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We study the influence of center vortices on the low-lying eigenmodes of the Dirac operator, in
both the overlap and asqtad formulations. In particular we suggest a solution to a puzzle raised
some years ago by Gattnar et al. [Nucl. Phys. B 716, 105 (2005)], who noted the absence of low-
lying Dirac eigenmodes required for chiral symmetry breaking in center-projected configurations.
We show that the low-lying modes are present in the staggered (asqtad) formulation, but not for
overlap, and we argue that this is due to the absence of a field-independent chiral symmetry on
the very rough center-projected configurations for ovlap and “chirally improved” fermions. We
also confirm and extend the results of Kovalenko et al. [Phys. Lett. B 648, 383 (2007)]: we
find strong correlations between center vortex locations, and the scalar density of low-lying Dirac
eigenmodes and find that both asqtad and overlap eigenmodes have their largest concentrations in
point-like regions, rather than on subg#anifolds of higher dimensionality.
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1. Intreduction

Center vortices explain quark confinement and the Casher argument [1] implies that a force
strong enough to confine quarks is also generally expected to break chiral symmetry. The Banks-
Casher relation [2] on the other hand, relates chiral symmetry breaking (y¥SB) with a finite density
of near-zero eigenmodes of the chiral-invariant Dirac operator. Several years ago, however, Gat-
tnar et al. [3] reported a puzzling result, concerning the low-lying eigenvalue spectrum of a chirally-
improved version of the Dirac operator due to Gattringer [4], which approximates Ginsparg-Wilson
fermions. They found a large gap around zero in the spectrum for center-projected configurations,
which contain only thin vortex excitations and which are confining, implying zero chiral conden-
sate and therefore no ySB. We suggest that this large gap found by Gattnar et al. is related to the
way in which chiral symmetry is realized on the lattice. The Cashet argument [1] is based on the
usual SU(Ny)L x SU(Ny)r symmetry of the continuum theory with massless fermions. Center-
projected configurations are, however, maximally discontinous; plaquette variables make a sudden
transition from the trivial center element outside the thin vortex, to a non-trivial center element
inside. The chirally-improved Dirac operator is not necessarily chirally symmetgic, even approxi-
mately, in such backgroundsand there is no reason to expect spontaneous symrriétry breaking.

We will reinforce these arguments in section 2, looking at the spectra of the overlap [5] and
asqtad [13] Dirac operators, when evaluated on normal, vortex-only (i.e. center-projected), and
vortex-removed lattices. Our results even support the view that center vortices alone can induce
both confinement and chiral symmetry breaking.! In section 3 we report on other correlations
between center-vortex location, and the density distribution of low-lying Dirac eigenmodes, fol-
lowing the earlier work by Kovalenko et al. [9]. These correlations support the picture advocated
by Engelhardt and Reinhardt [10], in which topological charge is concentrated at points where
vortices either intersect, or twist about themselves (“writhe”) in a certain way. Dirac zerc modes
are concentrated where the topological charge density is large, therefore one would expect that the
eigenmode densities of low-lying eigenmodes would be peaked in point-like regions. We provide
some supporting evidence for this type of concentration and conclude our results in Section 4.
Throughout this article we work with lattices generated by lattice Monte Carlo simulation of the
tadpole improved Liischer-Weisz pure-gauge action, mainly at coupling Brw = 3.3 (lattice spacing
a = 0.15 fm) for the SU(2) gauge group [6]. Center-Projection is performed by Direct Maximal
Center Gauge (adjoint Landau gauge), maximizing the squared trace of link variables Uu(x) by
the over-relaxation method. The mapping to link variables on the center-projected {or “vortex-
only”) lattice, for the SU(2) gauge group, is given by Uy (x) — Z,(x) = signTr[U,(x)] and the link
variables on vortex-removed lattices aresdefined as U (%) = Z,, (x) Uy ().

2. Thin Vortices and Near-Zere Modes

In Fig. 1 we present the first twenty overlap eigenvalues for a 16* lattice at Brw = 3.3. There is
a big gap around zero for center-projected data, indicating zero chiral condensate. Looking closer
at the center-projected eigenvalues one spots only five of the twenty eigenvalues. This indicates a

ISimilar results have been obtained previously by Gubarev et al. [7] and by Bornyakov et al. [8].
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Figure 1: The first twenty overlap Dirac eigenvalue pairs on the Ginsparg-Wilson circle for a 164 lattice at
Buw = 3.3. The center-projected configurations show a four-fold degeneracy. Zero-modes in vortex-removed
configurations disappear for antiperiodic boundary conditions.

s,

degenerency of four, caused by the real trivial link variables (+1,), where the two colors decou-
ple and the eigenvalue equation Dy, = A,V, is invariant under charge conjugation.? The vortex-
removed data shows four near-zero modes for each chirality, which can be interpreted as real zero
modes since they disappear in case of antiperiodic boundary conditions and therefore are irrelevant
to xSB. We speculated that the reason for the large gap in the vortex-only case was connected with
the lack of smoothness of center-projected lattices. Of course the overlap operator, in contrast to the
chirally-improved operator, does have an exact global symmetry, but the symmetry transformations
are gauge-field dependent [12], and only approximate the SU(Ny)y, x SU(Ny)g chiral symmetry
transformations of the continuum theory for configurations which vary slowly at the scale of the
lattice spacing. Center-projected configurations are not even close to smooth, and the Casher argu-
ment, relating confinement to ySB need not apply. However, the overlap operator should produce a
more reasonable answer when applied to a smoother version of the center-projected lattice. There-
fore we perform an interpolation between full (gauged) and projected configurations, reducing the
angle between the vector representing group element U, (x) in maximal center gauge, and the vec-
tor representing the SU(2) center element Z, (x)/; by some fixed percentage. In Fig. 2 we show
the low-lying eigenvalues for partial projections together with the unprojected and center-projected
lattices. We see that there is no really obvious gap in the partially-projected lattices, even at 85%
projection. This agrees with our conjecture that applying the overlap operator to a smoother version
of the vortex-only vacuum would give # result consistent with ¥ SB and the Banks-Casher relation.
Staggered and asqtad fermions, on the other hand, do not require a smooth configuration to preserve
a subgroup of the usual continuum SU(Ny),, x SU(Ny)g symmetry, and by the Casher argument [1]
one would expect this remaining symmetry to be spontaneously broken by any confining gauge
configuration. Indeed, ref. [14] already reported that () > 0 for staggered fermions on a center-
projected lattice. Fig. 3 shows the first twenty asqtad eigenvalues, which distribute very differently
now. The low eigenmode density (chiral condensate) increases for center-projected compared to

2Given that the Dirac operator has the Wilson or overlap (but not staggered) form. Thus, if v, is an eigenstate with
eigenvalue Ay, then C~! y,, is also an eigenstate, with the same eigenvalue [11].
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Figure 2: The first twenty overlap Dirac eigenvalue pairs from a single configuration on a 16* lattice,
antiperiodic boundary conditions at Brw = 3.3, for interpolated fields.

full (original) data. Thus, for the asqtad operator, we have found exactly what was expected prior
to the results of Gattnar et al.: the vortex excitations of the vortex-only lattice carry not only the in-
formation about confinement, but are also responsible for ySB via the Banks-Casher relation. The
vortex-removed data develops a central band around ImA = 0 of eight doubly degenerate eigen-
modes per chirality, which are a remanent of the 32 free-field zero modes (four zero modes for each
of four “tastes” times two colors), and play no role in ySB. In fact, these modes again disappear
using antiperiodic boundary conditions in one direction.
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Figure 3: The first twenty asqtad Dirac ej
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for antiperiodic boundary conditions.

3. Vortex surfaces and Dirac eigenmode densities

In order to clarify the role of the vortices in the topological structure of the vacuum, the cor-
relator C; between the density of the eigenmode A and the vortex surface is investigated. The

genvalue pairs from a 16 lattice at Bww = 3.3. The center-
p around zero. Zero-modes in vortex-removed configurations disappear
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correlator depends on the eigenvalue and on the local geometry of the vortex. The vortex points P;
live on the dual lattice and they are correlated to the averaged scalar eigenmode density p; (x) over
the 16 vertices x of the 4d hypercube, H, dual to P,. 9]

C)L( ) - ZpiszH(Vp}{(‘x)—l) G.1)
ij erH 1

In Fig. 4 we display the data for C (Ny) vs. N, computed for eigenmodes of the asqtad Dirac op-
erator in the full and center-projected configurations. We find that the values of Cy (NVy) obtained
from eigenmodes in the fuil configurations are only about a factor of four smaller than the corre-
sponding values in the center-projected configurations the figures look much the same. The most
important feature, in our opinion, is the fact that the correlator increases steadily with increasing
number of the vortex plaquettes Ny, attached to a point P; where the Dirac eigenmode density seems
to be significantly enhanced. This fact is at least compatible with the general picture advanced by
Engelhardt and Reinhardt. Our results for eigenmodes of the overlap operator are consistent with
the results reported by Kovalenko et al. in Ref. [9].
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Figure 4: Vortex correlation Cj (N,) for asqtad staggered eigenmodes on a 20* lattice at Brw = 3.3, full
(left) and center-projected (right) configurations.

The correlations provide some degree of evidence that low-lying Dirac eigenmodes concen-
trate preferentially at regions on the center vortex surface where there are self-intersections or
“writhing”-points. So it is natural to ask whether there is any supporting evidence that the eigen-
mode density is especially concentrated in point-like regions. Therefore we simply look at sample
plots of py (x) throughout the lattice vokime. In Fig. 5 we display our data for the lowest eigenmode
of the asqtad Dirac operator, in some two-dimensional slices of the four-dimensional lattice volume
taken in the neighborhood of the point where p; (x) is largest. Each lattice, unprojected (left) and
center-projected (right), contains several sharp peaks of this kind; it is obvious that the concentra-
tion of eigenmode density is in a point-like region, rather than being spread over a submanifold of
higher dimensionality. Figure 6 shows the same type of data for a zero mode of the overlap Dirac
operator on 16* lattices. For full configurations the eigenmode density again is concentrated in a
point-like region, whereas in center-projected configurations, instead of having a sharp peak, the
eigenmode concentration is extending over most of the lattice volume.
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Figure 5: Maximum density peak (center) of the first asgtad eigenmode on a 20%-lattice at Biw = 3.3 with
upper (above) and lower (below) z-slices of the same t-slice. Eigenmodes are computed on (full (left) and
center-projected (right) lattices (notice different scales!).
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Figure 6: Maximum density peak (center) of the first overlap eigenmode on a 16 lattice at Brw = 3.3 with
upper (above) and lower (below) z-slices of the same t-slice. Eigenmodes are computed on (a) full lattices,
and (b) center-projected lattices (notice different scales!).
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4. Conclusious

We find that the thin vortices found in center projection give rise to a low-lying spectrum
of Dirac eigenmodes, providing that the chiral symmetry of the Dirac operator does not depend
on the smoothness of the laitice configuration. Thus, the vortex excitations of the vortex-only
lattice carry not only the information about confinement, but are also responsible for ySB via the
Banks-Casher relation. There are significant correlations between center vortices and the low-
lying modes of both the asqtad and overlap Dirac operators. These eigenmodes have their largest
concentrations in point-like regions, rather than on submanifolds of higher dimensionality. Taken
together, correlations and dimensionality support the picture of topological charge from center
vortices. Our results indicate that center vortices have a strong effect on the existence and properties
of low-lying eigenmodes of the Dirac operator. (C.f. [15])
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