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Within the effective quark model with chiral U(3) x U(3) symmetry we calculate the
S-wave and P-wave amplitudes of the nonleptonic decay 1t — pn¥, the partial width
and the dynamical polarization of the proton in the dependence on the polarization of
the ©t-hyperon. The theoretical results agree well with the experimental data.
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1. Introduction

The theoretical analysis of the polarization properties of Y-hyperons both in the
laboratory frame and in the rest frame of the Y-hyperon is meaningful in connec-
tion with the theoretical and experimental investigations of a mechanism of the
production of the ¥-hyperons in high-energy heavy-ion collisions.

The Y T-hyperon possesses the nonleptonic mode X+ — p7r0 with the probability
B(2T — pr°%)exp = (0.516 £0.003) and the asymmetry )% = —0.980*(:515.! This
makes the mode X+ — pr¥ to be the most attractive from the point of view of the
experimental investigation of the polarization properties of ¥ *-hyperons produced
in ultrarelativistic heavy-ion collisions. Indeed, the appearance of unpolarized X7 -
hyperons can be a signal for the quark—gluon plasma in the intermediate state of
ultrarelativistic heavy-ion collisions.

fPermanent Address: State Polytechnic University, Department of Nuclear Physics, 195251
St. Petersburg, Russian Federation.
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The effective low-energy Lagrangian responsible for the nonleptonic decays of
the ¥ *-hyperon is?3:2

Loyeax () = —G—\/g ViiVus(c+O4(z) + c—O_(z)) + h.c., (1.1)

where Gr = 1.166 x 10~ MeV~? is the Fermi constant, V.*,V,s = 0.218 are
Cabibbo-Kobayashi-Maskawa quark-mixing matrix elements! ¢, = 2.164and c_ =
0.680 are Wilson’s coefficients, calculated to leading order in gluon exchanges at
the normalization scale pp = 1 GeV,*? which is of order of A, = 0.94 GeV, the scale
of the spontaneous breaking of chiral symmetry in the effective quark model with
chiral U(3) x U(3) symmetry.* ! The operators O (x) and O_(z) are expressed
in terms of the quark fields and take the form?

O (z) = % {lae(@)vu (1 = °)se(2)][der (2)7* (1 = " )ug ()]

+ [T ()7 (1 = )ue(@)][der (27" (1 = %) ser (2)]}

) (1.2)
0-(z) = 5 {lae(@)y (1 = 7°)se(@)][der (2)7*(1 = " )ug ()]

— [te() (1 = 7® ) (@)][der ()" (1 = ~5)se ()]}

where wug(x), d¢(x) and s¢(x) are current quark fields. The summation over the
color indices £(¢') = 1,2,3 is assumed. The operator O_(x) is responsible for the
AI = 1/2 transitions, whereas the operator Oy (z) describes both the AT = 1/2
and Al = 3/2 transitions.?

The paper is organized as follows. In Sec. 2 we define the amplitude of the
¥+ — pr¥in terms of the matrix element of the effective Lagrangian (1.1) and apply
the soft-pion technique to the reduction of the 7°-meson. We represent the matrix
element of the ¥ — p in the factorized form and find that it can be saturated by
the contribution of the AT -resonance. In Sec. 3 we apply the effective quark model
with chiral U(3) x U(3) symmetry to the calculation of the matrix element of the
YT — ATT transition. In Sec. 4 we calculate the S-wave and P-wave amplitudes
and the partial width of the ¥+ — pr¥ decay. We analyze also the angular distribu-
tion of the decay rate in dependence on the polarizations of baryons and calculate
the dynamical polarization vector of the proton. In the conclusion (Sec. 6) we dis-
cuss the obtained results. The effective Lagrangian of low-energy weak interactions
contains the contribution of quark—gluon interactions, which provide an appearance
of effective four-quark interactions called as QCD-penguin operators.?3 In App. A
we show that the contribution of QCD-penguin operators to the amplitude of the
Yt — pr¥ decay, calculated in our effective quark model, vanishes. In App. B we
give a detailed calculation of the momentum integrals, defining the matrix element
of the ¥ — AT transition.

2See Ref. 2 p. 104.
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2. Amplitude of the ¥+ — pn® Decay

The amplitude of the ¥+ — pr¥ decay is defined by the matrix element

M(Zt — p7r0) =-C4 ?/5 Vus<7r p(kp, O'p)| [Jg/(O)'y“(l — 75)ug/(0)]
X [@r(0)7.(1 = 7°)50(0)] [T (kg+, 05+)) - (2.1)

The coefficient Cy = (¢4 + 2¢_)/3 = 1.175 is obtained by a Fierz transformation
with the account for the color degrees of freedom of quarks.2>
The amplitude of the ¥+ — pr°® decay can be written in the following general

form:P

M(EF (kg , 05+) — p(ky, 0)7° (k)
= ﬂp(kpv Up)(Apﬂ'O - Bpﬂ'ofys)uZJr (k2+ s O'g+) s (22)

where A0 and B, are the constants related to the contribution of the pr°
pair coupled in the S- and P-wave states, and u,(k,,0p) and us+ (ks+,05+) are
bispinorial wave functions of the proton and the X *-hyperon.

We propose to calculation the amplitude of the ¥+ — pr® decay in soft-pion
limit!'? or differently to leading order in Chiral Perturbation Theory (ChPT)420
(see also Ref. 11).

In the soft-pion limit the amplitude of the X% — pr® decay (2.2) is defined as

follows:12

M(E+ — p'ﬂ'o) = —ZF— ﬁ V:qus
x (p(kp, o) [@3(0), [der (0)7* (1 = 7”)ue (0)]
% [@e(0)7u (1 = 7*)5(0)]] [ (ks+, 05:4)) (2:3)

where F, = 92.4 MeV is the PCAC constant of the 7~ -meson and Q2(0) is the
axial-charge operator. In terms of the current quark fields it is defined by

Q30 = [ @3 W) (0.x07°u(0.5) ~ d} (0,07 %0 (24

Using canonical anticommutation relations for the current quark fields we get

M(Et - pr®) = 20% ?/Ij VeriVus
% (p(kp, op)[der (07" (1 = 7°)ue: (0)]
X [2e(0)7,(1 = 9%)s0(0)][SF (ks o4)) - (2.5)

bSee Ref. 1 p. 864.
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For the subsequent analysis of this matrix element we propose to insert the complete
set of intermediate states?!:22
S IXNX|=1, (2.6)
X

where X is a state with a baryon number B = 1. This transcribes the right-hand
side (r.h.s.) of (2.5) as follows:

M(EY = prt) = =izt CEVViw 3ol o) 0017 (1 =27 (O)1X)
& X
< X0 (1~ 75O (e 7)) (2.7

Since the lowest state is the A(1232)-resonance, i.e. X = AT+ we propose to
saturate the r.h.s. of (2.5) with the intermediate state X = A*+. This gives
C. Gr

M(E+ —>p7T0) = _ZF 7 V Vus

<D /27r32EA

o=+1/2,+3/2
X (p(kp, 0p)|[der (0)7" (1 = 4°)ue: (0)]|ATH(Q, 0))
X (AYH(Q, 0)|[@e(0)7, (1 = 4*)s(0)][EF (ks o4 )) . (2.8)

The matrix element of the V — A quark current between the proton states can be
expressed in terms of the form factor?223

(p(kp, 0p)|[JS2(0) = 3 2 (0)|ATT(Q, 0)) = —vV294Fa(q®)tp(kp, 0,)uA(Q, 0)
(2.9)

where ua++,(Q, o) is a spinorial wave function of the A**-resonance.?4 26 We take
the form factor in the dipole form?4 26 (see also Ref. 9):

1

2 2°
(1)
The slope parameter we set equal M4 = 1096 MeV.? It agrees well with the slope
parameters M4 = (1050£140) MeV, obtained from the v,,-reactions,?¢ and M =
(1026 £ 21) MeV and M = (1069 & 16) MeV obtained from neutrino scattering
and electroproduction, rebpectlvely.

Fa(q®) = (2.10)

3. Matrix Element (ATT(Q,0)| -+ |Zt(ks+,05+))

The calculation of the matrix element (ATH(Q,0)|[@(0)y,(1 — ~7°)s.(0)]
|~* (ks+,05+)) we carry out within the effective quark model with chiral
U(3) x U(3) symmetry.* ' After the application of the reduction technique
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Fig. 1. The Feynman diagram of the 1t — AT transition in the effective quark model with
chiral U(3) x U(3) symmetry.

and the equations of motion, the matrix element (AT*(Q,0)|[@(0)y,(1 —
7)se(0)]|EF (ks+, o5:4)) is

(ATH(Q, 0)|[1we(0)7, (1 = 7°)se(0)]|E (kg , 05+ )
= —g—\;% /d4a: dty e'Qr=iks+ug A (Q, 0)

(0T (R ++ (2)[@e(0),(1 = 4*)s5e(0)]i1 s+ (¥)[0) ctus+ (ks 03+ ) - (3.1)

where T is a time-ordering operator, the index ¢ in (0] - - - |0). means the calculation
of the connected part of the vacuum expectation value, then, ns+ (z) and na++(y)
are the three-quark densities*

ne+ (@) = 7P uci (@) (@) si (),

N (32)
M (2) = €78 [us ()" u; (@) un ()
coupled to the ¥ t-hyperon and the A**-resonance as*
Len(z) = %S+<x>ng+ (@) + gpA; T ()0 (2) + hc. (3.3)
The three-quark density 75+ () is equal to
s+ (x) = —e%5; (@), [ ()7 g ()] - (3.4)

The coupling constant gp has been calculated in Refs. 4 and 8: gg = 1.38 X
1074 MeV 2.

The matrix element Eq. (3.1) is defined by the Feynman diagram in Fig. 1.
In the coordinate representation the analytical expression of the matrix element
Eq. (3.1) is

(ATH(Q, 0)[ae(0).(1 = 7°)se(0)][EF (ks+, o5+))

_ 3\/59?3 /d4$ d4y eiQ'z—ik2+'y tr {,YVSI(:“) (:E _ y)wS}“) (y o x)}
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x 14 (Q, 0)SE ()7, (1 = 77)SE) (—y)y Y Pugs (ks , oxt)

- 3v2g% / de dly Qs vy (Q,0) W (x — y)ysSE (y — @)

xS (@)1l =778 (~y)r 2 uss (ke 0w (3.5)
In the momentum representation the matrix element Eq. (3.5) reads
(ATH(Q, 0)[ae(0),, (1 = 7)o (0)]|2F (ks o+ ))

532 /d‘“ / d‘f 74(Q,0)

o e e i L i)
7 -7 ) WY ~ A
My —q " ms —q —Qq2 Vmu_ql Bmu+Q—Q1—C§2

X us+ (ks+, 05+) — 3V2¢? / dq1 /&w (Q,0)

2m)4i

X[ 1 1 1 (1) 1 55}
—7y - ot —yu(1 =) ———"7
My =1 g+ O — 1 — G — G2 " ms — ¢ — o

X Usn+ (kz+,0’z+) N (36)

where we have set ¢ = kst — Q.

The integrations over virtual momenta are restricted from above by the A, =
940 MeV.* 1! In this region of relative momenta of quark—quark interactions chiral
symmetry is spontaneously broken and quarks become converted into constituents
quarks with dynamical masses of order O(m), where m ~ 330 MeV is a dynamical
quark mass.* 't According to effective quark models,?# 34 in such a region of relative
quark—quark interactions hadronic interactions are described only by quark loops
with constituent quarks. The contribution of gluon interactions is taken effectively
in the form of effective constants of low-energy interactions,?*> 37 constituent quark
mass calculated in the chiral limit3® 4% and quark condensate.?8

The calculation of the momentum integrals we carry out in the heavy-baryon
limit, used for the analysis of baryon exchanges in the Chiral Perturbation Theory
(ChPT)14 2041745 (see also Refs. 4 and 22). Following the procedure for the calcu-
lation of the momentum integrals proposed in Ref. 4, we get (see App. B)

(ATH(Q, 0)l[ae(0),.(1 = 7°)se(0)][EF (ks , o5+))

2 —
gpluv) _,
= —=——ux(Q,0o v
24\/5 N A( )’YM’Y

" { (2ms + my ) {uu) — (2my, + ms)(ss)

2

mg _m12z

_ (2ms —my)(uu) — (2my —

ms)(Ss
m2 — m2 )< >75}u2+ (k2+702+) ) (37)
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where (gq) is the quark condensate!?

(qq) = - :Z:q [A2 2€n<1+:§§>} (3.8)

and mg = m, = 330 MeV and my, = 465 MeV are the mass of the constituent
u and s quarks.!%2! The constituent quark masses of ¢ = u, d and s quarks are
different, since the SU(3)-flavor symmetry is broken. According to Refs. 4-11 and
28-34, the masses of constituent u, d and s quarks are defined by m, = m + mg,,
mgqg = m + mog and mg = m + mos, where mo, = 4 MeV, mgq = 7 MeV and
mos = 135 MeV are current quark masses, obtained at the normalization scale
p =1 GeV,% which is of order A, = 0.94 GeV the scale of spontaneously broken
chiral symmetry. Since the contribution of current quark masses to the masses of
constituent v and d quarks is about 2%, we have set m, ~ mg = m.

4. Partial Width of the ¥t — pn® Decay

Using the matrix elements, calculated in Sec. 3, we can obtain the parameters A
and B, defining the amplitude of the ¥t — pr¥ decay. We get

2 —_
Apro = —iCy GEVE Vs _9agp(uu)

96\/§7TF7TmN
o e ) (@) — @+ m)58) o g 1977,
mg —m
Sg 9t Zﬂw Y
pm0 TE 6\/§7TF7TmN
o s = ma) (@) = G = ms){55) g o9 70107

2 _ 2
mg my,

The factors M3 appear (4.1) due to the integration of the form factors (2.10) over Q.
The partial width of the ¥+ — pr¥ decay is equal to

k. m k2
+ 0 _'p 02 02 02
2t 27 = g 2 { Ayl + o (Al + 1B

=3.80 x 10712 MeV, (4.2)

where k = 189 MeV is the relative momentum of the pr® pair.! For the calculation
of the partial width T'(XT — pr°®) we have used the experimental values of the
masses of interacting particles.!

The theoretical value agrees with the experimental data’

Lexp(E21 — pr¥) = (4.23 £0.03) x 10712 MeV (4.3)

within an accuracy better than 10%.
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5. P-Wave Amplitude and Baryon Polarization Properties

Using the parameters A0 and B0, defined by (4.1), we can calculate the values
of the S-wave and P-wave amplitudes. They are determined by®

k
. -7 . —7
Sp‘n'o = Ap.n.o =13.0 x 10 s ppﬂ.o = m BPTI'O = —i2.4 x 10 . (5].)
For the ratio of the P-wave and S-wave amplitude we obtain
Rymo =227 — _0.80. (5.2)
Spr0
This result agrees well with the experimental data R0 = —0.82 £ 0.07. The
result is extracted from the experimental data on the asymmetry parameter
exp __ +0.017 1
@0 = —0.98055 g1

For the calculation of the dynamical polarization vector of the proton P, we
can use the results obtained in Ref. 9. In the laboratory frame the dynamical polar-
ization vector P, is

. (ks+ - kp)k
P, = {2R6(APWOBP7TO) [Eg+ (kg+)kp, — mpks+ — Wj_)mi})

- {(kp “kst + mpms+ )| Apro 2 = (kp - kv — mpmsy+ )| Byro |2}

(kg+ - Cx+)k (kp - Cp)k
R e ]

Est(kst) (ks+ - kp)k
+A7r02—Bﬂ02|:27k — kg — PP
( b | | b ) mp Y = mp(Ep(kp)+mp)

X {(kp ckst + mpmg+)|Ap7To |2 + (kp - kst — mpmg+)|Bp7To |2

— 2Re(Appo Byro s (ky - o)} (5.3)
where
kp-€p kp(kp-§B) )
L= €+ . 5.4
B ( mp 3 my(EB(kB)+mB) ( )
The polarization vector % satisfies the constraints (3 = —1 and kp - (g = 0. The

angular distribution of decay rate ¥+ — prt is defined by”

dB(X" — pr°)(€s+)
I8
dQsr,)

2Re(A; o Bpro)ms+ (kyp - (o)
(kp . k2+ + mpm2+)|Apﬂ'0 |2 + (kp . k2+ - mpm2+)|Bpﬂ'0 |2 7
(5.5)

=Bt - pr%) |1 -

where B(XT — pr®) = (0.5157 + 0.0030).
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In the rest frame of the X *-hyperon the dynamical polarization vector P,
reduces to the formP
ap‘n'onp + ’7pw052+ + (]- - ’Vp‘n'o)(np : €Z+)np
1+ aprony, - Est

p,_ , (5.6)

where n, = k,,/|kp|. For the derivation of (5.6) we have neglected the contribution
of the term |s|>(k2/4m2). The parameters a0 and .0 are equal to”

2Re(s),0Ppr0)
O[pﬂ—O = —|spﬂ_0|2 n |ppﬂ0|2 = —098,
speol? = Ippesl? >0
Spﬂo — ppﬂo
Vo = ——5———5 = 0.22.
rr |sp7r0 |2 + |pp7'r0 |2
The theoretical value a0 = —0.980 agrees well with the experimental one a;’;po =

-0 980+0.017 1

-J90U_0.015-

In the rest frame of the X T-hyperon the angular distribution of the decay rate
(5.5) reduces to the from

dB(S+ — pr)(€s-)

1
i sty

=B(XT - pr®)(1 + Qaprony - Ex+ ). (5.8)

Hence, the parameter a,.o characterizes the asymmetry of the ¥t — pr® decay
for the unpolarized protons.! The angular distribution has a maximum for the
YT -hyperons polarized antiparallel to the momentum of the proton.

6. Conclusion

Following the soft-pion technique, the procedure for the calculation of the matrix
elements of four-quark operators developed in Ref. 9 and the effective quark model
with chiral U(3) x U(3) symmetry, we have calculated the S-wave and P-wave
amplitudes and the partial width of the nonleptonic decay mode ¥ — pr®. All
theoretical results agree well with the experimental data. We have shown that the
violation of the SU(3)-flavor symmetry plays an important role for the correct
description of the experimental data. The saturation of the amplitude of the ¥+ —
pr® decay by the Att-resonance agrees well with the results obtained by Borasoy
and Holstein for the analysis of the contribution of resonances to the nonleptonic
decays of hyperons.4!4°

Since the asymmetry of the decay mode ¥t — pr¥ is very high apro = —0.980,
this modes seems to be the most attractive for the analysis of the polarization
properties of the X F-hyperon produced in ultrarelativistic heavy-ion collisions.
Indeed, the analysis of the angular distribution of the probability of the X — px°
decay shows that the maximum of the angular distribution can be reached only for
Y *T-hyperons polarized antiparallel to the momentum of the proton. The appearance
of unpolarized ¥ T-hyperons can serve as a signal for the existence of the quark—

gluon plasma as well as the unpolarized A%-hyperons.”
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Appendix A. Contribution of the QCD-Penguin Operators

According to Refs. 2 and 3, the effective weak interactions, defining the transitions
with AS = 1, contain the contribution of the so-called QCD-penguin operators

enguin G
LR @) = =75 ViaVus(€503(w) + c404(w) + 505 (@) + 605 () + .
(A1)
where the operators O;(x) for i = 3, ..., 6 are expressed in terms of the quark fields
and take the form?3
O3(x) = [de(@)yu(1 =")se(@)] D [aer (@)™ (1 =7°)aer ()]
q=u,d,s
Ou() = [de(@)yu(1 = 7")ser(@)] Y @@ (1 =) ae(w)]
] s i (A.2)
O5(x) = [de(@)yu(1 =")se(@)] D [aer (@™ (1 +7°)ae ()] ,
q=u,d,s
Os(x) = [de(@)yu(1 =7")ser(@)] Y [ @ (1 +47)ae(x)] -
q=u,d,s
The Wilson’s coefficients ¢; for i = 3,...,6 are calculated to leading order in
gluon exchanges at the normalization scale u = 1 GeV,%? which is of order

Ay = 0.94 GeV, the scale of the spontaneous breaking of chiral symmetry in the
effective quark model with chiral U(3) x U(3) symmetry.* 11

In the soft-pion limit the contribution of the QCD-penguin operators IM (X —
pr¥) to the amplitude of the ¥+ — pr¥ decay is defined by

i Gp
5M(E+ - pﬂ'o) = F \/— ViiaVus (p(kp, op)]
Z QO[S (ksron)). (A3)
Since the equal-time commutator is equal to
6 6
[Qg(O), > CiQi(O)] = aQi(0), (A4)
i=3 i=3

the contribution of the QCD-penguin operators to the amplitude M (X — pr0)
of the ¥t — pr® decay is

1 GF

+ 0
OM(Z pr’) = ETAAL

6
Vi Z ci(p(kp, 0p)|Qi(0)[F (ks+,05+)) . (AD)
=3
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As we have made in Sec. 2, we insert the complete set of intermediate states Eq. (2.6)
and keep the contributions only the lowest states, which are |X) = [p) and |AT).
This gives

e
SM(EF = pr®) = 5 5 ViaVas
{cu > | i
o=+1/2 q=u,d,s

* (p(kp, op)|[Ger (0)7*(1 = ~”)ae (0)]1p(Q, 0))
< (p(Q, 0)[[de(0),.(1 = ~")s E(O)]|Z+(k2+a‘72+)>

+C ) (2m) 32E Z
A

o=+1/2,4+3/2 q u,d,s
x (p(kp, 0p)|[@e (0)7*(1 = 7°)qe (0)]]AT(Q, 0))
X (AT(Q, 0)|[de(0)u(1 = 7°)se(0)][2F (kg+, o5+))

+Cin Y /27r32E >

o=+1/2 q u,d,s
% (p(kp, 0p)[[Ger (0)7* (1 + 7°)qe (0)]|p(Q, 7))
X (p(Q, 0)|[de(0)7, (1 —~°)s E(O)}|E+(kz+,02+)>

+Cir ) (27) 32E Z
A

o=+1/2,£3/2 q =u,d,s

x (p(kp, op)|[Ger (0)7*(1 +7°)aer (0)][AT(Q, 7))

X (A(Q,0)[[de(0)v,(1 — 75)84(0)]E+(kz+,0'z+)>} - (A6)
The coefficients C;, and Cp g are defined by

1 1
CLL263+§C4, CLR:C5+§CG, (A?)
for the definition of which we have taken into account that hadrons are colorless
states.

Using the results obtained in Refs. 4 and 8 and in Sec. 2 one can show that the
matrix elements of the operator [d(0)v,(1 — 7°)s.(0)] between states (X(Q,o)|,
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where X = p or AT and |27 (ks+, 05+ )) are proportional to the following momen-
tum integrals:

(P(Q, 0)|[de(0)7,(1 = 7°)s(0)]| ST (ks+, o5+))
d4(]1 d4Q2 @ PRYPIIN 1
O‘/ (%)42‘/ P A

1
X (1l = 75)m7ﬁ75u2+(k2+,02+)

S

1 1
X tr 47y, —8 . A}7
{amu—ql My +Q —q1 — Go

(A(Q,0)[[de(0)7, (1 = )5 (0)]|SF (ks o54)

< | g / Lt Qo)L
emti ) ot A e — 6

1
X (1l = 75)m7ﬁ75u2+(k2+,02+)

S

1 1
X tr 47, —g = — A}.
{Dmu—ql my +Q — q1 — G2

In the heavy-baryon approximation to leading order in the large m p expansion one
4,8
gets™

/ d*q . { 1 1 }
-0 S Ya panlc] ~ - N
(2m)%i My =41 my +Q —§1 — Ga

1 (qq) A
= —— 1% o ( ? = O’ A9
3 m% {72750} (A.9)
where Q? = m2B and mp = mpy or ma. The integral Eq. (A.9) vanishes as

tr{7a78@} = 0.
Thus, in our approach the contribution of the QCD-penguin operators to the
amplitude of the ¥+ — pa¥ decay vanishes.

Appendix B. Calculation of Matrix Element Eq. (3.6)

In this appendix we give a detailed calculation of the momentum integrals, defining
the matrix element of the ¥T — AT transition. As has been shown in App. A,
the momentum integral containing the trace of Green functions of the constituent
quarks, vanishes to leading order in the heavy-baryon approximation. Thus, in the
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heavy-baryon approximation the matrix element of the ¥ — ATT transition is
defined by the following momentum integral

(AT(Q, 0)[ae(0),. (1 = 7*)se(0)]| 5 (ks+, o5+))

3\/5 2 d ql d q2 =2 o (QMT)

(2m)%i

x[ 1 1
B A A -
My =41 my +Q — 41— G2

1
1— —_— Bn5 u k , O 5 B.1
mu_qzw( gl )ms_q_q2v v’ lug+ (kg+,05+),  (B.1)

X Yy

where we have set ¢ = ks+ — Q.
Following the technique in Ref. 4 and keeping only the leading we reduce the
r.h.s. of Eq. (B.1) to the form

(ATH(Q, 0)|[Ee(0)7, (1 — 4°)5(0)]| ST (kv , o5+))
i p9b [ da d*g
=8V / @)t / @m)h
B8

1 . 1 1
—V - ,— 1_ 5 5 k .
x uA(chf)[mu _QIWQV -~ —qﬂ“( g )ms —a }um( s+, 05t
(B.2)

Integration over ¢; gives® !

/ dar ! A2 m2in —i (B.3)
(2m)4i my — 41 167r2 “ 3 '
(B.

Using Eq. (B.3) we transcribe the matrix element Eq.
(ATH(Q, 0)|[@e(0)y, (1 — 75)86(0)]\E+(kz+702+)>

_ g2B<ﬂu> d4q2 —v
- 2\/§m?\r / (2m)% uA(Q,0)

) as follows:

42 7ﬁ75 UZ+(kE+aUZ+)~ (B-4)

A 1
X {’Y,GQ%H’YM(I_’VS)?” _

Integrating over directions of four-vector ¢o, we get
(ATH(Q, 0)[[ae(0)u(L = ™) (0)][ S (ks+, o5+))
2 /= 4
_ gpluu) / d*qx A 8
wamz, | ot uA(Q,0)y3Q0 VY

2m,mg + q% 2myms — q% 5
k . (B5
B T By | @9
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Due to algebra of the Dirac matrices WQ%%’W = —2@7,,@, we obtain

(AT(Q, 0)[ae(0).(1 = 7*)se(0)]| = (ks+, o5+))

__ gpluw) /(d4(J2 »

A 2mqyms + q%
2\/5’]’)’7,%] 27T)4iUA(Q7 U)fY,U"}/VQ |:

(m2 — q3)(m2 — q3)

2
2m,ms — g5

(m2 —¢3)(m2 — q3

9% (au) d*qa
- Q%mN / (27'(')41 U’A(Q7 J)’YH’YV |:

2
2m,ms — g3

(m? — ¢3)(m? — g3

+

)75} us+ (ks+, 05+)

2m,ms + 43

(m7, — g3)(m3 — q3)

)75:| Un+ (kz+,0’2+) 5 (B6)

where we have used the Dirac equation Qus+ (Ks+, o+ ) = myts+ (Kt , o5t ) valid
to leading order in the heavy-baryon and chiral expansion.
The momentum integrals are equal to

/ d4q2 2mums + q%
(2m)*i (m? - ¢3)(m? — g3)

2

_2m, +my / dqy 2m., + my / d'qy  m
a ( (2m)*i m3 — g3

2 2 4; 02 2 2 2
m2 —m2 2m)4i m2 — ¢3 m2 —m?2

_om 4 m, [_ <uu>}  2my +m, [ <ss>}

2 2 2 2
m2 —m2 12 m2 —m2

1 (2ms 4+ my){au) — (2m, + my)(3s)
12 m2 —m?2

s —

/ d*qa 2my,ms — q3
(2m)%i (m2 —¢3)(m?2 — ¢3)

)

o Qms — My, / d4t]2 My 2"’nu — Mg / d4Q2 ms

m2 —m?2 (2m)% m2 —q3  mZ2—m2 (2m)% m2 — ¢3

e[ (0)] _ 2ma e[ {5)]

2 _ 2 2 _ .2 |
mi —mz 12 m2 —mz

1 (2mgs — my){Tu) — (2m, —ms)(3s) .

19 2 2
12 mg —mg
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Substituting Eq. (B.7) into Eq. (B.6) we get the expression
(ATH(Q, 0)[[@e(0)7u(1 = 7*)se(0)][S (kg+, o534))

(2ms + my){Tau) — (2m,, + ms)(Ss)
mg —mg

_ _gp{uu)
24\/§mN

u“A(Qmm%{

(2my — ma) (@) — (2m, — my)(5s) 75}uz+(kz+,gz+) . (BY)

2 _ 2
mg my

This confirms our result Eq. (3.7).

We would like to emphasize that the parameter A, = 940 MeV has a meaning
of the energy scale at which chiral symmetry is spontaneously broken. The physical
coupling constants such as the leptonic decay constant F; = 92.4 MeV, which is
also the PCAC of pseudoscalar mesons, can be expressed in terms of A, = 940 MeV
and m = 330 MeV, the constituent quark mass calculated in the chiral limit 1
(see also Refs. 28-34). The constant F, is defined by logarithmically divergent
momentum integral and depends on ¢n(1 + A% /m?). Therefore, for the definition
of other physical observables we have to keep the contributions proportional to
fn(1 + A3 /m2). This explains the appearance of such a term in the definition of
the quark condensate.

We would also like to mention that the heavy-baryon approximation used in our
effective quark model corresponds to the large N¢ expansion,*” which provides a
nonperturbative analysis of low-energy interactions of hadrons.4” %
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