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Quantum gravity
The Holy Grail of theoretical physics

There is a lot we do know about quantum gravity already

I It should exist in some form

I String theory: (perturbative) theory of quantum gravity

I Microscopic understanding of extremal BH entropy

I Conceptual insight — information loss problem resolved

There is a lot we still do not know about quantum gravity

I Reasonable alternatives to string theory?

I Non-perturbative understanding of quantum gravity?

I Microscopic understanding of non-extremal BH entropy?

I Experimental signatures? Data?
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Gravity in lower dimensions

Riemann-tensor D2(D2−1)
12 components in D dimensions:

I 11D: 1210 (1144 Weyl and 66 Ricci)
I 10D: 825 (770 Weyl and 55 Ricci)
I 5D: 50 (35 Weyl and 15 Ricci)
I 4D: 20 (10 Weyl and 10 Ricci)

I 3D: 6 (Ricci)
I 2D: 1 (Ricci scalar)

I 2D: lowest dimension exhibiting black holes (BHs)

I Simplest gravitational theories with BHs in 2D

I 3D: lowest dimension exhibiting BHs and gravitons

I Simplest gravitational theories with BHs and gravitons in 3D
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Attempt 1: Einstein–Hilbert in and near two dimensions

Let us start with the simplest attempt. Einstein-Hilbert action in 2
dimensions:

IEH =
1

16πG

∫
d2x

√
|g|R =

1
2G

(1− γ)

I Action is topological

I No equations of motion

I Formal counting of number of gravitons: -1

A specific 2D dilaton gravity model

Result of attempt 1:
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Attempt 1: Einstein–Hilbert in and near two dimensions

Let us continue with the next simplest attempt. Einstein-Hilbert
action in 2+ε dimensions:

IEH
ε =

1
16πG

∫
d2+εx

√
|g|R

I Weinberg: theory is asymptotically safe

I Mann: limit ε→ 0 should be possible and lead to 2D dilaton gravity

I DG, Jackiw: limit ε→ 0 yields Liouville gravity

lim
ε→0

IEH
ε =

1
16πG2

∫
d2x

√
|g|

[
XR− (∇X)2 + λe−2X

]

A specific 2D dilaton gravity model

Result of attempt 1:
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Attempt 2: Gravity as a gauge theory and the Jackiw-Teitelboim model

Jackiw, Teitelboim (Bunster): (A)dS2 gauge theory

[Pa, Pb] = Λ εabJ [Pa, J ] = εa
bPb

describes constant curvature gravity in 2D. Algorithm:

I Start with SO(1, 2) connection A = eaPa + ωJ
I Take field strength F = dA+ 1

2 [A,A] and coadjoint scalar X
I Construct non-abelian BF theory

I =
∫
XAF

A =
∫ [

Xa(dea + εabω ∧ eb) +X dω + εabe
a ∧ eb ΛX

]
I Eliminate Xa (Torsion constraint) and ω (Levi-Civita connection)
I Obtain the second order action

I =
1

16πG2

∫
d2x

√
−g X [R− Λ]

A specific 2D dilaton gravity model

Result of attempt 2:
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Attempt 3: Dimensional reduction
For example: spherical reduction from D dimensions

Line element adapted to spherical symmetry:

ds2 = g(D)
µν︸︷︷︸

full metric

dxµ dxν = gαβ(xγ)︸ ︷︷ ︸
2D metric

dxα dxβ − φ2(xα)︸ ︷︷ ︸
surface area

dΩ2
SD−2

,

Insert into D-dimensional EH action IEH = κ
∫

dDx
√
−g(D)R(D):

IEH = κ
2π(D−1)/2

Γ(D−1
2 )

∫
d2x

√
−g φD−2

[
R+

(D − 2)(D − 3)
φ2

(
(∇φ)2 − 1

) ]
Cosmetic redefinition X ∝ (λφ)D−2:

IEH =
1

16πG2

∫
d2x

√
−g

[
XR+

D − 3
(D − 2)X

(∇X)2 − λ2X(D−4)/(D−2)
]

A specific class of 2D dilaton gravity models

Result of attempt 3:
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Attempt 4: Poincare gauge theory and higher power curvature theories

Basic idea: since EH is trivial consider f(R) theories or/and theories with
torsion or/and theories with non-metricity

I Example: Katanaev-Volovich model (Poincare gauge theory)

IKV ∼
∫

d2x
√
−g

[
αT 2 + βR2

]
I Kummer, Schwarz: bring into first order form:

IKV ∼
∫ [

Xa(dea + εabω ∧ eb) +X dω + εabe
a ∧ eb (αXaXa + βX2)

]
I Use same algorithm as before to convert into second order action:

IKV =
1

16πG2

∫
d2x

√
−g

[
XR+ α(∇X)2 + βX2

]

A specific 2D dilaton gravity model

Result of attempt 4:
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Attempt 5: Strings in two dimensions

Conformal invariance of the σ model

Iσ ∝
∫

d2ξ
√
|h|

[
gµνh

ij∂ix
µ∂jx

ν + α′φR+ . . .
]

requires vanishing of β-functions

βφ ∝ −4b2 − 4(∇φ)2 + 4�φ+R+ . . .

βg
µν ∝ Rµν + 2∇µ∇νφ+ . . .

Conditions βφ = βg
µν = 0 follow from target space action

Itarget =
1

16πG2

∫
d2x

√
−g

[
XR+

1
X

(∇X)2 − 4b2
]

where X = e−2φ

A specific 2D dilaton gravity model

Result of attempt 5:
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Synthesis of all attempts: Dilaton gravity in two dimensions

Second order action:

I =
1

16πG2

∫
M

d2x
√
|g|

[
XR− U(X)(∇X)2 − V (X)

]
− 1

8πG2

∫
∂M

dx
√
|γ| [XK − S(X)] + I(m)

I Dilaton X defined by its coupling to curvature R
I Kinetic term (∇X)2 contains coupling function U(X)
I Self-interaction potential V (X) leads to non-trivial geometries
I Gibbons–Hawking–York boundary term guarantees Dirichlet boundary

problem for metric
I Hamilton–Jacobi counterterm contains superpotential S(X)

S(X)2 = e−
R X U(y) dy

∫ X

V (y)e
R y U(z) dz dy

and guarantees well-defined variational principle δI = 0
I Interesting option: couple 2D dilaton gravity to matter
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Recent example: AdS2 holography
Two dimensions supposed to be the simplest dimension with geometry, and yet...

I extremal black holes universally include AdS2 factor
I funnily, AdS3 holography more straightforward
I study charged Jackiw–Teitelboim model as example

IJT =
α

2π

∫
d2x

√
−g

[
e−2φ

(
R+

8
L2

)
− L2

4
F 2

]

I Metric g has signature −,+ and Ricci-scalar R< 0 for AdS
I Maxwell field strength Fµν = 2E εµν dual to electric field E
I Dilaton φ has no kinetic term and no coupling to gauge field
I Cosmological constant Λ = − 8

L2 parameterized by AdS radius L
I Coupling constant α usually is positive
I δφ EOM: R = − 8

L2 ⇒ AdS2!
I δA EOM: ∇µF

µν = 0 ⇒ E = constant
I δg EOM:

∇µ∇νe
−2φ − gµν ∇2e−2φ+

4
L2

e−2φ gµν+
L2

2
Fµ

λ Fνλ−
L2

8
gµν F

2 = 0
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Some surprising results
Hartman, Strominger = HS Castro, DG, Larsen, McNees = CGLM

I Holographic renormalization leads to boundary mass term (CGLM)

I ∼
∫

dx
√
|γ|mA2

Nevertheless, total action gauge invariant

I Boundary stress tensor transforms anomalously (HS)

(δξ + δλ)Ttt = 2Ttt∂tξ + ξ∂tTtt −
c

24π
L∂3

t ξ

where δξ + δλ is combination of diffeo- and gauge trafos that preserve
the boundary conditions (similarly: δλJt = − k

4πL∂tλ)
I Anomalous transformation above leads to central charge (HS, CGLM)

c = −24αe−2φ =
3
G2

=
3
2
kE2L2

I Positive central charge only for negative coupling constant α (CGLM)

α < 0
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Outline

Why lower-dimensional gravity?

Which 2D theory?

Which 3D theory?

How to quantize 3D gravity?

What next?
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Attempt 1: Einstein–Hilbert
As simple as possible... but not simpler!

Let us start with the simplest attempt. Einstein-Hilbert action:

IEH =
1

16πG

∫
d3x

√
−g R

Equations of motion:
Rµν = 0

Ricci-flat and therefore Riemann-flat – locally trivial!

I No gravitons (recall: in D dimensions D(D − 3)/2 gravitons)

I No BHs

I Einstein-Hilbert in 3D is too simple for us!

Properties of Einstein-Hilbert
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Attempt 2: Topologically massive gravity
Deser, Jackiw and Templeton found a way to introduce gravitons!

Let us now add a gravitational Chern–Simons term. TMG action:

ITMG = IEH +
1

16πG

∫
d3x

√
−g 1

2µ
ελµν Γρ

λσ

(
∂µΓσ

νρ +
2
3

Γσ
µτΓτ

νρ

)
Equations of motion:

Rµν +
1
µ
Cµν = 0

with the Cotton tensor defined as

Cµν =
1
2
εµ

αβ∇αRβν + (µ↔ ν)

I Gravitons! Reason: third derivatives in Cotton tensor!

I No BHs

I TMG is slightly too simple for us!

Properties of TMG
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Attempt 3: Einstein–Hilbert–AdS
Bañados, Teitelboim and Zanelli (and Henneaux) taught us how to get 3D BHs

Add negative cosmological constant to Einstein-Hilbert action:

IΛEH =
1

16πG

∫
d3x

√
−g

(
R+

2
`2

)
Equations of motion:

Gµν = Rµν −
1
2
gµνR−

1
`2
gµν = 0

Particular solutions: BTZ BH with line-element

ds2BTZ = −
(r2 − r2+)(r2 − r2−)

`2r2
dt2 +

`2r2

(r2 − r2+)(r2 − r2−)
dr2 + r2

(
dφ− r+r−

`r2
dt

)2

I No gravitons

I Rotating BH solutions that asymptote to AdS3!

I Adding a negative cosmological constant produces BH solutions!

Properties of Einstein-Hilbert-AdS
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Cosmological topologically massive gravity
CTMG is a 3D theory with BHs and gravitons!

We want a 3D theory with gravitons and BHs and therefore take CTMG
action

ICTMG =
1

16πG

∫
d3x

√
−g

[
R+

2
`2

+
1
2µ

ελµν Γρ
λσ

(
∂µΓσ

νρ +
2
3

Γσ
µτΓτ

νρ

)]
Equations of motion:

Gµν +
1
µ
Cµν = 0

I Gravitons!

I BHs!

I CTMG is just perfect for us. Study this theory!

Properties of CTMG
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Einstein sector of the classical theory

Solutions of Einstein’s equations

Gµν = 0 ↔ R = − 6
`2

also have vanishing Cotton tensor

Cµν = 0

and therefore are solutions of CTMG.

This sector of solutions contains

I BTZ BH

I Pure AdS

Line-element of pure AdS:

ds2AdS = ḡµν dxµ dxν = `2
(
− cosh2 ρdτ2 + sinh2 ρdφ2 + dρ2

)
Isometry group: SL(2,R)L × SL(2,R)R

Useful to introduce light-cone coordinates u = τ + φ, v = τ − φ
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AdS3-algebra of Killing vectors
A technical reminder

The SL(2,R)L generators

L0= i∂u

L±1 = ie±iu
[cosh 2ρ
sinh 2ρ

∂u −
1

sinh 2ρ
∂v ∓

i

2
∂ρ

]
obey the algebra

[L0, L±1] = ∓L±1 , [L1, L−1] = 2L0

and have the quadratic Casimir

L2 =
1
2
(L1L−1 + L−1L1)− L2

0

The SL(2,R)R generators L̄0, L̄±1 obey same algebra, but with

u↔ v , L↔ L̄
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Cotton sector of the classical theory

Solutions of CTMG with
Gµν 6= 0

necessarily have also non-vanishing Cotton tensor

Cµν 6= 0

Few exact solutions of this type are known.

Perhaps most interesting solution:

I Warped AdS (stretched/squashed), see Bengtsson & Sandin

Line-element of space-like warped AdS:

ds2warped AdS =
`2

ν2 + 3
(
− cosh2 ρdτ2 +

4ν2

ν2 + 3
(du+ sinh ρdτ)2 + dρ2

)
Sidenote: null-warped AdS in holographic duals of cold atoms:

ds2null warped AdS = `2
(dy2 + 2 dx+ dx−

y2
± (dx−)2

y4

)
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CTMG as particle mechanics problem
Stationary and axi-symmetric solutions

Stationarity plus axi-symmetry:

I Two commuting Killing vectors

I Effectively reduce 2+1 dimensions to 1+0 dimensions

I Like particle mechanics, but with up to three time derivatives

I Still surprisingly difficult to get exact solutions!

I Known solutions: AdS, BTZ, warped AdS

Reduced action (Clement):

IC[ζ,Xi] ∼
∫

dρ
[ζ
2
ẊiẊjηij −

2
ζ`2

+
ζ2

2µ
εijk X

iẊjẌk
]

Here ζ is a Lagrange-multiplier and Xi = (T,X, Y ) a Lorentzian 3-vector

It could be rewarding to investigate this mechanical
problem systematically and numerically!
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iẊjẌk
]

Here ζ is a Lagrange-multiplier and Xi = (T,X, Y ) a Lorentzian 3-vector

It could be rewarding to investigate this mechanical
problem systematically and numerically!

D. Grumiller — Gravity in lower dimensions Which 3D theory? 23/42



CTMG as particle mechanics problem
Stationary and axi-symmetric solutions

Stationarity plus axi-symmetry:

I Two commuting Killing vectors

I Effectively reduce 2+1 dimensions to 1+0 dimensions

I Like particle mechanics, but with up to three time derivatives

I Still surprisingly difficult to get exact solutions!

I Known solutions: AdS, BTZ, warped AdS

Reduced action (Clement):

IC[ζ,Xi] ∼
∫

dρ
[ζ
2
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CTMG at the chiral point
...abbreviated as CCTMG

Definition: CTMG at the chiral point is CTMG with the tuning

µ ` = 1

between the cosmological constant and the Chern–Simons coupling.

Why special?
Calculating the central charges of the dual boundary CFT yields

cL =
3

2G
(
1− 1

µ `

)
, cR =

3
2G

(
1 +

1
µ `

)
Thus, at the chiral point we get

cL = 0 , cR =
3
G

Notes:

I Abbreviate “CTMG at the chiral point” as CCTMG
I CCTMG is also known as “chiral gravity”
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Gravitons around AdS3 in CTMG

Linearization around AdS background

gµν = ḡµν + hµν

leads to linearized EOM that are third order PDE

G(1)
µν +

1
µ
C(1)

µν = (DRDLDMh)µν = 0 (1)

with three mutually commuting first order operators

(DL/R)µ
ν = δν

µ ± ` εµ
αν∇̄α , (DM )µ

ν = δν
µ +

1
µ
εµ

αν∇̄α

Three linearly independent solutions to (1):(
DLhL

)
µν

= 0 ,
(
DRhR

)
µν

= 0 ,
(
DMhM

)
µν

= 0

At chiral point left (L) and massive (M) branches coincide!
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gµν = ḡµν + hµν

leads to linearized EOM that are third order PDE

G(1)
µν +

1
µ
C(1)

µν = (DRDLDMh)µν = 0 (1)

with three mutually commuting first order operators

(DL/R)µ
ν = δν

µ ± ` εµ
αν∇̄α , (DM )µ

ν = δν
µ +

1
µ
εµ

αν∇̄α

Three linearly independent solutions to (1):(
DLhL

)
µν

= 0 ,
(
DRhR

)
µν

= 0 ,
(
DMhM

)
µν

= 0

At chiral point left (L) and massive (M) branches coincide!

D. Grumiller — Gravity in lower dimensions Which 3D theory? 25/42



Gravitons around AdS3 in CTMG

Linearization around AdS background
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Degeneracy at the chiral point
Will be quite important later!

Li, Song & Strominger found all solutions of linearized EOM.
I Primaries: L0, L̄0 eigenstates ψL/R/M with

L1ψ
R/L/M = L̄1ψ

R/L/M = 0

I Descendants: act with L−1 and L̄−1 on primaries
I General solution: linear combination of ψR/L/M

I Linearized metric is then the real part of the wavefunction

hµν = Reψµν

I At chiral point: L and M branches degenerate. Get new solution
(DG & Johansson)

ψnew
µν = lim

µ`→1

ψM
µν(µ`)− ψL

µν

µ`− 1
with property(

DLψnew
)
µν

=
(
DMψnew

)
µν
6= 0 ,

(
(DL)2ψnew

)
µν

= 0
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Sign oder nicht sign?
That is the question. Choosing between Skylla and Charybdis.

I With signs defined as in this
talk: BHs positive energy,
gravitons negative energy

I With signs as defined in
Deser-Jackiw-Templeton
paper: BHs negative energy,
gravitons positive energy

I Either way need a mechanism to
eliminate unwanted negative
energy objects – either the
gravitons or the BHs

I Even at chiral point the problem
persists because of the
logarithmic mode. See Figure.
(Figure: thanks to N. Johansson)

Energy for all branches:
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Outline

Why lower-dimensional gravity?

Which 2D theory?

Which 3D theory?

How to quantize 3D gravity?

What next?
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Witten’s attempt

Different approach (without gravitons!):

I Naive remark 1: 3D gravity is trivial
I Naive remark 2: 3D gravity is non-renormalizable
I Synthesis of naive remarks: 3D quantum gravity may exist as

non-trivial theory
I Positive cosmological constant: impossible?
I Vanishing cosmological constant: S-matrix, but no gravitons!
I Therefore introduce negative cosmological constant
I Define quantum gravity by its dual CFT at the AdS boundary
I Constructing this CFT still a “monstrous” effort...

Maloney & Witten: taking into account all known contributions to path
integral leads to non-sensible result for partition function Z.
In particular, no holomorphic factorization:

ZMW 6= ZL · ZR

Various suggestions to interpret this problem: need cosmic strings, need
sum over complex geometries, 3D quantum gravity does not exist by itself
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Li, Song & Strominger attempt
Is CCTMG dual to a chiral CFT?

Interesting observations:

1. If left-moving sector is trivial, ZL = 1, then problem of holomorphic
factorization

Z = ZL · ZR = ZR

is solved.

2. CCTMG has
cL = 0

3. Massive graviton degenerates with left boundary graviton: ψM = ψL

Thus, dual CFT chiral? If yes, we are done!

Suggestive to interpret LSS results as absence of gravitons

Disagrees with results by Carlip, Deser, Waldron & Wise!

But:
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Gravitons in CCTMG
Is CCTMG dual to a logarithmic CFT?

New mode resolves apparent contradiction between LSS and CDWW.

Interesting property:

L0

(
ψnew

ψL

)
=

(
2 1

2
0 2

) (
ψnew

ψL

)
,

L̄0

(
ψnew

ψL

)
=

(
0 1

2
0 0

) (
ψnew

ψL

)
.

Such a Jordan form of L0, L̄0 is defining property of a logarithmic CFT!
Note: called “logarithmic CFT” because some correlators take the form

〈ψnew(z)ψnew(0)〉 ∼ ln z + . . .

I Logarithmic CFT: not unitary and not chiral!

I Either logarithmic or chiral CFT dual (or none)

I Currently unknown which of these alternatives is realized!
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Viability of the logarithmic mode, part 1
Explicit solution for logarithmic mode (DG & Johansson)

Collect in the following suggestions how the logarithmic mode could drop
out of the physical spectrum and show that none of them is realized.

Is the logarithmic mode really there?

Before starting, here is the explicit form of the logarithmic mode:

hnew
µν =

sinh ρ
cosh3ρ

(
c τ − s ln cosh ρ

)  0 0 1
0 0 1
1 1 0


µν

− tanh2ρ
(
s τ + c ln cosh ρ

)  1 1 0
1 1 0
0 0 −a2


µν

(2)

with

c = cos (2u) , s = sin (2u) , a =
1

sinh ρ cosh ρ
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Viability of the logarithmic mode, part 2
Physical mode with negative energy

The logarithmic mode is pure gauge?

No!

Suggestion 1

hnew does not solve linearized Einstein equations. Thus is not pure gauge.
Note: confirmed by Sachs who considered logarithmic quasi-normal modes

Logarithmic mode has infinite energy and thus must be discarded?

No!

Suggestion 2

Enew = − 47
1152G`3

Energy is finite and negative.
Thus logarithmic mode leads to instability but cannot be discarded.
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Viability of the logarithmic mode, part 3
Boundary conditions beyond Brown–Henneaux

New mode is not a small perturbation?

It is!

Suggestion 3

hnew diverges asymptotically like ρ, but AdS background diverges
asymptotically like e2ρ. Thus hnew is really a small perturbation.

New mode is not asymptotically AdS?

It is!

Suggestion 4

Solution is asymptotically AdS

ds2 = dρ2 +
(
γ

(0)
ij e

2ρ/` + γ
(1)
ij ρ+ γ

(0)
ij + γ

(2)
ij e

−2ρ/` + . . .
)

dxi dxj

but violates Brown-Henneaux boundary conditions! (γ
(1)
ij

∣∣
BH

= 0)
Henneaux et al. showed precedents where this may happen in 3D
New boundary conditions replacing Brown-Henneaux (DG & Johansson)
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Viability of the logarithmic mode, part 4
Brown–York boundary stress tensor

New mode leads to ill-defined Brown-York boundary stress tensor?

No!

Suggestion 5

Total action including boundary terms (Kraus & Larsen)

Itotal = ICTMG +
1

8πG

∫
d2x

√
−γ

(
K − 1

`

)
Its first variation leads to Brown-York boundary stress-tensor:

δItotal
∣∣
EOM

=
1

32πG

∫
d2x

√
−γ(0) T ij δγ

(0)
ij

DG & Johansson: Tij is finite, traceless and chiral:

Tij = − `

16πG

(
1 1
1 1

)
ij

Note: coincides with Brown-York boundary stress-tensor of global AdS3
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Viability of the logarithmic mode, part 5
Artifact of linearization?

Maybe some non-linear “magic” kills the new mode?

Unlikely!

Suggestion 6

DG, Jackiw & Johansson: classical phase space analysis of CCTMG

N =
1
2

(
2×D − 2×N1 −N2

)
=

1
2

(
2× 18− 2× 14− 6

)
= 1

I N : number of physical degrees of freedom (per point)
I D: number of canonical pairs in full phase space
I N1(2): number of linearly independent first (second) class constraints

confirmed in more general calculation by Carlip

I Conclusion 1: logarithmic mode passed all tests so far

I Conclusion 2: CCTMG is unstable; dual CFT probably logarithmic
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Outline

Why lower-dimensional gravity?

Which 2D theory?

Which 3D theory?

How to quantize 3D gravity?

What next?
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Chiral vs. logarithmic
Pivotal open question: does dual CFT exist? is it chiral or logarithmic?

I Chiral route: must show consistency of truncation!

I Logarithmic: must show consistency of 2nd order perturbations!

To Do
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Chiral vs. logarithmic
Pivotal open question: does dual CFT exist? is it chiral or logarithmic?

I Chiral route: must show consistency of truncation!

I Logarithmic: must show consistency of 2nd order perturbations!

To Do

ad chiral:

I restricting to Brown-Henneaux boundary conditions does not help

I Giribet, Kleban & Porrati showed that descendent of new mode

L̄−1ψ
new
µν = Yµν = Xµν + Lξ ḡµν

after a diffeomorphism ξ obeys Brown-Henneaux boundary conditions

I Descendants of logarithmic mode are there even when boundary
conditions are restricted beyond requiring variational principle!

I Need different mechanism of truncation!
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Chiral vs. logarithmic
Pivotal open question: does dual CFT exist? is it chiral or logarithmic?

I Chiral route: must show consistency of truncation!

I Logarithmic: must show consistency of 2nd order perturbations!

To Do

ad logarithmic:
I straightforward but somewhat lengthy calculation
I expand metric around AdS background up to second order:

gµν = ḡµν + hnew
µν + h(2)

µν

EOM lead to linear PDE for h
(2)
µν :

D(3) h(2) = f
(
(hnew

µν )2
)

I Check if h(2) really is smaller than hnew
µν

I Might be rewarding exercise for a student
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Which groundstate?

Two observations:
I Global AdS3 has mass and angular momentum in (C)CTMG

MAdS3 = µJAdS3 = − 1
8G

I If AdS3 is unstable in CCTMG because of mode,
where does it run to?

Both observations suggest that there might be a ground state different
from pure AdS3 in (C)CTMG.

Consider other possible ground states with less symmetry

Example: warped AdS has four Killing vectors with U(1)L × SL(2,R)R

Suggestive to consider warped AdS as possible groundstate of (C)CTMG

Strominger et al. :
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Most crucial question we would like to answer

Does 3D quantum gravity exist
with no strings attached?

I Consider the possible outcomes to this question:

I If yes: we would have an interesting quantum theory of
gravity with BHs and gravitons to get conceptual
insight into quantum gravity

I if no: potentially exciting news for string theory

Perhaps a win-win situation!

Thank you for your attention!
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