
Confidential

IST-5- 033511 ANDRES

ANalysis and Design of run-time REconfigurable,

heterogeneous Systems

Project Duration 2006-06-01 – 2009-05-31 Type STREP

WP no. Deliverable no. Lead participant

WP1 D1.5b TUV

Modelling extensions for polymorphic signals,

final library elements

Prepared by Markus Damm, Joseph Wenninger - TUV

Issued by TUV

Document Number/Rev. ANDRES/TUV/P/D1.5b/1.0

Classification ANDRES Confidential

Submission Date 2008-11-30

Due Date 2008-11-30

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

© Copyright 2006 .Diseno de Sistemas en Silicio S.A., Kungliga Tekniska Högskolan,

Kuratorium OFFIS, Vienna University of Technology, Universidad de Cantabria, Thales

Communications S.A

 This document and the information contained herein may not copied, used or disclosed

in whole or in part outside of the consortium except with prior written permission of the

partners listed above.

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 2

Contents

1 Introduction 3

2 Usage 4
3 Internal representation 6
4 Implementation 8
5 MoC conversion 11

5.1 Conversion from SDF 12

5.1.1 SDF to FIFO 12

5.1.2 SDF to SC 13

5.1.3 SDF to ELEC_VOLTAGE/ELEC_CURRENT 13

5.2 Conversion from FIFO 14

5.2.1 FIFO to SDF 14

5.3 Conversion from SC 15

5.3.1 SC to SDF 15

5.3.2 SC to FIFO 15
5.3.3 SC to ELEC_VOLTAGE/ELEC_CURRENT 16

5.4 Conversion from ELEC_VOLTAGE/ELEC_CURRENT 17

5.4.1 ELEC_VOLTAGE/ELEC_CURRENT to SDF 17
5.4.2 ELEC_VOLTAGE/ELEC_CURRENT to SC 17
5.4.3 ELEC_VOLTAGE/ELEC_CURRENT to FIFO 18

6 Data type conversion 19

7 Current distribution 23
8 Conclusion and future work 23
9 References 24

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 3

1 Introduction

The purpose of the converter channels (as they have been renamed to from polymorphic

signals [1], see also [2]) within the ANDRES-project [3] is the connection of

modules/processes lying within the domains of different Models of Computation (MoCs). The

motivation is twofold:

Mixed level Simulation [4]
When following a design methodology based on design refinement, a refinement step for a

certain system part often involves changing the MoC for this part. For example, a filter might

be described behaviourally within the timed data flow (TDF) MoC, and after refinement, it

has an analogue representation as an electrical network (CT-NET MoC), or one as a digital

filter using the discrete event (DE) MoC. However, the designer might not want to change the

MoCs for the other system parts, but simulate the system with certain parts being in different

refinement levels. This task requires the insertion of MoC converters with respect to the

different MoCs used. The designer might also want to change the refinement levels of

different system parts back and forth, for example to save simulation time by leaving most

system parts on an abstract system level which can be simulated fast, while only describing

certain system parts of interest on a more detailed, nearer to implementation level, which

costs more simulation performance. This requires repetitive manual insertion and removal of

MoC converters, which is a laborious and error prone task.

Design space exploration

When a designer investigates the different possible implementations for a heterogeneous

system, there are usually several possibilities to implement certain system parts. Many system

parts can be implemented using software, digital hardware, or analogue hardware. Also, the

communication means might be subject to change during the exploration process, e.g. by

varying bit widths.

 Switching between two design alternatives often involves changing the MoC of certain

system parts, which again requires the repetitive use of different MoC converters. Here, we

might also face the problem of data type conversion, since the data types used might also

change, for example when switching from an analogue filter with a continuous output (e.g.

double) to a digital filter with a digital output, whereas the bit width used in the latter case

might also be varied. In certain cases, a converter channel might even take the role of an

analogue/digital converter (or vice versa), and by using different system partitions, the

designer might shift this role from one converter channel to another.

 Converter channels ease the process of inserting and removing MoC and/or data type

converters. They are general purpose channels, which can be used to connect system parts

using different MoCs and data types. The conversion means necessary are hidden within the

channel, and can be steered by the designer with a few parameters/options. Moreover, the

conversion means are mostly provided automatically, e.g. when the MoC of a system part that

reads from a converter channel changes, the designer has mostly not to make any changes to

the converter channel. If there are problems with the conversion process, e.g. an overflow

when doing data type conversion, or certain corner cases which can occur for certain MoC

conversion directions, the designer is provided with appropriate warnings.

 In this report, we describe the final implementation of the converter channel class for the

ANDRES-project regarding usage and implementation.

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 4

2 Usage

Technically, a converter channel is a C++ class named converterchannel, which derives

from the SystemC class sc_core::sc_channel. It is placed within a separate namespace

called ahes. A converter channel is instantiated as follows:

ahes::converterchannel<M, DT_W, DT_R1, DT_R2> conv;

where

 M denotes the MoC of the writing side (mandatory)

 DT_W denotes the data type of the writing side (mandatory)

 DT_R1 and DT_R2 denote the possible data types of the reading sides of this

converter channel (optional)

If only DT_W is set, the converter channel won't offer any data type conversion capabilities,

and all (reading or writing) ports bound to it have to be of data type DT_W. In general, the

writing port bound to the converter channel has to be of data type DT_W, and any reading port

bound to it has to be of one of the data types DT_W, DT_R1 or DT_R2. Note that DT_W,

DT_R1 and DT_R2 have to be pairwise distinct. In the initial version of the converter

channels (see D1.5a), up to five different reading side data types could be used. However, this

presented us with several implementation difficulties regarding code maintenance, and we

decided to reduce this number to two, after consulting with our industrial partners, who

agreed that this number should be sufficient.

 The MoC M is specified with an enum type ahes::MoC, which has the following members:

 ahes::SC denotes the Discrete Event (DE) MoC of SystemC

 ahes::SDF denotes the Timed Synchronous Data Flow (TDF) MoC of SystemC-

AMS

 ahes::FIFO denotes the Kahn Process Network (KPN) MoC

 ahes::ELEC_VOLTAGE and ahes::ELEC_CURRENT denote the continuous time

electrical network (CT-NET) MoC of SystemC-AMS, depending on the electrical

quantity of interest

From the coding point of view, a converter channel can be used almost like a signal in

SystemC. Binding a converter channel to module ports works like this:

 mod_write.out(conv) for the writing port out of a module mod_write

 mod_read.in(conv) for the reading port in of a module mod_read

Note that binding to the writing side now works the same way as binding to the reading side,

in contrast to the initial version of the converter channels, where a special method indicating

the writing side MoC had to be called for connecting to the writing side. By using a template

parameter to indicate the writing side MoC of a converter channel, we could eliminate this

shortcoming.

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 5

 Before explaining the different capabilities of the converter channels more details , we give

an example on how converter channels can be used with respect to mixed level simulation and

design refinement. The example deals with the evaluation of a software defined radio (SDR).

An overview of the system is shown in Figure 2.1. The RF input signal is mixed with a sine

wave which has the same frequency as the carrier signal and the result is processed by a

lowpass filter. After that, the demodulation is done by software and an analogue demodulator,

to compare the results. The input of the software demodulator is an integer with fixed bit

width. Listing 2.1 shows the corresponding top-level SystemC code using two converter

channels. Note that the code example assumes the ahes namespace to be included. The

converter channel method setRangeScaling in line 6 is used to steer quantization, and

will be explained in more detail later.

lowpass
(TDF or ELN)

Software (DE or PN)

mixer

rf_in

sine

demodulate_sw

demodulate_an

network (ELN)

or behavioural

model (TDF)converter channel

TDF-signal

1

2
3

4

mixedsig
lp_out

Figure 2.1. A refinement example: SW-defined radio

bitwidth=8;

sca_sdf_signal<double> rf_in; // incoming RF-signal

sca_sdf _signal <double> sine; // sine wave

converterchannel<TDF, double> mixedsig; // RF-signal multiplied with sine-wave

converterchannel<TDF,double, sc_int<bitwidth> > lp_out; // output of lp-filter

lp_out.setRangeScaling<sc_int<bitwidth> >(-1. , 1.); // assuming the value

 // range within [-1,1

mixer mix("mix"); // mixes the two input signals

 mix.in1(rf_in);

 mix.in2(sine);

 mix.out(mixedsig);

lowpass_behavioural lp("lp"); // lowpass filter, either T-SDF-module

 lp.in(mixedsig); // or electrical network

 lp.out(lp_out);

demodulate_sw dem_sw("dem_sw", bitwidth); // software demodulator with

 dem_sw.in(lp_out); // sc_int<bitwidth> input

demodulate_an dem_an("dem_an"); // analogue demodulator

 dem_an.in(lp_out);

Listing 2.1: SW-defined radio with converterchannels

Regarding design space exploration and mixed level simulation, this example gives rise to the

following tasks (the numbers refer to those in Figure 8):

1. Realizing the lowpass filter either as a (behavioural) TDF-module or as an electrical

network.

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 6

2. Realizing the software demodulator either as a kahn process network (KPN) or as a DE

module

3. Varying the bit width of the input of the software demodulator

4. Realizing the analogue demodulator either as a (behavioural) TDF-module or as an

electrical network.

To make the matter more complicated, any subset of these tasks can be done in parallel. It is

obvious, that the effort for manual inserting (and adapting) the appropriate converters would

be significant. Let’s assume an initial model with the lowpass filter and the analogue

demodulator modeled as T-SDF modules and the software demodulator modelled within the

KPN MoC, taking sc_int<bitwidth> inputs. We then would need a TDF→KPN converter

from the output of the lowpass filter to the software modulator, which would also convert

double values to sc_int<bitwidth> values. Now, executing the tasks above would call for the

following respective manual conversion activities:

1. Realizing the lowpass filter as an electrical network: Insert a TDF→CT-NET converter

between the mixer and the lowpass filter. Replace the initial TDF→KPN converter by a

CT-NET→KPN converter, which also converts double to sc_int<bitwidth>. Instantiate

appropriate signals to connect them.

2. Realizing the software demodulator as a DE module: Replace the initial TDF→KPN

converter by a TDF→DE converter, which also converts double to sc_int<bitwidth>. Note

that using a SystemC AMS converter port makes no sense here, since the analogue

demodulator is still in the TDF domain. Instantiate appropriate signals to connect them.

3. Varying the bit width of the input of the software demodulator: Change the output of the

TDF→KPN converter and the type of the signal which connects it to the software

demodulator to sc_int<new_bitwidth>. The data type conversion algorithm of the converter

must also be altered slightly. Of course, using a parametrisable converter regarding the

bitwidth would make things easier here. In that case, this design space exploration task could

be steered similar to the code example above.

4. Realizing the analogue demodulator as an electrical network: Insert a TDF→ CT-NET

converter between the lowpass filter and the analogue demodulator. Instantiate an appropriate

signal to connect them.

By using converter channels, however, the code for each of the possible variants would be

very similar to the code in Example 3: The value of the variable bitwidth would change, as

well as the class names of the respective modules (e.g. changing lowpass_behavioural to

lowpass_electrical). In some cases, the writing side MoC of a converter channel has to be

changed. This very simple example shows the convenience converter channels offer to the

designer.

3 Internal representation

In this section, we give some detail on how the code described above is processed, i.e.

handled internally in terms of signals and converter modules. In principle, if a converter

channel connects two modules m_write and m_read having a port out and in

respectively, it instantiates a signal which fits to the port out (the input signal), a signal

which fits to the port in (the output signal), and a converter which reads the input signal and

process it in a way that it can be written to the output signal.

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 7

Figure 3.1 shows an example: m_write is a SystemC discrete event (DE) module having a

port out of type sc_out<double>, and m_read is a SystemC-AMS synchronous

dataflow (TDF) module having a port in of type sca_sdf_in<int>.

The SystemC-AMS library provides sca_scsdf_in and sca_scsdf_out ports, which

can be used within TDF-modules to connect to DE-signals (i.e. sc_signals). Therefore, a

converter module from DE to TDF can be realized by a TDF-module having an

sca_scsdf_in input and a sca_sdf_out output. Then it can be connected to

m_write and m_read using the input and output signal, respectively. The only action

remaining within the converter module in this case is data type conversion, which is done by

calling the appropriate conversion function.

Figure 3.1: example of the internal structure of a polymorphic signal

In general, not every conversion capability is needed. If the data types on both sides agree,

only MoC conversion is performed, and if the MoCs agree, only data type conversion is

performed. If data types as well as MoCs agree, m_write and m_read are directly

connected with the input signal.

 In the general case, a converter channel will be connected to several readers. Here, apart

from the input signal, several converters and output signals are created. Each converter is then

connected to the input signal and to a suited output signal. Each reading module is connected

to the appropriate output signal. If a reading module happens to agree to the writing module

regarding MoC and data type, it is directly connected to the input signal. Figure 3.2 shows an

example.

Figure 3.2: internal structure of a converter channel connected to multiple reading modules

Module

MoC1

Module

MoC1

Module

MoC1

converter
MoC1 MoC1

DT1 DT2

data type DT1

data type DT2

data type DT 1

Module

MoC2

converter
MoC1 MoC2

DT1 DT1
data type DT1

Module

MoC2
data type DT 1

Module

MoC3

converter
MoC1 MoC3

DT1 DT3
data type DT 3

input signal output signal1

output signal2

output signal3

c
o

n
v
e

rte
rc

h
a

n
n

e
l<

M
o

C
 , D

T
1 ,

D
T

2 ,
D

T
3 >

1

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 8

In principle, every conversion case is handled the way described above. The only cases which

are treated slightly different are those when electrical nodes are involved. This will be

explained in more detail later.

4 Implementation

The converterchannel class is a templated class with two mandatory template

parameter (the enum parameter MoC and the data type T_WRITE, which is the data type of

the writing port) and two optional template parameters T_READ1 and T_READ2, the data

types of additional reading ports, which are set to dummy-classes by default. The data of the

class consist mainly of pointers to different in- and output signals and converters. Listing 4.1

shows the code, which lies within the ahes namespace:

template <MoC MOC_WRITE, typename T_WRITE, typename T_READ1=impl::dummy<1>,

typename T_READ2=impl::dummy<2> >

class converterchannel : public sc_core::sc_channel{

 public:

 ahes_signal<MOC_WRITE,T_WRITE>* insignal; // the input signal

 sc_signal<T_WRITE>* outsignal_sc_0; // pointers for sc_signals

 sc_signal<T_READ1>* outsignal_sc_1; // to be passed to reading ports

 sc_signal<T_READ2>* outsignal_sc_2; // one for each data type

 sca_sdf_signal<T_WRITE>* outsignal_sdf_0; // The same as above for sdf

 sca_sdf_signal<T_READ1>* outsignal_sdf_1;

 sca_sdf_signal<T_READ2>* outsignal_sdf_2;

 sc_fifo<T_WRITE>* outsignal_fifo_0; // The same as above for sc_fifos

 sc_fifo<T_READ1>* outsignal_fifo_1;

 sc_fifo<T_READ2>* outsignal_fifo_2;

 sca_elec_node* internal_elec_node_pos; // the internal

 sca_elec_node* internal_elec_node_neg; // electrical nodes

 converter<MOC_WRITE,SC,T_WRITE,T_WRITE>* conv_2sc_0; // pointer to

 converter<MOC_WRITE,SC,T_WRITE,T_READ1>* conv_2sc_1; // converters

 converter<MOC_WRITE,SC,T_WRITE,T_READ2>* conv_2sc_2;

 converter<MOC_WRITE,SDF,T_WRITE,T_WRITE>* conv_2sdf_0;

 converter<MOC_WRITE,SDF,T_WRITE,T_READ1>* conv_2sdf_1;

 converter<MOC_WRITE,SDF,T_WRITE,T_READ2>* conv_2sdf_2;

 converter<MOC_WRITE,FIFO,T_WRITE,T_WRITE>* conv_2fifo_0;

 converter<MOC_WRITE,FIFO,T_WRITE,T_READ1>* conv_2fifo_1;

 converter<MOC_WRITE,FIFO,T_WRITE,T_READ2>* conv_2fifo_2;

 converter<MOC_WRITE,ELEC_VOLTAGE,T_WRITE,double>* conv_2voltage;

 converter<MOC_WRITE,ELEC_CURRENT,T_WRITE,double>* conv_2current;

 // the converters to ELEC_X always have reading data type double

 converterchannel_options<T_WRITE, T_WRITE>* options_0; // options to be

 converterchannel_options<T_WRITE, T_READ1>* options_1; // passed to the

 converterchannel_options<T_WRITE, T_READ2>* options_2; // converters

 converterchannel_options<T_WRITE, double>* options_D;

 // Data for special cases and optional capabilities:

 MoC elec_mode; // determines if CT-NET conversion uses voltage or current

 double elec_scaling_factor; // stores gain of CT-NET conversion

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 9

 int readingFIFOSize; // the size of the internal fifo on the reading side

 sc_signal<bool>* sdf_clk; // clock-signal that runs with the speed of

 // the SDF input cluster (if any)

 sdf_clock* sdf_clk_gen; // module producing this clock-signal

 lost_val_alerter<T_WRITE>* alerter; // checks for SC-SDF undersampling

Listing 4.1: the class data of the converter channel

The ahes_signal class is a template class with specializations for each MoC that inherit

from the appropriate class. For example, an instance of ahes_signal<SC,int> is simply

an sc_signal<int>, while a ahes_signal<ELEC_VOLTAGE,double> is an

elec_node. That way, only one pointer is needed to hold the input signal. There are various

pointers for each possible output signal, but a respective instance is only created when

needed; the same holds for the converters. The converter class is a template class with

template parameters the writing side MoC, the reading side MoC, as well as the writing and

the reading side data types. For each MoC pair, there exists an appropriate specialization of

the converter class, which then inherits the necessary data type capabilities from an

appropriate data type conversion class. For example, the header of the TDF to DE converter

looks like in Listing 4.2, where the datconv class is the data type conversion class that

provides the data type conversion function.

template <typename T_WRITE, typename T_READ>

class converter<SDF, SC, T_WRITE, T_READ>:

 sca_sdf_module, public datconv<T_WRITE, T_READ>

Listing 4.2: example converter header

The struct converterchannel_options in Listing 4.1 is used to pass several options to

the converters. Some of the options are data type specific, but also the MoC specific options

are included. It is only used internally, and will not be set by the user. The rest of the class

data refers to special options for certain MoC conversion cases, which will be explained later.

 The connection of a converterchannel to ports is achieved by overloading the bracket-

operator. Listing 4.3 shows the corresponding method for the connection to sc_in/sc_out

ports.

operator sc_signal<T_WRITE>& (){

 if(MOC_WRITE!=SC){ // => must be reading side connection

 if(outsignal_sc_0==0){ // we have no SC-reader connected yet?

 outsignal_sc_0 = new sc_signal<T_WRITE>; // => create the signal

 }

 return *outsignal_sc_0;

 }

 else

 {

 writer_connected = true;

 return *(dynamic_cast<sc_signal<T_WRITE>*>(insignal));

 }

}

Listing 4.3: ()-operator to connect the converter channel to a reading SC-port

In the before_end_of_elaboration() method, which is called for every SystemC-module

before the simulation starts, the required converters are instantiated and connected to the

appropriate signals. For example:

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 10

if(outsignal_sc_0!=0 && MOC_WRITE != SC){

 conv_2sc_0 =

 new converter<MOC_WRITE,SC,T_WRITE, T_WRITE>("conv_2sc_0", options_0);

 conv_2sc_0->in(*insignal);

 conv_2sc_0->out(*outsignal_sc_0);

}

Listing 4.4: setting up the converters

As an example, the code for the converter from TDF to DE is shown in Listing 4.5. In this

MoC conversion case, the user has the opportunity to get a clock signal which runs with the

same speed the TDF port is sampled. From the user’s side, this behaviour is triggered by

accessing the method clock_sdf() of the converter channel, which then sets the converter

channel’s options objects accordingly. Apart from that, the conversion work is done by the

converter port out, such that in the sig_proc() method, the only thing to do (apart from

starting the sdf_clock_gen module) is reading the input value, converting it, and writing

it to the converter port.

template <typename T_WRITE, typename T_READ>

class converter<SDF, SC, T_WRITE, T_READ>:

 sca_sdf_module, public datconv<T_WRITE, T_READ>{

 public:

 sca_sdf_in<T_WRITE> in; // TDF in-port

 sca_scsdf_out<T_READ> out; // converter port SC <-> SDF

 sdf_clock* sdf_clk_gen; // clock with speed of in’s sampling period

 bool clock_started, using_sdf_clock;

 converter(sc_module_name n, //constructor

 converterchannel_options<T_WRITE, T_READ>* options

) : datconv<T_WRITE, T_READ>(options)

 {

 if(options->sdf_clk_gen!=0){ // clock is used

 sdf_clk_gen=options->sdf_clk_gen;

 using_sdf_clock = true;

 clock_started=false;

 }

 else // clock is not used

 {

 using_sdf_clock = false;

 clock_started=true;

 }

 }

 private:

 void sig_proc() {

 out.write(conv(in.read()));

 if(!clock_started && using_sdf_clock)

 {

 clock_started = true;

 sdf_clk_gen->start(in.get_T());

 }

 };

};

Listing 4.5: The SC to TDF converter

The data type conversion capabilities are provided by the templated super class

datconv<T_WRITE, T_READ>, from which all converters inherit. It provides the

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 11

conv()-method, which converts from the data type T_WRITE to the data type T_READ. The

datconv class is mainly defined through specialized classes, but there’s also a general one

which illustrates the idea:

template <typename T_WRITE, typename T_READ>

class datconv{

 public:

 datconv(converterchannel_options<T_WRITE, T_READ>* options){};

 T_READ conv(T_WRITE x){

 return static_cast<T_READ>(x);

 };

};

Listing 4.6: The general data type converter

The specialized data type converters deal with those cases, where casting is not sufficient, e.g.

when overflow might be an issue, or to handle certain data type conversion options.

5 MoC conversion

Table 5.1 shows which MoC conversion directions are supported by the converter channels.

The conversion between ELEC_VOLTAGE and ELEC_CURRENT is not supported, since this

conversion is too delicate to be hidden within a channel, while there is also no obvious

application for such a converter channel conversion. Conversions like this should be

implemented with the according SystemC AMS facilities, like voltage controlled current

sources.

 There has not been implemented a conversion from FIFO other than then FIFO to SDF

conversion. The reason is that the semantics of a conversion from FIFO to e.g. SC is unclear.

It is necessary for this conversion direction to provide an internal sc_fifo channel on the

writing side, otherwise the process writing to the converter channel could not block, which

might lead to an endless loop. Since the SC side does not read actively in general, the

converter channel would need to empty the internal fifo by itself, e.g. due to a time interval

passed to the converter channel; this would effectively yield the same conversion semantics as

FIFO to SDF conversion. This issue needs some discussion before implementing this

conversion direction.

 from \ to SC SDF FIFO ELEC_VOLTAGE ELEC_CURRENT

SC    

SDF    

FIFO ?  ? ?

ELEC_VOLTAGE    

ELEC_CURRENT    

Table 5.1: Overview on the MoC conversion capabilities

Although every conversion direction described is working, there is an important constraint

regarding the use of converter channels and electrical networks. Although electrical

networks are treated as a MoC of its own right, they can be handled in SystemC AMS only

with the use of SDF. That is, every electrical network has to be connected to e.g. an SDF-

controlled voltage source or e.g. a current to SDF converter.

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 12

Therefore, if an electrical network is not connected to an SDF cluster anyway, e.g. by the

means described above, it is necessary to include at least one to or from SDF conversion with

a converter channel. For example, it would be sufficient to connect an electrical network to a

converterchannel<SDF,->, but connecting it to a converterchannel<SC,->

and a converterchannel<ELEC_VOLTAGE,->, where the latter converter channel does

not connect to an SDF cluster, would not be sufficient.

 In the rest of this section the semantics of every MoC conversion is described shortly,

including possible corner cases and options. For simplicity, we refer to the identifiers in the

enum type MoC for the different MoCs.

5.1 Conversion from SDF

5.1.1 SDF to FIFO

In this case, we have a SDF writer and a reader, which expects to read from a sc_fifo<>

channel. Here, the converterchannel instantiates an internal sca_sdf_signal<T_WRITE>

for the writing side and a sc_fifo<T_READ> for the reading side.

 The size of the internal fifo of a converter channel conv can be set with the method

conv.setReadingFIFOSize(int size);

The default size is 16. Note that this method has to be called before the converter channel is

bound to the fifo reader; otherwise, a runtime error is raised.

Conversion Semantics

Every time, the SDF writing side writes a token to the converter channel, it gets stored within

the internal fifo (possibly after data type conversion). Every time, the fifo reading side

performs a read operation, the oldest value within the internal fifo is removed and passed to

the reading side. If the internal fifo is empty, the reading side blocks.

Corner Case Handling

If the internal fifo is full, and the writing side wants to write another token, this situation

constitutes a corner case with no obvious semantics. Therefore, the converter channel

provides a method

setSDF2FIFOfullbuffer(SDF_FIFO_OPT opt);

to specify, how this corner case is handled. The possible values for opt and the respective

behaviour are:

 error : a run-time error is raised (default)

 discardOldest : the oldest value in the internal fifo is discarded

 discardCurrent : the very value to be written is discarded

Which option makes most sense, depends on the application. By setting the error option as a

default, it is assured that the designer becomes aware of this corner case, while the error

message also gives instructions on the options to choose from.

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 13

5.1.2 SDF to SC

Here, the converter channel instantiates an internal converter module which is connected to

the writing side via an sca_sdf_signal<T_WRITE>, and which makes use of the

SystemC-AMS sca_scsdf_out<> converter port to connect to the reading side via an

internal sc_signal<T>. There are no options to be set.

Conversion Semantics

A token which is written to the internal sca_sdf_signal<T_WRITE> by the writing side

at SystemC-AMS time t is converted such that the internal sc_signal<T_READ> holds the

value of that token from SystemC time t on. Note that there is a value changed event on the

reading side only if there is an actual value change of one token to the next one.

Corner Case Handling

There are no real corner cases here. However, the designer might be interested in the actual

points in time the SDF side is written, although these write events may cause no value change

events. Therefore, by using the method

conv.clock_sdf();

of a converter channel conv, a Boolean clock signal can be accessed which runs with the

speed of the TDF cluster. That is, every time the converter channel gets a new token from the

SDF side, this clock signal will have a rising edge.

5.1.3 SDF to ELEC_VOLTAGE/ELEC_CURRENT

In this case, the converter channel instantiates an internal voltage or current source,

respectively, that is controlled by the SDF side. The choice of which quantity to convert to is

set by using the method

conv.setElec_Mode(MoC M)

of the converter channel conv, where M is ahes::ELEC_VOLTAGE or

ahes::ELEC_CURRENT, respectively.

 If an sca_elec_port (e.g. a connector of a capacitor) is bound to the converter channel,

it will be actually bound to an internal sca_elec_node, which is bound to the positive

connector of the internal voltage or current source. It is also possible to connect to the

respective negative connector, which is bound to another internal sca_elec_node, which

can be accessed with the method

conv.neg_elec_node()

of a converter channel conv. A short code example demonstrates its usage:

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 14

ahes::converterchannel<ahes::SDF, int> conv;

conv.setElec_Mode(ahes::ELEC_VOLTAGE);

sca_r r1;

r1.p(conv);

r1.n(conv.neg_elec_node());

Listing 5.1: Using both electrical poles of a converter channel

This connects the resistor r1 in parallel to the internal SDF-controlled voltage source.

Note: If the neg_elec_node() method is not accessed, the negative connector of the

internal voltage/current source will be bound to gnd.

Options

The internal voltage/current source used has an option to scale the voltage/current value

which is generated. This factor can be set with the converter channel method

conv.setElec_Scaling(double val);

of a converter channel conv. The default value is 1.

5.2 Conversion from FIFO

5.2.1 FIFO to SDF

Here, we have a writer which expects to write to a sc_fifo<T_WRITE> channel and a

SDF reader. Here, the converter channel instantiates an internal sc_fifo<T_WRITE> for

the writing side and an sca_sdf_signal<T_READ> for the reading side. The size of the

internal fifo is passed as an argument to the converter channel’s constructor .

Conversion Semantics

A token from the writing side is stored within the internal fifo first. Every time, the SDF side

initiates a read (which will happen with a constant pace), the oldest token is taken from the

internal fifo, converted to the data type T_WRITE, and passed to the SDF side.

Corner Case Handling

The corner case here is that the internal fifo is empty, and the reading side has to read another

token. For this, the converter channel provides a method

setFIFO2SDFemptybuffer(SDF_FIFO_OPT opt);

to specify, how this corner case is handled. The possible values for opt and the respective

behaviour are:

 error : a run-time error is raised (default)

 hold : the last value which could be read from the internal fifo is passed

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 15

 constant : a constant value is passed. This value is 0 by default (casted to the

respective data type), and can be specified explicitely (before the simulation starts)

with the method

setFIFO2SDFemptybufferConstant(T_READ val).

Like in the reverse conversion case, which option makes most sense depends heavily on the

application at hand.

5.3 Conversion from SC

5.3.1 SC to SDF

In this case, the converter channel instantiates an internal converter module which is

connected to the writing side by a SystemC-AMS sca_scsdf_in<T_WRITE> converter

port via an internal sc_signal<T_WRITE>, and connects to the reading side via an

internal sca_sdf_signal<T_READ>. There are no options to be set.

Conversion Semantics

A value which is written to the internal sc_signal<T_WRITE> by the writing side

basically constitutes a current value for the signal. This current value is then sampled by the

SDF side with a frequency determined by its sampling period.

Corner Case Handling

There are no real corner cases here. However, if the SC side provides value changes with a

frequency higher than the sampling frequency of the SDF-side, values will be lost. There is no

way to handle this, since the sampling period of an TDF-cluster cannot be changed at runtime.

But the converter channel can provide the user with warnings, if this happens. These warnings

can be enabled by using the method

conv.use_lost_val_alerter();

of a converter channel conv.

5.3.2 SC to FIFO

In this case, we have a SC writer and a reader, which expects to read from a sc_fifo<>

channel. Here, the converter channel instantiates an internal sc_signal<T_WRITE> for

the writing side and a sc_fifo<T_READ> for the reading side. Apart from that, the

conversion semantics are the same as the conversion semantics of SDF to FIFO. The only

difference is that the writing side doesn’t provide values at a constant pace. For ease of

reference, all relevant information is included again in this section.

 The size of the internal fifo of a converter channel conv can be set with the method

conv.setReadingFIFOSize(int size);

The default size is 16. Note that this method has to be called before the converter channel is

bound to the fifo reader; otherwise, a runtime error is raised.

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 16

Conversion Semantics

Every time, the SC writing side writes a token to the converter channel, it gets stored within

the internal fifo (possibly after data type conversion). Every time, the fifo reading side

performs a read operation, the oldest value within the internal fifo is removed and passed to

the reading side. If the internal fifo is empty, the reading side blocks.

Corner Case Handling

If the internal fifo is full, and the writing side wants to write another token, this situation

constitutes a corner case with no obvious semantics. Therefore, the converter channel

provides a method

setSC2FIFOfullbuffer(SDF_FIFO_OPT opt);

to specify, how this corner case is handled. The possible values for opt and the respective

behaviour are:

error : a run-time error is raised (default)

discardOldest : the oldest value in the internal fifo is discarded

discardCurrent : the very value to be written is discarded

Which option makes most sense, depends on the application. By setting the error option as a

default, it is assured that the designer becomes aware of this corner case, while the error

message also gives instructions on the options to choose from.

5.3.3 SC to ELEC_VOLTAGE/ELEC_CURRENT

In this case, the converter channel instantiates an internal voltage or current source,

respectively, that is controlled by the SC side. For the user, the coding for this conversion

direction looks almost exactly like SDF to ELEC_VOLTAGE/ELEC_CURRENT. For ease of

reference, all relevant information is included again in this section.

 The choice of which quantity to convert to is set by using the method

conv.setElec_Mode(MoC M)

of the converter channel conv, where M is ahes::ELEC_VOLTAGE or

ahes::ELEC_CURRENT, respectively.

If an sca_elec_port (e.g. a connector of a capacitor) is bound to the converter channel, it

will be actually bound to an internal sca_elec_node, which is bound to the positive

connector of the internal voltage or current source. It is also possible to connect to the

respective negative connector, which is bound to another internal sca_elec_node, which

can be accessed with the method

conv.neg_elec_node()

of a converter channel conv. A short code example demonstrates its usage:

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 17

ahes::converterchannel<ahes::SC, int> conv;

conv.setElec_Mode(ahes::ELEC_VOLTAGE);

sca_r r1;

r1.p(conv);

r1.n(conv.neg_elec_node());

Listing 5.1: Using both electrical poles of a converter channel

This connects the resistor r1 in parallel to the internal SDF-controlled voltage source.

Note: If the neg_elec_node() method is not accessed, the negative connector of the

internal voltage/current source will be bound to gnd.

Options

The internal voltage/current source used has an option to scale the voltage/current value

which is generated. This factor can be set with the converter channel method

conv.setElec_Scaling(double val);

of a converter channel conv. The default value is 1.

5.4 Conversion from ELEC_VOLTAGE/ELEC_CURRENT

5.4.1 ELEC_VOLTAGE/ELEC_CURRENT to SDF

In this case, an electrical voltage or an electrical current quantity is measured, respectively,

and converted to an SDF signal. Which quantity is measured has to be specified with the MoC

template parameter when instantiating the converter channel. For example,

ahes::converterchannel<ELEC_CURRENT, double, int> measures current.

 As in the other conversion direction, the converter channel also has an additional negative

sca_elec_node, which is bound to the negative connector of the internal measurement

unit, and which can be accessed again by using the method neg_elec_node(). If it is not

accessed, the negative connector of the measurement unit will be bound to gnd.

Options

The internal voltage/current measurement units used have an option to scale the

voltage/current value which is measured. This factor can be set with the converter channel

method

conv.setElec_Scaling(double val);

of a converter channel conv. The default value is 1.

5.4.2 ELEC_VOLTAGE/ELEC_CURRENT to SC

In this case, an electrical voltage or an electrical current quantity is measured, respectively,

and converted to an SC signal. For the user, the coding for this conversion direction looks

almost exactly like ELEC_VOLTAGE/ELEC_CURRENT to SDF. For ease of reference, all

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 18

relevant information is included again in this section.

 Which quantity is measured has to be specified with the MoC template parameter when

instantiating the converter channel. For example,

ahes::converterchannel<ELEC_CURRENT, double, int> measures current.

 As in the other conversion direction, the converter channel also has an additional negative

sca_elec_node, which is bound to the negative connector of the internal measurement

unit, and which can be accessed again by using the method neg_elec_node(). If it is not

accessed, the negative connector of the measurement unit will be bound to gnd.

Options

The internal voltage/current measurement units used have an option to scale the

voltage/current value which is measured. This factor can be set with the converter channel

method

conv.setElec_Scaling(double val);

of a converter channel conv. The default value is 1.

5.4.3 ELEC_VOLTAGE/ELEC_CURRENT to FIFO

In this case, an electrical voltage or an electrical current quantity is measured, respectively,

and written to an sc_fifo. Internally, there is an ELEC_X to SC conversion first, followed

by a SC to FIFO conversion. For the user, the coding for this conversion direction looks

almost exactly like ELEC_VOLTAGE/ELEC_CURRENT to SC as well as SC to FIFO. For

ease of reference, all relevant information is included again in this section.

 Which quantity is measured has to be specified with the MoC template parameter when

instantiating the converter channel. For example,

ahes::converterchannel<ELEC_CURRENT, double, int> measures current.

 As in the other conversion direction, the converter channel also has an additional negative

sca_elec_node, which is bound to the negative connector of the internal measurement

unit, and which can be accessed again by using the method neg_elec_node(). If it is not

accessed, the negative connector of the measurement unit will be bound to gnd.

Options

The internal voltage/current measurement units used have an option to scale the

voltage/current value which is measured. This factor can be set with the converter channel

method

conv.setElec_Scaling(double val);

of a converter channel conv. The default value is 1.

The size of the internal fifo of a converter channel conv can be set with the method

conv.setReadingFIFOSize(int size);

The default size is 16. Note that this method has to be called before the converter channel is

bound to the fifo reader; otherwise, a runtime error is raised.

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 19

Corner Case Handling

If the internal fifo is full, and the writing side wants to write another token, this situation

constitutes a corner case with no obvious semantics. Therefore, the converter channel

provides a method

setELEC2FIFOfullbuffer(SDF_FIFO_OPT opt);

to specify, how this corner case is handled. The possible values for opt and the respective

behaviour are:

 error : a run-time error is raised (default)

 discardOldest : the oldest value in the internal fifo is discarded

 discardCurrent : the very value to be written is discarded

Which option makes most sense, depends on the application. By setting the error option as a

default, it is assured that the designer becomes aware of this corner case, while the error

message also gives instructions on the options to choose from.

6 Data type conversion

The intention of the data type conversion capabilities of the converter channels is to provide

obvious and simple data type conversion semantics, since designers might feel uncomfortable

with data type conversion hidden within a channel. In fact, there were explicit doubts

expressed by our industry partners on this matter. However, by leaving the template

parameters T_READ1 and T_READ2 unspecified, the data type conversion capabilities of a

converter channel can be effectively turned off.

In general, there are two mayor issues when converting values from one data type to another:

 When converting decimal numbers (like double values) to integer numbers (like

int), there is the issue how to round the original number.

 If a data type has a larger value range than the target data type, possible overflows

have to be handled

For the first issue, the converter channel offers an option, which can be accessed by the

method

float2IntPolicy(ahes::Float2IntPol pol);

where ahes::Float2IntPol is an enum type which can take the values ROUND, FLOOR

and CEIL for rounding by value, rounding down, and rounding up, respectively.

For the second issue, there is a converter channel method

overflowClipping();

which causes all values exceeding the value range of the target data type to be clipped to the

respective maximum or minimum value the target data type can hold. If this option is not set,

the data type conversion will behave in a modular arithmetic manner. I.e., the target value will

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 20

be the remainder of the original value when divided by the target data type’s maximum.

 Another issue is application specific: In mixed signal systems, there are situations where

values from a continuous domain have to be quantized, i.e. mapped to a value with a fixed

value range. The most prominent example is an A/D converter. Here, the values are not

simply converted by using some rounding approach, but effectively scaled and rounded. For

example, the value range on the analogue side may be an interval [-10,10], which is mapped

to 5-bit numbers, whose natural value range is [0,31]. Using rounding here makes no sense,

since the negative values would be discarded, while most of the target range would not be

reached.

 To address this issue, an options has been included which leads to the scaling of a certain

value range of the writing side data type to the value range of the reading side data type. The

option can be used by calling the method

conv.setRangeScaling<T_READ>(T_WRITE min, T_WRITE max);

of a converter channel conv. T_READ has to be one of the data types sc_bv<N>,

sc_lv<N>, sc_uint<N>, sc_int<N>, sc_biguint<N> or sc_bigint<N>.

T_WRITE must be an ordinary C++ numerical data type (e.g. int or double), or a

SystemC fixed-point data type like sc_fixed<…>. The minimum and maximum on the

reading side is determined by N, namely -2N-1+2 resp. 2N-1-1 for sc_int<N>. This

determines a scaling factor fac:=(2N-1 – (-2N-1+2))/(max - min) and a scaling function f(x):=

(x - min)*fac+(-2N-1+2). That is, the interval passed to the method setRangeScaling is

mapped linearly to the value range of the reading side data type, effectively implementing

uniform quantization. If setRangeScaling is called with a T_WRITE, T_READ pair

which does not support scaling, a compile time error is raised for better debuggability. An

exception is, if T_READ is double, this is a case which can only be handled at runtime. If

T_READ does not represent a type, which is used in the converter channel a runtime error is

raised at the begin of the simulation.

 Figure 6.1 shows an overview of the data type conversion capabilities of the converter

channels. It is shown for each T_WRITE, T_READ pair, how the conversion is handled, and

what options are possible to use. In total, we have 11 different cases, and each case is

explained briefly below the table. Below the icon for each case in the explanation, it is

indicated which of the three options mentioned above can be used. The letter C indicates that

the clipping-option can be used, the letter R indicates that the rounding option can be set, and

the letter S indicates that value range scaling can be used. In any case, the user will get

warnings before and during the simulation on any problematic data conversion issue, e.g.

when there is an T_WRITE value during simulation which does not lie within the previously

defined value range scaling interval, or before the simulation when the T_WRITE range

exceeds the T_READ range, e.g. in the case of converting from double to int.

 Here are some miscellaneous notes on the converter channels data type conversion facilities:

 Conversion from sc_logic and sc_lv<N> is not supported (except to

sc_lv<N>), since there are no obvious ways to convert the values sc_dt::Log_X

(undefined) and sc_dt::Log_Z (high impedance) to numerical values.

 The data type long double is not supported since using this data type causes ambiguity

and overload problems within the core System-C 2.2.0 library on the x86 platform

with the C++ compilers used for developing the converter channels (GNU (GNU Not

Unix) C++ 4.1 and 4.3.2).

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 21

Figure 6.1 The converter channel’s data type conversion capabilities

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 22

 When converting a logical type (bool ans sc_bit) to a numerical value, a logical 1

is converted to a numerical 1, and a logical 0 is converted to a numerical 0. In the case

of bit-vectors, the logical value will be copied to the least significant bit (LSB).

 When using value range scaling, the rounding option refers to the scaled values.

Therefore, even when converting from e.g. int to sc_int<N>, setting the rounding

option becomes meaningful, when value range scaling is used.

 Conversions from an N bit bit-vector to an M bit sc_int, sc_uint, sc_bigint, sc_biguint,

vector, with N>M ignores the higher bits of the vector and just uses the lower M bits if

the clipping option is not set. If clipping is set the maximum possible value is set.

 Conversions from integer or bit-vector types to sc_fixed, sc_ufixed or the fast

versions of those types sets just the integer part for the fixed point numbers. An N bit

integer value can be lossless converted to an N integer part fixed point number.

 In conversions from fixed point numbers to the System-C integer types, the integer

types need one bit more of width compared to the integer part of the fixed point

number, since the value range is by one bit larger, through rounding of the fractional

positions. So an N bit integer part fixed point number needs an N+1 bit integer or

vector as target.

 The conversion between various specializations of the System-C fixed point numbers

is done by an ordinary cast, to facilitate the full spectrum of quantisation and rounding

options provided by those data types.

 According to tests the memory consumption during compilation increases non linearly

with an order greater than O(n), where n denotes the number of pairwise different data

type conversions. Therefore it is recommended, to split large numbers of converter

channels up into different compilation units and linking them together afterwards.

Usage of large numbers of converter channels with the same conversion pairs within

the same compilation unit does not cause the compiler to use excessive memory. The

large memory usage is a design decision and is a trade of for increased simulation and

runtime performance.

 Mistakes on the user side, which where runtime errors in earlier versions, eg. enabling

scaling for conversions which do not support scaling or tried conversation from sc_lv

or sc_logic to numbers now cause compile time errors for better feedback and ease of

debugging ones modules using converter channels.

 Conversions with enabled scaling from unsigned data types to signed types are only

able to scale to values within the positive range of the target type.

 Value range scaling, if enabled, is done within the value range of the writing data type,

therefore, you cannot scale up to the full value range on the reading side, if that data

type has a larger width in bits on the reading side of the channel.

 For a conversion from sc_fixed, sc_ufixed, sc_fixed_fast or sc_ufixed_fast to bool,

sc_bit or sc_logic, the “fixed” value has to be exactly 0 to result in false or 0. There is

no confidence interval.

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 23

 Conversions from/to fixed point values are implemented, but are not recommended for

usage, since the semantic is not universally clearly defined and can be interpreted

differently by different people. It is consistent within the converter channels though.

The user should consider carefully, if our semantic fits his purpose exactly.

7 Current distribution

The distribution of the converter channels consists of 3 files, converterchannels.h,

converters.h and converters_data.h. Those files implement the C++ template based

functionality. Converterchannels.h contains the only class needed by the user, it is the toplevel

view of the converter channels. In converters.h the internally used classes, needed for the

conversion between different MoCs (models of computation), are implemented. In

converters_data.h all classes are located which handle the conversion between different data

types.

 The converter channels additionally need the ahes_helpers library, which implements a

wrapper around the GNU (GNU Not Unix) C++ compilers name demangling function, to

provide easily readable type information in warning or information messages. For other

compilers, or gcc versions, not having the needed core function, the library contains a stub

which just returns the mangled name.

8 Conclusion and future work

This report presented the final status of the converter channels for the ANDRES project.

Compared to the Deliverable 1.5a [2], there have been considerable improvements:

 The support for electrical networks was included, together with all respective

conversion directions, with the exception of FIFO to ELEC_X.

 The conversion direction SC to FIFO has been included

 SC to SDF undersampling detection has been implemented

 A clock signal can be generated with the pace of the SDF writing side.

 The data type conversion capabilities have been reworked completely. The data type

conversions performed by the converter channels are as intuitive and transparent as

possible, while discarding conversions with no obvious conversion semantics (like

conversion from sc_logic) and platform-dependant ambiguities (like conversions

involving long double).

 The general structure regarding the coding of the converter channels has been

reworked.

Future work will involve a decision on FIFO to X conversion (with X different from SDF). A

possible conversion semantic for these cases has been sketched at the beginning of section 5,

and can be implemented quickly. Yet, it is unclear if this makes sense with regard to

reasonable applications, such that these conversion directions have to be discarded altogether.

Apart from that, further testing will be done, also involving porting & testing with Microsoft

compilers, and the development of more usage examples.

ANDRES/TUV/R/D1.5b/1.0 Confidential

Modelling extensions for polymorphic signals, final library elements

 Page 24

9 References

[1] Rüdiger Schroll. Design komplexer heterogener Systeme mit Polymorphen Signalen.

Dissertation, Institut für Informatik, Universität Frankfurt am Main, 2007

[2] ANDRES Deliverable D1.5a

[3] A. Herrholz, F. Oppenheimer, A. Schallenberg, W. Nebel, C. Grimm, M. Damm, F.

Herrera, E. Villar, A-M. Fouilliart, M. Martínez "ANDRES- ANalysis and Design of

run-time REconfigurable, heterogeneous Systems" Workshop on "Adaptive

Heterogeneous Systems-On-Chip and European Dimensions" in the Design

Automation and Test in Europe 2007, DATE'07, Nice, France. DATE 07 Friday

Workshop Notes pp. 64-71.

[4] C. Grimm, R. Schroll, K. Waldschmidt, F. Brame. Mixed-Level Simulation

heterogener Systeme. In: Multi Nature Systems, S. 5, Erfurt, 2007.

