

too promising: one would need a system where all forces but gravity can be ne-

glected, which is spherically symmetric and which consists solely of massless scalar

particles. Only the last condition may be dropped with ease in the framework pre-

sented here, while the first two are crucial ingredients. The only system which comes

to my mind exhibiting similar features consists of rapidly expanding or collapsing

spherical shells (not necessarily thin ones), like the s-wave part of a supernova.

So in conclusion, it seems difficult to invent an experimental setup which manages

25The definition is as follows: for vanishing value of the mass M geometry must be Minkowski
space. This leads to I ∝ X−a with a = b + 1 for the ab-family in Fig. 6. Hence, for the CGHS
model a = 1.
26Note that (32) would allow to consider the following correction as natural I(X) = Ic(X)(1 −
1/(48πX)). However, this “quantum correction of the conformal frame” is problematic because it
induces a singularity in the conformal factor at 48πX = 1.
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to unravel the interesting kinematical features hidden in (24), besides the forward

scattering poles, but undoubtedly it is a very interesting challenge.

Theoretical challenges One of the reasons why VBHs are so interesting from a

theoretical point of view is the puzzle of information loss which arises for real BHs.

While Hawking argued some time ago in favor of VBH-induced information loss,

studies in 2D revealed that no such information loss occurs. Of course, this does

not solve the information paradox for macroscopic BHs; but it shows that micro-

scopic (virtual) BHs enter the S-matrix just like any other particle, a conjecture

put forward some time ago by ’tHooft [54]. Nevertheless, there is a link between

these microscopic studies and macroscopic considerations like in refs. [91]: in both

cases non-locality plays a crucial role. While for (microscopic) VBHs non-locality

led to a finite result for the S-matrix (23), for macroscopic evaporating BHs the

violation of the “locality bound” [91] contradicts the assumption of independent

Hilbert spaces for the interior and the exterior of a BH and thus information need

not be lost.

Several generalizations of the results are obvious: for instance, it would be in-

teresting to study quantum corrections to the specific heat generically, in partic-

ular for the Schwarzschild BH. Extensions to SUGRA exhibit also the VBH phe-

nomenon [92], but so far no amplitudes or corrections to specific heat have been

calculated. Certainly it would be gratifying to extend the 2D study of Minkowskian

VBHs and their effects on the S-matrix to more complicated systems in D=4, i.e.,

to drop the assumption of spherical symmetry.

Finally, it is fair to ask whether VBHs exist beyond the Euklidean and the

Minkowskian path integral approach addressed in this work. In the context of Loop

Quantum Gravity (LQG) there has been recent progress in describing quantum

horizons for spherically symmetric configurations [93]. Also, it has been found in

that ref. that a binary degree of freedom exists, essentially the orientation of the

spherically symmetric isolated horizon. This is a promising step towards VBHs

as described in Section 2 because also in the path integral (14) we have summed

over positive orientations (e+
1 > 0) and negative ones (e+

1 < 0). However, the

boundary conditions imposed in the asymptotic region uniquely select one of these

orientations for the effective line element (20). Thus, although in intermediate states

both orientations are possible, for the fiducial observer in the asymptotic region one

orientation is selected. It would be interesting to observe similar features in LQG.

Thus, as a next step one could consider an isolated quantum horizon together with

an asymptotic region which should be chosen to be essentially the same for all

spin network configurations, e.g. a flat one or dS space. Then, one would have an

asymptotic region behaving almost classically, while the bulk part of geometry, in

particular the horizon, still behaved in a quantum way. In this manner, if it turned

out to be possible to relax the condition on spherical symmetry, even graviton-

graviton scattering with intermediate VBHs might be described by LQG.

For String Theory the answer is affirmative: as the Witten BH/CGHS model
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follows from strings in D=2 and VBHs arise for that model they may be expected

to be a generic feature of String Theory. A concrete realization of VBHs in a more

general framework of String Theory, i.e., not restricted to the Witten BH, could be

an interesting subject for the future.
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