Fluid mechanics of lubrication I: fundamental aspects of a rigorous theory

Bernhard Scheichl

Science Jour Fixe, AC²T
Feb 10th, 2009
Main objectives

- existing gap in tribological literature: lubrication represented ‘unsatisfactorily accurate’ ⇒
- describing lube flows by adopting first principles of continuum mechanics: asymptotic theory of hydromechanical lubrication

Why is this expedient?

- rational estimate of methodical error
- rational extension of classical theory to include e.g. EHD, inertia, micro-scale effects (cavitation, surface roughness)
Main objectives

existing gap in tribological literature: lubrication represented ‘unsatisfactorily accurate’ ⇒

- describing lube flows by adopting first principles of continuum mechanics:
 asymptotic theory of hydromechanical lubrication

Why is this expedient?

- rational estimate of methodical error
- rational extension of classical theory to include e.g.
 EHD, inertia, micro-scale effects (cavitation, surface roughness)
Main objectives

- existing gap in tribological literature: lubrication represented ‘unsatisfactorily accurate’ ⇒
- describing lube flows by adopting first principles of continuum mechanics: asymptotic theory of hydromechanical lubrication

Why is this expedient?

- rational estimate of methodical error
- rational extension of classical theory to include e.g. EHD, inertia, micro-scale effects (cavitation, surface roughness)
Main objectives

- existing gap in tribological literature: lubrication represented ‘unsatisfactorily accurate’ ⇒
- describing lube flows by adopting first principles of continuum mechanics: asymptotic theory of hydromechanical lubrication

Why is this expedient?

- rational estimate of methodical error
- rational extension of classical theory to include e.g. EHD, inertia, micro-scale effects (cavitation, surface roughness)
Main objectives

- existing gap in tribological literature: lubrication represented ‘unsatisfactorily accurate’ ⇒
- describing lube flows by adopting first principles of continuum mechanics: asymptotic theory of hydromechanical lubrication

Why is this expedient?

- rational estimate of methodical error
- rational extension of classical theory to include e.g. EHD, inertia, micro-scale effects (cavitation, surface roughness)
Overview

1. Phenomenon of lubrication

2. Basic assumptions

3. Classical theory
 - First principles
 - Problem formulation
 - Asymptotic theory

4. Validation of tribo-systems

5. Further outlook
Phenomenon of lubrication

pressurised counter-sliding (tilted) solid contacts: Striebeck curve

\[\mu = \frac{\tilde{\tau}}{\tilde{p}} = \Pi(\text{Str}, \alpha, \ldots) \]

\[\text{Str} \gg 1 : \frac{\tilde{\tau} C}{\tilde{\eta} \tilde{U}} \sim \text{const} \]

\[\text{boundary} \quad \text{mixed-film} \quad \text{laminar hydrodynamic} \]

\[\text{relative motion} \]

\[\text{lubrication} \]

\[\text{stiction} \]

Coulomb friction

\[\alpha = 0 \]

\[\tilde{L} \]

\[\tilde{\rho} \]

\[\alpha \]

\[\tilde{C} \]

\[\tilde{\eta} \]

\[\tilde{u} \]

\[\tilde{U} \]

\[\text{fixed} \quad \tilde{\rho} > 0 \quad d\tilde{\rho} < 0 \]

\[\text{Fluid mechanics of lubrication I} \]
Phenomenon of lubrication

pressurised counter-sliding (tilted) solid contacts: Striebeck curve

\[\mu = \frac{\tau}{\bar{p}} = \Pi(\text{Str}, \alpha, \ldots) \]

\[\text{Str} \gg 1 : \frac{\tau \bar{C}}{\bar{\eta} \bar{U}} \sim \text{const} \]

Coulomb friction

\[\alpha = 0 \]

\[\alpha \]

boundary mixed-film laminar hydrodynamic lubrication

fixed \(\bar{p} > 0 \)

\(\bar{\rho} < 0 \)

relative motion

\[\text{Str} = \frac{\bar{\eta} \bar{U}}{\bar{\rho} \bar{C}} \]
Basic (realistic) assumptions

lubricant flow

- ‘simple’ fluid
 excludes multi-phase flow (binary mixture lubricant–air):
 2 (intensive) state variables define local thermodynamic equilibrium

- Newtonian fluid
 lube oils, ionic liquids (vapour pressure very low), H$_2$O, many gases:
 at normal conditions, even for high pressures & shear rates, not for low temperatures

- laminar

- volume forces (gravity) neglected

bearing geometry

- clearance slender
 compared to typical macro-length (e.g. journal radius)

- perfectly hydrodynamic operation
 ‘hydraulically smooth’ surfaces:
 macroscopic flow description unaffected by mean asperities
Basic (realistic) assumptions

lubricant flow

- ‘simple’ fluid
 excludes multi-phase flow (binary mixture lubricant–air):
 2 (intensive) state variables define local thermodynamic equilibrium

- Newtonian fluid
 lube oils, ionic liquids (vapour pressure very low), H₂O, many gases:
 at normal conditions, even for high pressures & shear rates, not for low temperatures

- laminar
- volume forces (gravity) neglected

bearing geometry

- clearance slender
 compared to typical macro-length (e.g. journal radius)

- perfectly hydrodynamic operation
 ‘hydraulically smooth’ surfaces:
 macroscopic flow description unaffected by mean asperities
Basic (realistic) assumptions

lubricant flow

- ‘simple’ fluid
 excludes multi-phase flow (binary mixture lubricant–air):
 2 (intensive) state variables define local thermodynamic equilibrium
- Newtonian fluid
 lube oils, ionic liquids (vapour pressure very low), H₂O, many gases:
 at normal conditions, even for high pressures & shear rates, not for low temperatures
- laminar
- volume forces (gravity) neglected

bearing geometry

- clearance slender
 compared to typical macro-length (e.g. journal radius)
- perfectly hydrodynamic operation
 ‘hydraulically smooth’ surfaces:
 macroscopic flow description unaffected by mean asperities
Basic (realistic) assumptions
lubricant flow

- ‘simple’ fluid
 excludes multi-phase flow (binary mixture lubricant–air):
 2 (intensive) state variables define local thermodynamic equilibrium

- Newtonian fluid
 lube oils, ionic liquids (vapour pressure very low), H\textsubscript{2}O, many gases:
 at normal conditions, even for high pressures & shear rates, not for low temperatures

- laminar
- volume forces (gravity) neglected

bearing geometry

- clearance slender
 compared to typical macro-length (e.g. journal radius)
- perfectly hydrodynamic operation
 ‘hydraulically smooth’ surfaces:
 macroscopic flow description unaffected by mean asperities
Basic (realistic) assumptions

lubricant flow

- ‘simple’ fluid
 excludes multi-phase flow (binary mixture lubricant–air):
 2 (intensive) state variables define local thermodynamic equilibrium

- Newtonian fluid
 lube oils, ionic liquids (vapour pressure very low), H$_2$O, many gases:
 at normal conditions, even for high pressures & shear rates, not for low temperatures

- laminar
 volume forces (gravity) neglected

bearing geometry

- clearance slender
 compared to typical macro-length (e.g. journal radius)

- perfectly hydrodynamic operation
 ‘hydraulically smooth’ surfaces:
 macroscopic flow description unaffected by mean asperities
Basic (realistic) assumptions

lubricant flow

- ‘simple’ fluid
 excludes multi-phase flow (binary mixture lubricant–air):
 2 (intensive) state variables define local thermodynamic equilibrium

- Newtonian fluid
 lube oils, ionic liquids (vapour pressure very low), H₂O, many gases:
 at normal conditions, even for high pressures & shear rates, not for low temperatures

- laminar

- volume forces (gravity) neglected

bearing geometry

- clearance slender
 compared to typical macro-length (e.g. journal radius)

- perfectly hydrodynamic operation
 ‘hydraulically smooth’ surfaces:
 macroscopic flow description unaffected by mean asperities
Basic (realistic) assumptions
lubricant flow

- ‘simple’ fluid
 excludes multi-phase flow (binary mixture lubricant–air):
 2 (intensive) state variables define local thermodynamic equilibrium

- Newtonian fluid
 lube oils, ionic liquids (vapour pressure very low), H₂O, many gases:
 at normal conditions, even for high pressures & shear rates, not for low temperatures

- laminar

- volume forces (gravity) neglected

bearing geometry

- clearance slender
 compared to typical macro-length (e.g. journal radius)

- perfectly hydrodynamic operation
 ‘hydraulically smooth’ surfaces:
 macroscopic flow description unaffected by mean asperities
Basic (realistic) assumptions
lubricant flow

- ‘simple’ fluid
 excludes multi-phase flow (binary mixture lubricant–air):
 2 (intensive) state variables define local thermodynamic equilibrium

- Newtonian fluid
 lube oils, ionic liquids (vapour pressure very low), H₂O, many gases:
 at normal conditions, even for high pressures & shear rates, not for low temperatures

- laminar

- volume forces (gravity) neglected

bearing geometry

- clearance slender
 compared to typical macro-length (e.g. journal radius)

- perfectly hydrodynamic operation
 ‘hydraulically smooth’ surfaces:
 macroscopic flow description unaffected by mean asperities
Outline

3 Classical theory
- First principles
- Problem formulation
- Asymptotic theory
Governing eqs in Eulerian representation

any reference frame \(\tilde{x}, \tilde{t} \)

\[\tilde{D}_t := \partial_{\tilde{t}} + \tilde{u} \cdot \nabla (\tilde{x}) \]

continuity

\[\tilde{D}_t \tilde{\rho} + \tilde{\rho} \nabla \cdot \tilde{u} = 0 \]

momentum

\[\tilde{\rho} \left(\ddot{\tilde{x}}_{\text{ref}} + 2 \tilde{\Omega}_{\text{ref}} \times \tilde{u} + \tilde{D}_t \tilde{u} \right) = \nabla \cdot \tilde{\Sigma}, \quad \tilde{\Sigma} = -\tilde{\rho} I + \tilde{\Delta}, \quad \tilde{\Delta} = \tilde{\Delta}^{\text{tr}} \]

thermal energy, 1st & 2nd law of thermodynamics

\[\tilde{\rho} \tilde{c}_p \tilde{D}_t \tilde{T} = \beta \tilde{T} \tilde{D}_t \tilde{\rho} + \tilde{\Phi} - \nabla \cdot \tilde{q}, \quad \tilde{\Phi} = \tilde{\Delta} \cdot \nabla \tilde{u} > 0 \]

constitutive laws for deviatoric & bulk stresses & heat flux

Newtonian fluid

\[\tilde{\Delta} = \tilde{\eta} \left[\nabla \tilde{u} + (\nabla \tilde{u})^{\text{tr}} \right] + (\tilde{\eta}' - \frac{2}{3} \tilde{\eta}) \left(\nabla \cdot \tilde{u} \right) I \]

shear \hspace{1cm} \text{bulk} \hspace{1cm} \text{viscosity}

Fourier's law

\[\tilde{\dot{q}} = -\tilde{\lambda} \nabla \tilde{T} \]
Governing eqs in Eulerian representation

any reference frame \(\tilde{x}, \tilde{t} \)

\[\tilde{D}_t := \partial_{\tilde{t}} + \tilde{u} \cdot \nabla (\tilde{x}) \]

continuity

\[\tilde{D}_t \tilde{\rho} + \tilde{\rho} \nabla \cdot \tilde{u} = 0 \]

momentum

\[\tilde{\rho} (\ddot{\tilde{x}}_{\text{ref}} + 2\tilde{\Omega}_{\text{ref}} \times \tilde{u} + \tilde{D}_t \tilde{u}) = \nabla \cdot \tilde{\Sigma} \], \(\tilde{\Sigma} = -\tilde{\rho}I + \tilde{\Delta} \), \(\tilde{\Delta} = \tilde{\Delta}^{tr} \)

thermal energy, 1st & 2nd law of thermodynamics

\[\tilde{\rho} \tilde{c}_p \tilde{D}_t \tilde{T} = \beta \tilde{T} \tilde{D}_t \tilde{\rho} + \tilde{\Phi} - \nabla \cdot \tilde{\dot{q}} \], \(\tilde{\Phi} = \tilde{\Delta} \cdot \nabla \tilde{u} > 0 \)

constitutive laws for deviatoric & bulk stresses & heat flux

Newtonian fluid

\[\tilde{\Delta} = \tilde{\eta} \left[\nabla \tilde{\dot{u}} + (\nabla \tilde{\dot{u}})^\text{tr} \right] + (\tilde{\eta}' - \frac{2}{3} \tilde{\eta}) (\nabla \cdot \tilde{\dot{u}})I \]

\(\tilde{\eta} \) shear \(\tilde{\eta}' \) bulk \(\tilde{\eta} \) viscosity

Fourier's law

\[\tilde{\dot{q}} = -\tilde{\lambda} \nabla \tilde{T} \]
Governing eqs in Eulerian representation

any reference frame \tilde{x}, \tilde{t} \hspace{1cm} $\tilde{D}_t := \partial_{\tilde{t}} + \tilde{u} \cdot \nabla(\tilde{x})$

continuity

$\tilde{D}_t \tilde{\rho} + \tilde{\rho} \nabla \cdot \tilde{\boldsymbol{u}} = 0$

momentum

$\tilde{\rho}(\ddot{\tilde{x}}_{\text{ref}} + 2\tilde{\Omega}_{\text{ref}} \times \tilde{\boldsymbol{u}} + \tilde{D}_t \tilde{\boldsymbol{u}}) = \nabla \cdot \tilde{\Sigma}, \quad \tilde{\Sigma} = -\tilde{\rho} I + \tilde{\Delta}, \quad \tilde{\Delta} = \tilde{\Delta}^{\text{tr}}$

thermal energy, 1st & 2nd law of thermodynamics

$\tilde{\rho} \tilde{c}_p \tilde{D}_t \tilde{T} = \beta \tilde{T} \tilde{D}_t \tilde{\rho} + \tilde{\Phi} - \nabla \cdot \tilde{\dot{q}}, \quad \tilde{\Phi} = \tilde{\Delta} \cdot \nabla \tilde{\boldsymbol{u}} > 0$

constitutive laws for deviatoric & bulk stresses & heat flux

Newtonian fluid \hspace{1cm} $\tilde{\Delta} = \tilde{\eta} \left[\nabla \tilde{\boldsymbol{u}} + (\nabla \tilde{\boldsymbol{u}})^T \right] + \left(\tilde{\eta}' - \frac{2}{3} \tilde{\eta} \right) (\nabla \cdot \tilde{\boldsymbol{u}}) I$

shear \hspace{1cm} bulk \hspace{1cm} viscosity

Fourier's law \hspace{1cm} $\tilde{\dot{q}} = -\lambda \nabla \tilde{T}$
Governing eqs in Eulerian representation

any reference frame \(\tilde{x}, \tilde{t} \) \(\tilde{D}_t := \partial_{\tilde{t}} + \tilde{u} \cdot \nabla (\tilde{x}) \)

continuity
\[\tilde{D}_t \tilde{\rho} + \tilde{\rho} \tilde{\nabla} \cdot \tilde{u} = 0 \]

momentum
\[\tilde{\rho} (\ddot{\tilde{x}}_{\text{ref}} + 2\tilde{\Omega}_{\text{ref}} \times \tilde{u} + \tilde{D}_t \tilde{u}) = \tilde{\nabla} \cdot \tilde{\Sigma}, \quad \tilde{\Sigma} = -\tilde{\rho} I + \tilde{\Delta}, \quad \tilde{\Delta} = \tilde{\Delta}^{tr} \]

thermal energy, 1st & 2nd law of thermodynamics
\[\tilde{\rho} \tilde{c}_p \tilde{D}_t \tilde{T} = \beta \tilde{T} \tilde{D}_t \tilde{\rho} + \tilde{\Phi} - \tilde{\nabla} \cdot \tilde{q}, \quad \tilde{\Phi} = \tilde{\Delta} \cdot \tilde{\nabla} \tilde{u} > 0 \]

constitutive laws for deviatoric & bulk stresses & heat flux

Newtonian fluid
\[\tilde{\Delta} = \tilde{\eta} [\tilde{\nabla} \tilde{u} + (\tilde{\nabla} \tilde{u})^t] + (\tilde{\eta}' - \frac{2}{3} \tilde{\eta}) (\tilde{\nabla} \cdot \tilde{u}) I \]

shear \quad \text{bulk} \quad \text{viscosity}

Fourier's law
\[\tilde{q} = -\tilde{\lambda} \tilde{\nabla} \tilde{T} \]
Governing eqs in Eulerian representation

any reference frame \mathbf{x}, \mathbf{t}

\[\hat{D}_t := \partial_t + \mathbf{u} \cdot \nabla_{(\mathbf{x})} \]

continuity

\[\hat{D}_t \hat{\rho} + \hat{\rho} \nabla \cdot \mathbf{u} = 0 \]

momentum

\[\hat{\bar{\rho}} (\ddot{\mathbf{x}}_{\text{ref}} + 2 \hat{\Omega}_{\text{ref}} \times \mathbf{u} + \hat{D}_t \mathbf{u}) = \nabla \cdot \hat{\Sigma} , \quad \hat{\Sigma} = -\hat{\rho} \mathbf{I} + \hat{\Delta} , \quad \hat{\Delta} = \hat{\Delta}^{\text{tr}} \]

thermal energy, 1st & 2nd law of thermodynamics

\[\hat{\bar{\rho}} \hat{c}_p \hat{D}_t \hat{T} = \hat{\beta} \hat{T} \hat{D}_t \hat{\rho} + \hat{\Phi} - \nabla \cdot \mathbf{\hat{q}} , \quad \hat{\Phi} = \hat{\Delta} \cdot \nabla \mathbf{u} > 0 \]

constitutive laws for deviatoric & bulk stresses & heat flux

\[\hat{\Delta} = \hat{\eta} \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^{\text{tr}} \right] + \left(\hat{\eta}' - \frac{2}{3} \hat{\eta} \right) (\nabla \cdot \mathbf{u}) \mathbf{I} \]

shear

\[\hat{\Delta} = \hat{\lambda} \nabla \cdot \nabla \mathbf{T} \]

bulk viscosity

\[\hat{\Phi} = \hat{\Delta} \cdot \nabla \mathbf{u} > 0 \]

shear

\[\hat{\Delta} = \hat{\lambda} \nabla \cdot \nabla \mathbf{T} \]

bulk viscosity

\[\hat{\Phi} = \hat{\Delta} \cdot \nabla \mathbf{u} > 0 \]
Governing eqs in Eulerian representation

any reference frame \tilde{x}, \tilde{t} \hspace{1cm} $\tilde{D}_t := \partial_{\tilde{t}} + \tilde{u} \cdot \nabla (\tilde{x})$

continuity

$\tilde{D}_t \tilde{\rho} + \tilde{\rho} \nabla \cdot \tilde{u} = 0$

momentum

$\tilde{p}(\ddot{\tilde{x}}_{\text{ref}} + 2\tilde{\Omega}_{\text{ref}} \times \tilde{u} + \tilde{D}_t \tilde{u}) = \tilde{\nabla} \cdot \tilde{\Sigma} , \quad \tilde{\Sigma} = -\tilde{\rho} I + \tilde{\Delta} , \quad \tilde{\Delta} = \tilde{\Delta}^t$

thermal energy, 1st & 2nd law of thermodynamics

$\tilde{\rho} \tilde{c}_p \tilde{D}_t \tilde{T} = \tilde{\beta} \tilde{T} \tilde{A}_t \tilde{\rho} + \tilde{\Phi} - \tilde{\nabla} \cdot \tilde{q} , \quad \tilde{\Phi} = \tilde{\Delta} \cdot \nabla \tilde{u} > 0$

constitutive laws for deviatoric & bulk stresses & heat flux

Newtonian fluid \hspace{1cm} $\tilde{\Delta} = \tilde{\eta} [\tilde{\nabla} \tilde{u} + (\tilde{\nabla} \tilde{u})^t] + (\tilde{\eta} - \frac{2}{3} \tilde{\eta}) (\tilde{\nabla} \cdot \tilde{u}) I$

\hspace{1cm} \text{shear} \hspace{1cm} \text{bulk} \hspace{1cm} \text{viscosity}

Fourier's law \hspace{1cm} $\tilde{q} = -\tilde{\lambda} \tilde{\nabla} \tilde{T}$
Governing eqs in Eulerian representation

any reference frame \(\tilde{x}, \tilde{t} \)
\[\tilde{D}_t := \partial_{\tilde{t}} + \tilde{u} \cdot \tilde{\nabla} (\tilde{x}) \]

continuity
\[\tilde{D}_t \tilde{\rho} + \tilde{\rho} \tilde{\nabla} \cdot \tilde{u} = 0 \]

momentum
\[\tilde{\rho} (\ddot{\tilde{x}}_{\text{ref}} + 2 \tilde{\Omega}_{\text{ref}} \times \tilde{u} + \tilde{D}_t \tilde{u}) = \tilde{\nabla} \cdot \tilde{\Sigma}, \quad \tilde{\Sigma} = -\tilde{\rho} I + \tilde{\Delta}, \quad \tilde{\Delta} = \tilde{\Delta}^\text{tr} \]

thermal energy, 1st & 2nd law of thermodynamics
\[\tilde{\rho} \tilde{c}_p \tilde{D}_t \tilde{T} = \tilde{\beta} \tilde{T} \tilde{D}_t \tilde{\rho} + \tilde{\Phi} - \tilde{\nabla} \cdot \tilde{\dot{q}}, \quad \tilde{\Phi} = \tilde{\Delta} \cdot \tilde{\nabla} \tilde{u} > 0 \]

constitutive laws for deviatoric & bulk stresses & heat flux

\begin{align*}
\text{Newtonian fluid} & \quad \tilde{\Delta} = \tilde{\eta} \left[\tilde{\nabla} \tilde{u} + (\tilde{\nabla} \tilde{u})^\text{tr} \right] + \left(\tilde{\eta}' - \frac{2}{3} \tilde{\eta} \right) (\tilde{\nabla} \cdot \tilde{u}) I \\
\text{shear} & \quad \text{bulk} \quad \text{viscosity} \\
\text{Fourier's law} & \quad \tilde{\dot{q}} = -\tilde{\lambda} \tilde{\nabla} \tilde{T}
\end{align*}
Governing eqs in Eulerian representation

any reference frame \(\tilde{x}, \tilde{t} \) \(\tilde{D}_t := \partial_{\tilde{t}} + \tilde{u} \cdot \nabla_{(\tilde{x})} \)

continuity
\(\tilde{D}_t \tilde{\rho} + \tilde{\rho} \nabla \cdot \tilde{u} = 0 \)

momentum
\(\tilde{\rho} (\tilde{\ddot{x}}_{\text{ref}} + 2 \tilde{\Omega}_{\text{ref}} \times \tilde{u} + \tilde{D}_t \tilde{u}) = \nabla \cdot \tilde{\Sigma} \), \(\tilde{\Sigma} = -\tilde{\rho} I + \tilde{\Delta} \), \(\tilde{\Delta} = \tilde{\Delta}^{\text{tr}} \)

thermal energy, 1st & 2nd law of thermodynamics
\(\tilde{\rho} \tilde{c}_p \tilde{D}_t \tilde{T} = \tilde{\beta} \tilde{T} \tilde{D}_t \tilde{\rho} + \tilde{\Phi} - \nabla \cdot \tilde{\dot{q}} \), \(\tilde{\Phi} = \tilde{\Delta} \cdot \nabla \tilde{u} > 0 \)

constitutive laws for deviatoric & bulk stresses & heat flux

Newtonian fluid \(\tilde{\Delta} = \tilde{\eta} \left[\nabla \tilde{u} + (\nabla \tilde{u})^{\text{tr}} \right] + (\tilde{\eta}' - \frac{2}{3} \tilde{\eta}) (\nabla \cdot \tilde{u}) I \)

\[\text{shear} \quad \text{bulk} \quad \text{viscosity} \]

Fourier’s law \(\tilde{\dot{q}} = -\tilde{\lambda} \nabla \tilde{T} \)
Governing eqs in Eulerian representation

any reference frame \tilde{x}, \tilde{t}

\[\tilde{D}_t := \partial_{\tilde{t}} + \tilde{u} \cdot \tilde{\nabla} (\tilde{x}) \]

continuity

\[\tilde{D}_t \tilde{\rho} + \tilde{\rho} \tilde{\nabla} \cdot \tilde{u} = 0 \]

momentum

\[\tilde{\rho} (\ddot{\tilde{x}}_{\text{ref}} + 2 \tilde{\Omega}_{\text{ref}} \times \tilde{u} + \tilde{D}_t \tilde{u}) = \tilde{\nabla} \cdot \tilde{\Sigma} , \quad \tilde{\Sigma} = -\tilde{\rho} I + \tilde{\Delta} , \quad \tilde{\Delta} = \tilde{\Delta}^{tr} \]

thermal energy, 1st & 2nd law of thermodynamics

\[\tilde{\rho} \tilde{c}_p \tilde{D}_t \tilde{T} = \beta \tilde{T} \tilde{D}_t \tilde{\rho} + \tilde{\Phi} - \tilde{\nabla} \cdot \tilde{\dot{q}} , \quad \tilde{\Phi} = \tilde{\Delta} \cdot \tilde{\nabla} \tilde{u} > 0 \]

constitutive laws for deviatoric & bulk stresses & heat flux

Newtonian fluid

\[\tilde{\Delta} = \tilde{\eta} \left[\tilde{\nabla} \tilde{u} + (\tilde{\nabla} \tilde{u})^{tr} \right] + (\tilde{\eta}' - \frac{2}{3} \tilde{\eta}) (\tilde{\nabla} \cdot \tilde{u}) I \]

- shear
- bulk viscosity

Fourier’s law

\[\tilde{\dot{q}} = -\tilde{\lambda} \tilde{\nabla} \tilde{T} \]
Thermodynamic properties of ‘simple’ fluid

caloric eq of state

\[\tilde{h} = \tilde{h}(\tilde{p}, \tilde{T}) \]

\[\tilde{c}_p := \left(\frac{\partial \tilde{h}}{\partial \tilde{T}} \right)_\tilde{p} \left[\frac{\text{J}}{\text{kg K}} \right] \]

\[\tilde{\beta} \tilde{T} = 1 - \tilde{\rho} \left(\frac{\partial \tilde{h}}{\partial \tilde{p}} \right)_{\tilde{T}} \]

thermal eq of state

\[\tilde{\rho} = \tilde{\rho}(\tilde{\rho}, \tilde{T}) \]

\[\tilde{\beta} := -\frac{1}{\tilde{\rho}} \left(\frac{\partial \tilde{\rho}}{\partial \tilde{T}} \right)_\tilde{\rho} \left[\frac{1}{\text{K}} \right] \]

\[\tilde{\eta} = \tilde{\eta}(\tilde{\rho}, \tilde{T}) \quad [\text{Pa s}] \]

\[\tilde{\lambda} = \tilde{\lambda}(\tilde{\rho}, \tilde{T}) \quad [\text{W/(m K)}] \]

2nd law of thermodynamics

\[\tilde{\eta}, \tilde{\lambda}, \tilde{\beta}, \tilde{c}_p > 0, \quad \text{seldom } \tilde{\beta} < 0 \quad (\text{H}_2\text{O} \text{l}) \]
Thermodynamic properties of ‘simple’ fluid

caloric eq of state

\[\tilde{h} = \tilde{h}(\tilde{\rho}, \tilde{T}) \]
\[\tilde{c}_p := \left(\frac{\partial \tilde{h}}{\partial \tilde{T}} \right)_{\tilde{\rho}} \quad \text{[J/kg K]} \]
\[\tilde{\beta} \tilde{T} = 1 - \tilde{\rho} \left(\frac{\partial \tilde{h}}{\partial \tilde{\rho}} \right)_{\tilde{T}} \]

thermal eq of state

\[\tilde{\rho} = \tilde{\rho}(\tilde{\rho}, \tilde{T}) \]
\[\tilde{\beta} := -\frac{1}{\tilde{\rho}} \left(\frac{\partial \tilde{\rho}}{\partial \tilde{T}} \right)_{\tilde{\rho}} \quad \text{[1/K]} \]

\[\tilde{\eta} = \tilde{\eta}(\tilde{\rho}, \tilde{T}) \quad \text{[Pa s]} \]
\[\tilde{\lambda} = \tilde{\lambda}(\tilde{\rho}, \tilde{T}) \quad \text{[W/(m K)]} \]

2nd law of thermodynamics

\[\tilde{\eta}, \tilde{\lambda}, \tilde{\beta}, \tilde{c}_p > 0, \quad \text{seldom } \tilde{\beta} < 0 \quad (\text{H}_2\text{O}!) \]
Thermodynamic properties of ‘simple’ fluid

calic eq of state
\[\tilde{h} = \tilde{h}(\tilde{\rho}, \tilde{T}) \]
\[\tilde{c}_p := \left(\frac{\partial \tilde{h}}{\partial \tilde{T}} \right)_{\tilde{\rho}} \left[\frac{J}{\text{kg K}} \right], \quad \tilde{\beta} \tilde{T} = 1 - \tilde{\rho} \left(\frac{\partial \tilde{h}}{\partial \tilde{\rho}} \right)_{\tilde{T}} \]

thermal eq of state
\[\tilde{\rho} = \tilde{\rho}(\tilde{\rho}, \tilde{T}) \]
\[\tilde{\beta} := -\frac{1}{\tilde{\rho}} \left(\frac{\partial \tilde{\rho}}{\partial \tilde{T}} \right)_{\tilde{\rho}} \left[\frac{1}{K} \right] \]
\[\tilde{\eta} = \tilde{\eta}(\tilde{\rho}, \tilde{T}) \left[\text{Pa s} \right] \]
\[\tilde{\lambda} = \tilde{\lambda}(\tilde{\rho}, \tilde{T}) \left[\text{W/(m K)} \right] \]

2nd law of thermodynamics
\[\tilde{\eta}, \tilde{\lambda}, \tilde{\beta}, \tilde{c}_p > 0, \quad \text{seldom} \quad \tilde{\beta} < 0 \quad (\text{H}_2\text{O}!) \]
Thermodynamic properties of ‘simple’ fluid

caloric eq of state

\[\tilde{h} = \tilde{h}(\tilde{p}, \tilde{T}) \]
\[\tilde{c}_p := \left(\frac{\partial \tilde{h}}{\partial \tilde{T}} \right)_{\tilde{p}} \left[\frac{J}{kg \, K} \right], \quad \tilde{\beta} \tilde{T} = 1 - \tilde{\rho} \left(\frac{\partial \tilde{h}}{\partial \tilde{p}} \right)_{\tilde{T}} \]

thermal eq of state

\[\tilde{\rho} = \tilde{\rho}(\tilde{p}, \tilde{T}) \]
\[\tilde{\beta} := -\frac{1}{\tilde{\rho}} \left(\frac{\partial \tilde{\rho}}{\partial \tilde{T}} \right)_{\tilde{p}} \left[\frac{1}{K} \right] \]
\[\tilde{\eta} = \tilde{\eta}(\tilde{p}, \tilde{T}) \text{ [Pa s]} \]
\[\tilde{\lambda} = \tilde{\lambda}(\tilde{p}, \tilde{T}) \text{ [W/(m K)]} \]

2nd law of thermodynamics

\[\tilde{\eta}, \tilde{\lambda}, \tilde{\beta}, \tilde{c}_p > 0, \text{ seldom } \tilde{\beta} < 0 \text{ (H}_2\text{O}!) \]
Thermodynamic properties of ‘simple’ fluid

caloric eq of state
\[\tilde{h} = \tilde{h}(\tilde{\rho}, \tilde{T}) \quad \tilde{c}_p := \left(\frac{\partial \tilde{h}}{\partial \tilde{T}} \right)_{\tilde{\rho}} \left[\frac{J}{kg \, K} \right], \quad \tilde{\beta} \tilde{T} = 1 - \tilde{\rho} \left(\frac{\partial \tilde{h}}{\partial \tilde{\rho}} \right)_{\tilde{T}} \]

thermal eq of state
\[\tilde{\rho} = \tilde{\rho}(\tilde{\rho}, \tilde{T}) \quad \tilde{\beta} := -\frac{1}{\tilde{\rho}} \left(\frac{\partial \tilde{\rho}}{\partial \tilde{T}} \right)_{\tilde{\rho}} \left[\frac{1}{K} \right] \]
\[\tilde{\eta} = \tilde{\eta}(\tilde{\rho}, \tilde{T}) \quad [Pa \, s] \]
\[\tilde{\lambda} = \tilde{\lambda}(\tilde{\rho}, \tilde{T}) \quad [W/(m \, K)] \]

2nd law of thermodynamics
\[\tilde{\eta}, \tilde{\lambda}, \tilde{\beta}, \tilde{c}_p > 0, \quad \text{seldom} \quad \tilde{\beta} < 0 \quad (H_2O !) \]
Outline

3. Classical theory
 - First principles
 - Problem formulation
 - Asymptotic theory
Non-dimensional quantities

kinematic quantities
\[t = \tilde{t} \frac{\tilde{U}}{\tilde{L}} , \quad x = \tilde{x} / \tilde{L} , \quad c = \tilde{c} / \tilde{C} , \quad u = \tilde{u} / \tilde{U} \]

reference state
\[p = \tilde{p} / \tilde{p}_r , \quad \theta = (\tilde{T} - \tilde{T}_a) / \tilde{T}_r \]
\[\rho = \tilde{\rho} / \tilde{\rho}_r , \quad (\eta, \eta') = (\tilde{\eta}, \tilde{\eta}') / \tilde{\eta}_r , \quad \lambda = \tilde{\lambda} / \tilde{\lambda}_r , \quad \beta = \tilde{\beta} \tilde{T}_a , \quad c_p = \tilde{c}_p / \tilde{c}_{p,r} \]

key groups

clearance slenderness \[\epsilon := \tilde{C} / \tilde{L} \]
temperature ratio \[\gamma := \tilde{T}_r / \tilde{T}_a \]
Non-dimensional quantities

kinematic quantities

\[t = \tilde{t} \tilde{U}/\tilde{L}, \quad \mathbf{x} = \tilde{x}/\tilde{L}, \quad c = \tilde{c}/\tilde{C}, \quad \mathbf{u} = \tilde{u}/\tilde{U} \]

reference state

\[p = \tilde{p}/\tilde{p}_r, \quad \theta = (\tilde{T} - \tilde{T}_a)/\tilde{T}_r \]
\[\rho = \tilde{\rho}/\tilde{\rho}_r, \quad (\eta, \eta') = (\tilde{\eta}, \tilde{\eta}')/\tilde{\eta}_r, \quad \lambda = \tilde{\lambda}/\tilde{\lambda}_r, \quad \beta = \tilde{\beta}\tilde{T}_a, \quad c_p = \tilde{c}_p/\tilde{c}_{p,r} \]

key groups

- clearance slenderness \[\epsilon := \tilde{C}/\tilde{L} \]
- temperature ratio \[\gamma := \tilde{T}_r/\tilde{T}_a \]
- Reynolds number \[\text{Re} := \tilde{U}\tilde{L}/\tilde{\eta} \]
- Prandtl number \[Pr := \tilde{c}_p/\tilde{\eta} \]
- Péclet number \[Pe := \text{Re Pr} \]
Non-dimensional quantities

kinematic quantities

\[t = \frac{\tilde{t} \tilde{U}}{\tilde{L}}, \quad x = \frac{\tilde{x}}{\tilde{L}}, \quad c = \frac{\tilde{c}}{\tilde{C}}, \quad u = \frac{\tilde{u}}{\tilde{U}} \]

reference state

\[p = \frac{\tilde{p}}{\tilde{p}_r}, \quad \theta = \frac{(\tilde{T} - \tilde{T}_a)}{\tilde{T}_r} \]

\[\rho = \frac{\tilde{\rho}}{\tilde{\rho}_r}, \quad (\eta, \eta') = \frac{(\tilde{\eta}, \tilde{\eta}')}{\tilde{\eta}_r}, \quad \lambda = \frac{\tilde{\lambda}}{\tilde{\lambda}_r}, \quad \beta = \frac{\tilde{\beta} \tilde{T}_a}{\tilde{\lambda}_r}, \quad c_p = \frac{\tilde{c}_p}{\tilde{c}_{p,r}} \]

key groups

- clearance slenderness: \(\epsilon := \frac{\tilde{C}}{\tilde{L}} \)
- temperature ratio: \(\gamma := \frac{\tilde{T}_r}{\tilde{T}_a} \)
- Reynolds number: \(\text{Re} := \frac{\tilde{U} \tilde{L} \tilde{p}_r}{\tilde{\eta}_r} \)
- Prandtl number: \(\text{Pr} := \frac{\tilde{c}_{p,r} \tilde{\eta}_r}{\tilde{\lambda}_r} \)
- Péclet number: \(\text{Pe} := \text{Re} \text{Pr} \)
Non-dimensional quantities

kinematic quantities

t = \tilde{t} \tilde{U}/\tilde{L}, \quad x = \tilde{x}/\tilde{L}, \quad c = \tilde{c}/\tilde{C}, \quad u = \tilde{u}/\tilde{U}

reference state

\rho = \tilde{\rho}/\tilde{\rho}_r, \quad \theta = (\tilde{T} - \tilde{T}_a)/\tilde{T}_r
\rho = \tilde{\rho}/\tilde{\rho}_r, \quad (\eta, \eta') = (\tilde{\eta}, \tilde{\eta}')/\tilde{\eta}_r, \quad \lambda = \tilde{\lambda}/\tilde{\lambda}_r, \quad \beta = \tilde{\beta}\tilde{T}_a, \quad c_p = \tilde{c}_p/\tilde{c}_{p,r}

key groups

clearance slenderness \quad \epsilon := \tilde{C}/\tilde{L}
temperature ratio \quad \gamma := \tilde{T}_r/\tilde{T}_a
Reynolds number \quad Re := \tilde{U}\tilde{L}\tilde{\rho}_r/\tilde{\eta}_r
Prandtl number \quad Pr := \tilde{c}_{p,r}\tilde{\eta}_r/\tilde{\lambda}_r
Péclet number \quad Pe := Re Pr
Non-dimensional quantities

Kinematic quantities

\[t = \tilde{t} \tilde{U}/\tilde{L}, \quad x = \tilde{x}/\tilde{L}, \quad c = \tilde{c}/\tilde{C}, \quad u = \tilde{u}/\tilde{U} \]

Reference state

\[\rho = \tilde{\rho}/\tilde{\rho}_r, \quad \theta = (\tilde{T} - \tilde{T}_a)/\tilde{T}_r \]

\[\rho = \tilde{\rho}/\tilde{\rho}_r, \quad (\eta, \eta') = (\tilde{\eta}, \tilde{\eta}')/\tilde{\eta}_r, \quad \lambda = \tilde{\lambda}/\tilde{\lambda}_r, \quad \beta = \tilde{\beta} \tilde{T}_a, \quad c_p = \tilde{c}_p/\tilde{c}_{p,r} \]

Key groups

- Clearance slenderness: \(\epsilon := \tilde{C}/\tilde{L} \)
- Temperature ratio: \(\gamma := \tilde{T}_r/\tilde{T}_a \)
- Reynolds number: \(Re := \tilde{U}\tilde{L}\tilde{\rho}_r/\tilde{\eta}_r \)
- Prandtl number: \(Pr := \tilde{c}_{p,r}\tilde{\eta}_r/\tilde{\lambda}_r \)
- Péclet number: \(Pe := Re Pr \)
Non-dimensional quantities

kinematic quantities
\[t = \tilde{t} \frac{\tilde{U}}{\tilde{L}} , \quad x = \tilde{x} / \tilde{L} , \quad c = \tilde{c} / \tilde{C} , \quad u = \tilde{u} / \tilde{U} \]

reference state
\[\rho = \frac{\tilde{\rho}}{\rho_r} , \quad \theta = \frac{\tilde{T} - \tilde{T}_a}{\tilde{T}_r} \]
\[\rho = \frac{\tilde{\rho}}{\rho_r} , \quad (\eta, \eta') = (\tilde{\eta}, \tilde{\eta}') / \tilde{\eta}_r , \quad \lambda = \frac{\tilde{\lambda}}{\lambda_r} , \quad \beta = \beta \tilde{T}_a , \quad c_p = \frac{\tilde{c}_p}{\tilde{c}_{p,r}} \]

key groups

- **clearance slenderness** \(\epsilon := \tilde{C} / \tilde{L} \)
- **temperature ratio** \(\gamma := \frac{\tilde{T}_r}{\tilde{T}_a} \)
- **Reynolds number** \(Re := \frac{\tilde{U} \tilde{L} \tilde{\rho}_r}{\tilde{\eta}_r} \)
- **Prandtl number** \(Pr := \frac{\tilde{c}_{p,r} \tilde{\eta}_r}{\tilde{\lambda}_r} \)
- **Péclet number** \(Pe := Re Pr \)
Non-dimensional quantities, cont’d

natural metric

\[x = x_{||} + \epsilon e_n n, \quad u = u_{||} + \epsilon e_n w, \quad u_{||} = u_{||} e_{||} \]

\[e_{||} \cdot e_n = 0, \quad \partial_n e_{||} = \partial_n e_n = 0 \]

\[\nabla = \tilde{\nabla} = \nabla_{||} + \epsilon^{-1} e_n \partial_n \]

\[\nabla \cdot (\rho u) = \nabla_{||} \cdot (\rho u_{||}) + e_n \cdot \partial_n (\rho u_{||}) + \epsilon \nabla_{||} \cdot (\rho e_n w) + e_n \cdot \partial_n (\rho e_n w) \]

\[D_t = (\tilde{L}/\tilde{U}) \tilde{D}_t = \partial_t + u \cdot \nabla = u_{||} \cdot \nabla_{||} + w \partial_n \]
Non-dimensional quantities, cont’d

\[\mathbf{x} = \mathbf{x}_\parallel + \epsilon \mathbf{e}_n \mathbf{n}, \quad \mathbf{u} = \mathbf{u}_\parallel + \epsilon \mathbf{e}_n \mathbf{w}, \quad \mathbf{u}_\parallel = \mathbf{u}_\parallel \mathbf{e}_\parallel \]

\[\mathbf{e}_\parallel \cdot \mathbf{e}_n = 0, \quad \partial_n \mathbf{e}_\parallel = \partial_n \mathbf{e}_n = 0 \]

\[\nabla = \tilde{\nabla} = \nabla_\parallel + \epsilon^{-1} \mathbf{e}_n \partial_n \]

\[\nabla \cdot (\rho \mathbf{u}) = \nabla_\parallel \cdot (\rho \mathbf{u}_\parallel) + \frac{\mathbf{e}_n \cdot \partial_n (\rho \mathbf{u}_\parallel)}{\epsilon} + \frac{\epsilon \nabla_\parallel \cdot (\rho \mathbf{e}_n \mathbf{w})}{\rho w \nabla_\parallel \cdot \mathbf{e}_n} + \frac{\mathbf{e}_n \cdot \partial_n (\rho \mathbf{e}_n \mathbf{w})}{\partial_n (\rho w)} \]

\[D_t = (\tilde{\nabla} / \tilde{U}) \tilde{D}_t = \partial_t + \mathbf{u} \cdot \nabla = \mathbf{u}_\parallel \cdot \nabla_\parallel + \mathbf{w} \partial_n \]
Non-dimensional quantities, cont’d

\[x = x_\parallel + \epsilon e_n n, \quad u = u_\parallel + \epsilon e_n w, \quad u_\parallel = u_\parallel e_\parallel \]

\[e_\parallel \cdot e_n = 0, \quad \partial_n e_\parallel = \partial_n e_n = 0 \]

\[\nabla = \tilde{\nabla} = \nabla_\parallel + \epsilon^{-1} e_n \partial_n \]

\[\nabla \cdot (\rho u) = \nabla_\parallel \cdot (\rho u_\parallel) + e_n \cdot \partial_n (\rho u_\parallel) + \epsilon \nabla_\parallel \cdot (\rho e_n w) + e_n \cdot \partial_n (\rho e_n w) \]

\[e_n \cdot e_\parallel \partial_n (\rho u_\parallel) = 0 \]

\[O(\epsilon) \]

\[\partial_n (\rho w) \]

\[D_t = (\tilde{\nabla}/\tilde{U}) \tilde{D}_t = \partial_t + u \cdot \nabla = u_\parallel \cdot \nabla_\parallel + w \partial_n \]
Non-dimensional quantities, cont’d

\[x = x_\parallel + \epsilon e_n n, \quad u = u_\parallel + \epsilon e_n w, \quad u_\parallel = u_\parallel e_\parallel \]

\[e_\parallel \cdot e_n = 0, \quad \partial_n e_\parallel = \partial_n e_n = 0 \]

\[\nabla = \tilde{L} \tilde{\nabla} = \nabla_\parallel + \epsilon^{-1} e_n \partial_n \]

\[\nabla \cdot (\rho u) = \nabla_\parallel \cdot (\rho u_\parallel) + \underbrace{e_n \cdot \partial_n (\rho u_\parallel)} + \underbrace{\epsilon \nabla_\parallel \cdot (\rho e_n w)} + \underbrace{e_n \cdot \partial_n (\rho e_n w)} \]

\[\partial_n (\rho w) \]

\[D_t = (\tilde{L} / \tilde{\nabla}) \tilde{D}_t = \partial_t + u \cdot \nabla = u_\parallel \cdot \nabla_\parallel + w \partial_n \]
Navier–Stokes eqs

\[\tilde{\rho}_r := \tilde{\eta}_r \tilde{U} \tilde{L} / \tilde{C}^2, \quad \tilde{T}_r := \tilde{\eta}_r \tilde{U}^2 / \tilde{\lambda}_r \]

state \[q = q(\rho, 1 + \gamma \theta), \quad q = \rho, \eta, \lambda, c_p \Rightarrow \tilde{\rho}_r \]

continuity \[\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = \partial_t \rho + \nabla_{\parallel} \cdot (\rho \mathbf{u}_{\parallel}) + \epsilon \rho w \nabla \cdot \mathbf{e}_n + \partial_n (\rho w) = 0 \]

momentum \[\text{Re} \epsilon^2 \rho (\ddot{x}_{\text{ref}} + 2 \Omega_{\text{ref}} \times \mathbf{u} + D_t \mathbf{u}) + \nabla \rho = \epsilon^2 \nabla \cdot \Delta \]
\[\Delta = \eta [\nabla \mathbf{u} + (\nabla \mathbf{u})^\text{tr}] + (\eta' - \frac{2}{3} \eta) (\nabla \cdot \mathbf{u}) I \]

energy \[\text{Pe} \epsilon^2 \rho c_p D_t \theta = \beta (1 + \gamma \theta) D_t p + \epsilon^2 [\Phi + \nabla \cdot (\lambda \nabla \theta)] \]
\[\Phi = \Delta \cdot \nabla \mathbf{u}, \quad \gamma := \tilde{T}_r / \tilde{T}_a \]

\[\epsilon \ll 1, \quad \nabla \ll \epsilon^{-1} \partial_n \partial_n \]

momentum \[0 \sim -\nabla_{\parallel} p + \partial_n (\eta \partial_n \mathbf{u}_{\parallel}) , \quad 0 \sim \epsilon^{-1} \partial_n p \]
Navier–Stokes eqs

\[\tilde{\rho}_r := \tilde{\eta}_r \tilde{U} \tilde{L} / \tilde{C}^2, \quad \tilde{T}_r := \tilde{\eta}_r \tilde{U}^2 / \tilde{\lambda}_r \]

state

\[q = q(\rho, 1 + \gamma \theta), \quad q = \rho, \eta, \lambda, c_p \Rightarrow \tilde{\rho}_r \]

continuity

\[\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = \partial_t \rho + \nabla_{\parallel} \cdot (\rho \mathbf{u}_{\parallel}) + \epsilon \rho w \nabla_{\parallel} \cdot \mathbf{e}_n + \partial_n (\rho w) = 0 \]

momentum

\[\text{Re} \epsilon^2 \rho (\ddot{x}_{\text{ref}} + 2 \Omega_{\text{ref}} \times \mathbf{u} + D_t \mathbf{u}) + \nabla p = \epsilon^2 \nabla \cdot \Delta \]

\[\Delta = \eta [\nabla \mathbf{u} + (\nabla \mathbf{u})^{\text{tr}}] + (\eta' - \frac{2}{3} \eta)(\nabla \cdot \mathbf{u}) I \]

energy

\[\text{Pe} \epsilon^2 \rho c_p D_t \theta = \beta (1 + \gamma \theta) D_t \rho + \epsilon^2 [\Phi + \nabla \cdot (\lambda \nabla \theta)] \]

\[\Phi = \Delta \cdot \nabla \mathbf{u}, \quad \gamma := \tilde{T}_r / \tilde{T}_a \]

\[\epsilon \ll 1, \quad \nabla \sim \epsilon^{-1} \mathbf{e}_n \partial_n \]

momentum

\[0 \sim -\nabla_{\parallel} \rho + \partial_n (\eta \partial_n \mathbf{u}_{\parallel}), \quad 0 \sim \epsilon^{-1} \partial_n \rho \]
Navier–Stokes eqs

\[\tilde{\rho}_r := \tilde{\eta}_r \tilde{U} \tilde{L} / \tilde{C}^2 , \quad \tilde{T}_r := \tilde{\eta}_r \tilde{U}^2 / \tilde{\lambda}_r \]

state
\[q = q(\rho, 1 + \gamma \theta) , \quad q = \rho , \eta , \lambda , c_p \quad \Rightarrow \quad \tilde{\rho}_r \]

continuity
\[\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) \equiv \partial_t \rho + \nabla_\| \cdot (\rho \mathbf{u}_\|) + \epsilon \rho \mathbf{w} \nabla_\| \cdot \mathbf{e}_n + \partial_n (\rho \mathbf{w}) = 0 \]

momentum
\[\text{Re} \epsilon^2 \rho (\ddot{x}_{\text{ref}} + 2 \Omega_{\text{ref}} \times \mathbf{u} + D_t \mathbf{u}) + \nabla p = \epsilon^2 \nabla \cdot \Delta \]
\[\Delta = \eta [\nabla \mathbf{u} + (\nabla \mathbf{u})^\text{tr}] + (\eta' - \frac{2}{3} \eta)(\nabla \cdot \mathbf{u}) \mathbf{l} \]

energy
\[\text{Pe} \epsilon^2 \rho c_p D_t \theta = \beta (1 + \gamma \theta) D_t p + \epsilon^2 [\Phi + \nabla \cdot (\lambda \nabla \theta)] \]
\[\Phi = \Delta \cdot \nabla \mathbf{u} , \quad \gamma := \tilde{T}_r / \tilde{T}_a \]

\[\epsilon \ll 1 , \quad \nabla \sim \epsilon^{-1} \mathbf{e}_n \partial_n \]

momentum
\[0 \sim -\nabla_\| p + \partial_n (\eta \partial_n \mathbf{u}_\|) , \quad 0 \sim \epsilon^{-1} \partial_n p \]
Navier–Stokes eqs

\[\tilde{p}_r := \tilde{\eta}_r \tilde{U} L / \tilde{C}^2 , \quad \tilde{T}_r := \tilde{\eta}_r \tilde{U}^2 / \tilde{\lambda}_r \]

state

\[q = q(\rho, 1 + \gamma \theta) , \quad q = \rho , \eta , \lambda , c_p \quad \Rightarrow \quad \tilde{p}_r \]

continuity

\[\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) \equiv \partial_t \rho + \nabla_{||} \cdot (\rho \mathbf{u}_{||}) + \epsilon \rho \mathbf{w} \nabla_{||} \cdot \mathbf{e}_n + \partial_n (\rho \mathbf{w}) = 0 \]

momentum

\[\text{Re} \epsilon^2 \rho (\ddot{x}_{\text{ref}} + 2 \Omega_{\text{ref}} \times \mathbf{u} + D_t \mathbf{u}) + \nabla p = \epsilon^2 \nabla \cdot \Delta \]

\[\Delta = \eta \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^\text{tr} \right] + (\eta' - \frac{2}{3} \eta)(\nabla \cdot \mathbf{u}) \mathbf{l} \]

energy

\[\text{Pe} \epsilon^2 \rho c_p D_t \theta = \beta (1 + \gamma \theta) D_t p + \epsilon^2 \left[\Phi + \nabla \cdot (\lambda \nabla \theta) \right] \]

\[\Phi = \Delta \cdot \nabla \mathbf{u} , \quad \gamma := \tilde{T}_r / \tilde{T}_a \]

\[\epsilon \ll 1 , \quad \nabla \sim \epsilon^{-1} \mathbf{e}_n \partial_n \]

momentum

\[0 \sim -\nabla_{||} p + \partial_n (\eta \partial_n \mathbf{u}_{||}) , \quad 0 \sim \epsilon^{-1} \partial_n p \]
Navier–Stokes eqs

\[\tilde{\rho}_r := \tilde{\eta}_r \tilde{U}L/\tilde{C}^2 , \quad \tilde{T}_r := \tilde{\eta}_r \tilde{U}^2/\tilde{\lambda}_r \]

state

\[q = q(\rho, 1 + \gamma \theta) , \quad q = \rho , \eta , \lambda , c_p \quad \Rightarrow \quad \tilde{\rho}_r \]

continuity

\[\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) \equiv \partial_t \rho + \nabla_{||} \cdot (\rho \mathbf{u}_{||}) + \epsilon \rho w \nabla_{||} \cdot \mathbf{e}_n + \partial_n (\rho w) = 0 \]

momentum

\[Re \epsilon^2 \rho \left(\ddot{x}_{\text{ref}} + 2\Omega_{\text{ref}} \times \mathbf{u} + D_t \mathbf{u} \right) + \nabla p = \epsilon^2 \nabla \cdot \Delta \]

\[\Delta = \eta \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^{\text{tr}} \right] + (\eta' - \frac{2}{3} \eta) (\nabla \cdot \mathbf{u}) \mathbf{l} \]

energy

\[Pe \epsilon^2 \rho c_p D_t \theta = \beta (1 + \gamma \theta) D_t p + \epsilon^2 \left[\Phi + \nabla \cdot (\lambda \nabla \theta) \right] \]

\[\Phi = \Delta \cdot \nabla \mathbf{u} , \quad \gamma := \tilde{T}_r / \tilde{T}_a \]

\[\epsilon \ll 1 , \quad \nabla \sim \epsilon^{-1} \mathbf{e}_n \partial_n \]

momentum

\[0 \sim -\nabla_{||} \rho + \partial_n (\eta \partial_n \mathbf{u}_{||}) , \quad 0 \sim \epsilon^{-1} \partial_n \rho \]

\[B. Scheichl (AC²T, VUT) \quad Fluid mechanics of lubrication I \]

12 / 21
Navier–Stokes eqs

\[\tilde{\rho}_r := \tilde{\eta}_r \tilde{U} \tilde{L} / \tilde{C}^2, \quad \tilde{T}_r := \tilde{\eta}_r \tilde{U}^2 / \tilde{\lambda}_r \]

state \[q = q(\rho, 1 + \gamma \theta), \quad q = \rho, \eta, \lambda, c_p \quad \Rightarrow \quad \tilde{\rho}_r \]

continuity \[\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) \equiv \partial_t \rho + \nabla_\parallel \cdot (\rho \mathbf{u}_\parallel) + \epsilon \rho \mathbf{w} \nabla_\parallel \cdot \mathbf{e}_n + \partial_n (\rho \mathbf{w}) = 0 \]

momentum \[\text{Re} \epsilon^2 \rho (\ddot{x}_{\text{ref}} + 2 \Omega_{\text{ref}} \times \mathbf{u} + D_t \mathbf{u}) + \nabla p = \epsilon^2 \nabla \cdot \Delta \]
\[\Delta = \eta \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^\text{tr} \right] + (\eta' - \frac{2}{3} \eta) (\nabla \cdot \mathbf{u}) \mathbf{l} \]

energy \[\text{Pe} \epsilon^2 \rho c_p D_t \theta = \beta (1 + \gamma \theta) D_t p + \epsilon^2 \left[\Phi + \nabla \cdot (\lambda \nabla \theta) \right] \]
\[\Phi = \Delta \cdot \nabla \mathbf{u}, \quad \gamma := \tilde{T}_r / \tilde{T}_a \]

\[\epsilon \ll 1, \quad \nabla \sim \epsilon^{-1} \mathbf{e}_n \partial_n \]

momentum \[0 \sim -\nabla_\parallel \rho + \partial_n (\eta \partial_n \mathbf{u}_\parallel), \quad 0 \sim \epsilon^{-1} \partial_n \rho \]
Outline

3 Classical theory
 • First principles
 • Problem formulation
 • Asymptotic theory
Limit process

classical lubrication approximation

thin film \(\epsilon \ll 1 \)

quasi-isothermal \(\gamma \ll 1 \)

inertia neglected \(Re \epsilon^2 \ll 1 \), laminar flow: \(Re \lesssim 10^5 \)

typical values \(\epsilon \lesssim 10^{-3}, \quad Pr_{oil} \approx 70 \ldots 10^3 \quad \Rightarrow \quad Pe \lesssim 10^8, \quad Pe \epsilon^2 \lesssim 10^2 ! \)

\[
\nabla \cdot (\rho \mathbf{u}) \sim \nabla_{||} \cdot (\rho \mathbf{u}_{||}) + \partial_n (\rho \mathbf{w}) + O(\epsilon)
\]

\[
\rho(p, 1 + \gamma \theta) \sim \rho(p, 1) + O(\gamma)
\]

expansions

\[
\nabla_{||} \sim \nabla_{||}^0 + O(\epsilon) \quad \nabla_{||}^0 = \nabla_{||} \quad \text{for} \quad n = 0
\]

\[
[u_{||}, w, p, \rho, \theta, \eta, \ldots](x_{||}, n, t; \epsilon, Re, \gamma, \ldots) \sim [U, W, P, Q, \Theta, \mathcal{N}](x_{||}, n, t) + \ldots
\]

\[
c \sim C(x_{||}, t) + O(\epsilon) \quad \text{journal bearing !}
\]
Limit process

classical lubrication approximation

- thin film \(\epsilon \ll 1 \)
- quasi-isothermal \(\gamma \ll 1 \)
- inertia neglected \(Re \epsilon^2 \ll 1 \), laminar flow: \(Re \lesssim 10^5 \)

- typical values \(\epsilon \lesssim 10^{-3} \), \(Pr_{oil} \approx 70 \ldots 10^3 \) \(\Rightarrow Pe \lesssim 10^8 \), \(Pe \epsilon^2 \lesssim 10^2 \)

\[
\nabla \cdot (\rho \mathbf{u}) \sim \nabla_{||} \cdot (\rho \mathbf{u}_{||}) + \partial_n (\rho w) + O(\epsilon)
\]
\[
\rho(p, 1 + \gamma \theta) \sim \rho(p, 1) + O(\gamma)
\]

expansions

\[
\nabla_{||} \sim \nabla_{||}^0 + O(\epsilon) \quad \nabla_{||}^0 = \nabla_{||} \quad \text{for} \quad n = 0
\]
\[
[u_{||}, w, \rho, \rho, \theta, \eta, \ldots](x_{||}, n, t; \epsilon, Re, \gamma, \ldots) \sim [U, W, P, Q, \Theta, N](x_{||}, n, t) + \ldots
\]
\[
c \sim C(x_{||}, t) + O(\epsilon) \quad \text{journal bearing}
\]
Limit process

classical lubrication approximation

thin film $\epsilon \ll 1$

quasi-isothermal $\gamma \ll 1$

inertia neglected $Re \epsilon^2 \ll 1$, laminar flow: $Re \lesssim 10^5$

typical values $\epsilon \lesssim 10^{-3}$, $Pr_{oil} \approx 70 \ldots 10^3 \Rightarrow Pe \lesssim 10^8$, $Pe \epsilon^2 \lesssim 10^2$

$$\nabla \cdot (\rho \mathbf{u}) \sim \nabla_{||} \cdot (\rho \mathbf{u}_{||}) + \partial_n (\rho \mathbf{w}) + O(\epsilon)$$

$$\rho(p, 1 + \gamma \theta) \sim \rho(p, 1) + O(\gamma)$$

expansions

$$\nabla_{||} \sim \nabla^0_{||} + O(\epsilon) \quad \nabla^0_{||} = \nabla_{||} \quad \text{for} \quad n = 0$$

$$[\mathbf{u}_{||}, w, p, \rho, \theta, \eta, \ldots](x_{||}, n, t; \epsilon, Re, \gamma, \ldots) \sim [\mathbf{U}, W, P, Q, \Theta, N](x_{||}, n, t) + \ldots$$

$$c \sim C(x_{||}, t) + O(\epsilon) \quad \text{journal bearing}!$$

B. Scheichl (AC²T, VUT)
Limit process

classical lubrication approximation

thin film \(\epsilon \ll 1 \)

quasi-isothermal \(\gamma \ll 1 \)

inertia neglected \(Re \epsilon^2 \ll 1 \), laminar flow: \(Re \lesssim 10^5 \)

typical values \(\epsilon \lesssim 10^{-3}, Pr_{oil} \approx 70 \ldots 10^3 \) \(100 \ldots 20^\circ C \Rightarrow Pe \lesssim 10^8, Pe \epsilon^2 \lesssim 10^2 \)

\[\nabla \cdot (\rho u) \sim \nabla_\parallel \cdot (\rho u_\parallel) + \partial_n (\rho w) + O(\epsilon) \]

\[\rho (p, 1 + \gamma \theta) \sim \rho (p, 1) + O(\gamma) \]

expansions

\[\nabla_\parallel \sim \nabla_\parallel^0 + O(\epsilon) \quad \nabla_\parallel^0 = \nabla_\parallel \quad \text{for} \quad n = 0 \]

\[[u_\parallel, w, p, \rho, \theta, \eta, \ldots] (x_\parallel, n, t; \epsilon, Re, \gamma, \ldots) \sim [U, W, P, Q, \Theta, \mathcal{N}] (x_\parallel, n, t) + \cdots \]

\[c \sim C(x_\parallel, t) + O(\epsilon) \quad \text{journal bearing} \]
Limit process

classical lubrication approximation

thin film $\epsilon \ll 1$

quasi-isothermal $\gamma \ll 1$

inertia neglected $Re \epsilon^2 \ll 1$, laminar flow: $Re \lesssim 10^5$

typical values $\epsilon \lesssim 10^{-3}$, $Pr_{oil} \approx 70 \ldots 10^3$ \Rightarrow $Pe \lesssim 10^8$, $Pe \epsilon^2 \lesssim 10^2$

$\nabla \cdot (\rho \mathbf{u}) \sim \nabla_{||} \cdot (\rho \mathbf{u}_{||}) + \partial_n (\rho w) + O(\epsilon)$

$\rho (p, 1 + \gamma \theta) \sim \rho (p, 1) + O(\gamma)$

expansions

$\nabla_{||} \sim \nabla^0_{||} + O(\epsilon)$ \quad $\nabla^0_{||} = \nabla_{||}$ for $n = 0$

$[\mathbf{u}_{||}, w, p, \rho, \theta, \eta, \ldots](x_{||}, n, t; \epsilon, Re, \gamma, \ldots) \sim [\mathbf{U}, W, P, Q, \Theta, \mathcal{N}](x_{||}, n, t) + \cdots$

c $\sim C(x_{||}, t) + O(\epsilon)$ \quad journal bearing!
Leading-order eqs

state & energy \[Q = Q(P, 1), \quad Q = Q, \quad N \]

continuity \[\partial_t Q + \nabla^0 \cdot (Q U) + \partial_N (Q W) = 0 \] (1)

momentum \[\nabla^0 P = \partial_n (N \partial_n U), \quad \partial_n P = 0 \quad \Rightarrow \quad \partial_n Q = \partial_n N = 0 \] (2)

kinematic BCs

\(n = 0 : \quad U = U_1(x_\parallel, t), \quad W = W_{p,1}(x_\parallel, t) \) (3)

\(n = C(x_\parallel, t) : \quad U = U_2(x_\parallel, t), \quad W = \partial_t C + U_2 \cdot \nabla^0 C + W_{p,2}(x_\parallel, t) \) (4)

(1), (3), (4) \[\Rightarrow \quad \partial_t (Q C) + \nabla^0 \cdot \left(Q \int_0^C U \, dn \right) + Q(W_{p,2} - W_{p,1}) = 0 \]

(2), (3), (4) \[U = \frac{\nabla^0 P}{2N(P)} n(n - C) + \frac{n}{C}(U_2 - U_1) \]

Hagen–Poisseuille Couette
Leading-order eqs

state & energy \(Q = Q(P,1) , \quad Q = Q, \mathcal{N} \)

continuity \(\partial_t Q + \nabla_\parallel^0 \cdot (QU) + \partial_N (QW) = 0 \) \hspace{1cm} (1)

momentum \(\nabla_\parallel^0 P = \partial_n (\mathcal{N} \partial_n U) , \quad \partial_n P = 0 \quad \Rightarrow \quad \partial_n Q = \partial_n \mathcal{N} = 0 \) \hspace{1cm} (2)

kinematic BCs

\(n = 0 : \quad U = U_1(x_\parallel, t) , \quad W = W_{p,1}(x_\parallel, t) \) \hspace{1cm} (3)

\(n = C(x_\parallel, t) : \quad U = U_2(x_\parallel, t) , \quad W = \partial_t C + U_2 \cdot \nabla_\parallel^0 C + W_{p,2}(x_\parallel, t) \) \hspace{1cm} (4)

(1), (3), (4) \quad \Rightarrow \quad \partial_t (QC) + \nabla_\parallel^0 \cdot \left(Q \int_0^C U \, dn \right) + Q(W_{p,2} - W_{p,1}) = 0

(2), (3), (4) \quad \Rightarrow \quad U = \frac{\nabla_\parallel^0 P}{2N(P)} n(n - C) + \frac{n}{C} (U_2 - U_1)

\begin{align*}
\text{Hagen–Poiseuille} & \quad \text{Couette} \\
\end{align*}
Leading-order eqs

state & energy \[Q = Q(P, 1), \quad Q = Q, \quad N \]

continuity \[\partial_t Q + \nabla^0 \cdot (Q \mathbf{U}) + \partial_N (Q \mathbf{W}) = 0 \] (1)

momentum \[\nabla^0 P = \partial_n (N \partial_n \mathbf{U}), \quad \partial_n P = 0 \quad \Rightarrow \quad \partial_n Q = \partial_n N = 0 \] (2)

kinematic BCs

\(n = 0: \) \[\mathbf{U} = U_1(x_{||}, t), \quad \mathbf{W} = W_{p,1}(x_{||}, t) \] (3)

\(n = C(x_{||}, t): \) \[\mathbf{U} = U_2(x_{||}, t), \quad \mathbf{W} = \partial_t C + U_2 \cdot \nabla^0 C + W_{p,2}(x_{||}, t) \] (4)

(1), (3), (4) \[\Rightarrow \quad \partial_t (QC) + \nabla^0 \cdot \left(Q \int_0^C \mathbf{U} \, dn \right) + Q \left(W_{p,2} - W_{p,1} \right) = 0 \]

(2), (3), (4) \[\Rightarrow \quad \mathbf{U} = \frac{\nabla^0 P}{2N(P)} n(n - C) + \frac{n}{C} (U_2 - U_1) \]
Leading-order eqs

state & energy \[Q = Q(P, 1), \quad Q = Q, \quad \mathcal{N} \]

continuity \[\partial_t Q + \nabla_\parallel^0 \cdot (Q U) + \partial_N (Q W) = 0 \] (1)

momentum \[\nabla_\parallel^0 P = \partial_n (\mathcal{N} \partial_n U), \quad \partial_n P = 0 \quad \Rightarrow \quad \partial_n Q = \partial_n \mathcal{N} = 0 \] (2)

kinematic BCs

\[n = 0 : \quad U = U_1(x_\parallel, t), \quad W = W_{p,1}(x_\parallel, t) \] (3)

\[n = C(x_\parallel, t) : \quad U = U_2(x_\parallel, t), \quad W = \partial_t C + U_2 \cdot \nabla_\parallel^0 C + W_{p,2}(x_\parallel, t) \] (4)

\[(1), (3), (4) \quad \Rightarrow \quad \partial_t (QC) + \nabla_\parallel^0 \cdot \left(Q \int_0^C U \, dn \right) + Q \left(W_{p,2} - W_{p,1} \right) = 0 \]

\[(2), (3), (4) \quad \Rightarrow \quad U = \frac{\nabla_\parallel^0 P}{2 \mathcal{N}(P)} n(n - C) + \frac{n}{C} (U_2 - U_1) + U_1 \]

Hagen–Poisseuille \quad Couette \quad sliding
Integral mass balance

\[
\int_0^C U \, dn = Q + C \, U_m, \quad Q := -\frac{C^3 \nabla^0_\parallel P}{12 \, \mathcal{N}}, \quad U_m := \frac{U_1 + U_2}{2}
\]

Reynolds eq

O. Reynolds (1886), A. Sommerfeld (1904), L. Prandtl (1937)

\[
\nabla^0_\parallel (-Q \, Q) = (\partial_t + U_m \cdot \nabla^0_\parallel)(Q \, C) + Q \, C \, \nabla^0_\parallel \cdot U_m + Q \, (W_{p,2} - W_{p,1})
\]

\[
Q = Q(P), \quad \mathcal{N} = \mathcal{N}(P)
\]

elliptic 2nd-order PDE for \(P(x_\parallel, t) \) and given \(C(x_\parallel, t), \, U_m(x_\parallel, t) \)

kinematic wave operator \(\partial_t + U_m \cdot \nabla^0_\parallel \) most relevant for gas bearings

linear for incompressible lubricant with constant properties \((Q \equiv \mathcal{N} \equiv 1) \)

in general to be solved numerically
Integral mass balance

\[\int_{0}^{C} \mathbf{U} \, dn = Q + C \, \mathbf{U}_m, \quad Q := -\frac{C^3 \nabla^0 P}{12 \mathcal{N}}, \quad \mathbf{U}_m := \frac{\mathbf{U}_1 + \mathbf{U}_2}{2} \]

Reynolds eq

O. Reynolds (1886), A. Sommerfeld (1904), L. Prandtl (1937)

\[\nabla^0_\parallel (\nabla^0_\parallel - Q \mathbf{Q}) = \left(\partial_t \right) + \left(\mathbf{U}_m \cdot \nabla^0_\parallel \right) (Q \mathbf{C}) + QC \nabla^0_\parallel \cdot \mathbf{U}_m + Q \left(W_{p,2} - W_{p,1} \right) \]

permeability

\[Q = Q(P), \quad \mathcal{N} = \mathcal{N}(P) \]

elliptic 2nd-order PDE for \(P(\mathbf{x}_\parallel, t) \) and given \(C(\mathbf{x}_\parallel, t), \mathbf{U}_m(\mathbf{x}_\parallel, t) \)

kinematic wave operator \(\partial_t + \mathbf{U}_m \cdot \nabla^0_\parallel \) most relevant for gas bearings

linear for incompressible lubricant with constant properties \((Q \equiv \mathcal{N} \equiv 1) \)

in general to be solved numerically
Reynolds eq – some important properties

\[Q = -\frac{C^3 \nabla^0 P}{12 N}, \quad U_m = \frac{U_1 + U_2}{2} \]

\[\nabla^0 \cdot (-QQ) = (\partial_t + U_m \cdot \nabla^0)(QC) + QC \nabla^0 \cdot U_m + Q(W_{p,2} - W_{p,1}) \]

\[Q = Q(P), \quad N = N(P) \]

rigid contacts, no Navier slip

\[\nabla^0 \cdot [U_1, U_2, U_m] = 0 \]

Galilean transformation

\[[x, t] = [x', S(t'), t'] \]

\[[\nabla^0, \partial_t] = [\nabla^0, \partial_t] - \dot{\mathbf{S}} \nabla^0 \]

\[[C, P, U_{1,2}](x, t) = [C', P', U'_{1,2}](x', t'), \quad [Q, N](P) = [Q', N'](P') \]

\[[U_1, U_2, U_m] \rightarrow [U'_1, U'_2, U'_m] - \dot{\mathbf{S}} \quad \text{invariance against sliding motion } \mathbf{S} \]
Reynolds eq – some important properties

\[Q = -\frac{C^3 \nabla^0_\parallel P}{12 \mathcal{N}}, \quad U_m = \frac{U_1 + U_2}{2} \]

\[\nabla^0_\parallel \cdot (-QQ) = (\partial_t + U_m \cdot \nabla^0_\parallel)(QC) + QC \nabla^0_\parallel \cdot U_m + Q(W_{p,2} - W_{p,1}) \]

\[Q = Q(P), \quad \mathcal{N} = \mathcal{N}(P) \]

rigid contacts, no Navier slip

\[\nabla^0_\parallel \cdot [U_1, U_2, U_m] = 0 \]

Galilean transformation

\[[x_\parallel, t] = [x'_\parallel + S(t'), t'] \]

\[[\nabla^0_\parallel, \partial_t] = [\nabla^0_\parallel', \partial_{t'} - \dot{S} \nabla^0_\parallel'] \]

\[[C, P, U_{1,2}](x_\parallel, t) = [C', P', U'_{1,2}](x'_\parallel, t'), \quad [Q, \mathcal{N}](P) = [Q', \mathcal{N}'](P') \]

\[[U_1, U_2, U_m] \rightarrow [U'_1, U'_2, U'_m] - \dot{S} \quad \text{invariance against sliding motion } S \]
Reynolds eq – some important properties

\[Q = -\frac{C^3 \nabla^0 P}{12 \mathcal{N}}, \quad U_m = \frac{U_1 + U_2}{2} \]

\[\nabla^0 \cdot (-QQ) = (\partial_t + U_m \cdot \nabla^0)(QC) + QC \nabla^0 \cdot U_m + Q(W_{p,2} - W_{p,1}) \]

\[Q = Q(P), \quad \mathcal{N} = \mathcal{N}(P) \]

rigid contacts, no Navier slip \[\nabla^0 \cdot [U_1, U_2, U_m] = 0 \]

Galilean transformation \[[x, t] = [x', t'] \]

\[[\nabla^0, \partial_t] = [\nabla^0', \partial_{t'} - \dot{S} \nabla^0'] \]

\[[C, P, U_{1,2}](x, t) = [C', P', U'_{1,2}](x', t'), \quad [Q, \mathcal{N}](P) = [Q', \mathcal{N}'](P') \]

\[[U_1, U_2, U_m] \mapsto [U'_1, U'_2, U'_m] - \dot{S} \quad \text{invariance against sliding motion } S \]
Reynolds eq – some important properties

\[Q = -\frac{C^3 \nabla^0 P}{12 \mathcal{N}}, \quad U_m = \frac{U_1 + U_2}{2} \]

\[\nabla^0 \cdot (-QQ) = (\partial_t + U_m \cdot \nabla^0)(QC) + QC \nabla^0 \cdot U_m + Q(W_{p,2} - W_{p,1}) \]

\[Q = Q(P), \quad \mathcal{N} = \mathcal{N}(P) \]

rigid contacts, no Navier slip \[\nabla^0 \cdot [U_1, U_2, U_m] = 0 \]

Galilean transformation \[[x_||, t] = [x'_|| + S(t'), t'] \]

\[[\nabla^0_||, \partial_t] = [\nabla^0_||', \partial_{t'} - \dot{S} \nabla^0_||'] \]

\[[C, P, U_{1,2}](x_||, t) = [C', P', U'_{1,2}](x'_||, t'), \quad [Q, \mathcal{N}](P) = [Q', \mathcal{N}'](P') \]

\[[U_1, U_2, U_m] \mapsto [U'_1, U'_2, U'_m] - \dot{S} \quad \text{invariance against sliding motion } S \]
Validation of tribo-systems

typically find

- \(P(x_{||}, t), \ x_{||} \in \Omega \) subject to \(P(\partial \Omega, t) = P_a \)

- load-bearing capacity \(F(t) = \int_{\Omega} P e_n \, d\Omega \)

clearance \(C(x_{||}, t) \) is

- prescribed

- found from fluid-structure interaction machinery (e.g., shaft) dynamics \(\Rightarrow F = F(t) \) and \(t(C, C) \)

EHL \(\Rightarrow P = P(C) \)
Validation of tribo-systems

typically find

- \(P(\mathbf{x}_\parallel, t), \mathbf{x}_\parallel \in \Omega \) subject to \(P(\partial \Omega, t) = P_a \)

- load-bearing capacity \(F(t) = \int_{\Omega} P \mathbf{e}_n \, d\Omega \)

clearance \(C(\mathbf{x}_\parallel, t) \) is

- prescribed

- found from fluid–structure interaction
 machinery (e.g. shaft) dynamics \(\Rightarrow F = F(\partial_{\mathbf{n}} C, \partial_t C, C) \)
 EHL \(\Rightarrow P = P(C) \)
Validation of tribo-systems

typically find

- \(P(x_{||}, t), \ x_{||} \in \Omega \) subject to \(P(\partial \Omega, t) = P_a \)
- load-bearing capacity \(F(t) = \int_{\Omega} P e_n \, d\Omega \)

Clearance \(C(x_{||}, t) \) is

- prescribed
- found from fluid–structure interaction

machinery (e.g. shaft) dynamics \(\Rightarrow F = F(\partial_{tt} C, \partial_t C, C) \)

EHL \(\Rightarrow P = P(C) \)
Validation of tribo-systems

typically find

- \(P(\mathbf{x}_\parallel, t), \mathbf{x}_\parallel \in \Omega \) subject to \(P(\partial \Omega, t) = P_a \)

- load-bearing capacity \(F(t) = \int_{\Omega} P \mathbf{e}_n \, d\Omega \)

clearance \(C(\mathbf{x}_\parallel, t) \) is

- prescribed
- found from fluid–structure interaction

 machinery (e.g. shaft) dynamics \(\Rightarrow F = F(\partial_{tt} C, \partial_t C, C) \)

 EHL \(\Rightarrow P = P(C) \)
Validation of tribo-systems

typically find

\begin{itemize}
 \item \(P(x_{||}, t) \), \(x_{||} \in \Omega \) subject to \(P(\partial \Omega, t) = P_a \)
 \item load-bearing capacity \(F(t) = \int_{\Omega} P e_n \, d\Omega \)
\end{itemize}

clearance \(C(x_{||}, t) \) is

\begin{itemize}
 \item prescribed
 \item found from fluid–structure interaction
 \item machinery (e.g. shaft) dynamics \(\Rightarrow F = F(\partial_{tt} C, \partial_t C, C) \)
 \item EHL \(\Rightarrow P = P(C) \)
\end{itemize}
Classical application: journal bearing

reference quantities

\[\tilde{U}_m = \tilde{\omega} \tilde{R}_i , \quad \tilde{p}_r = \tilde{\eta}_r \tilde{\omega} \tilde{R}_i^2 / \tilde{C}^2 \]

geometrical parameters

\[\epsilon = \tilde{C} / \tilde{R}_i \ll 1 , \quad \text{eccentricity} \quad \epsilon = \tilde{e} / (\tilde{R}_a - \tilde{R}_i) \]

non-dimensional quantities

\[C = 1 + \epsilon \cos \theta + O(\epsilon^2) , \quad U_m (= \mathcal{N} = \mathcal{Q}) = 1 \]
Further outlook

include

- EHL
- inertia ($Re\epsilon^2 \sim 1$, start-up, high-speed rotors, rapid load cycles)
- turbulence
- film rupture & cavitation (surface tension)
- effects acting on micro-scale $\ll \epsilon$ (surface roughness, mixed friction)

rational method: perturbation techniques

- multiple scales, matched asymptotic expansions
- numerical solution of reduced problem (simulation tools)
Further outlook

include

- EHL
- inertia \((Re \epsilon^2 \sim 1, \text{start-up, high-speed rotors, rapid load cycles})\)
- turbulence
- film rupture & cavitation (surface tension)
- effects acting on micro-scale \(\ll \epsilon\) (surface roughness, mixed friction)

rational method: perturbation techniques

- multiple scales, matched asymptotic expansions
- numerical solution of reduced problem (simulation tools)
Further outlook

include

- EHL
- inertia \((Re \epsilon^2 \sim 1\), start-up, high-speed rotors, rapid load cycles\)
- turbulence
- film rupture & cavitation (surface tension)
- effects acting on micro-scale \(\ll \epsilon\) (surface roughness, mixed friction)

rational method: perturbation techniques

- multiple scales, matched asymptotic expansions
- numerical solution of reduced problem (simulation tools)
Thank you for your attention!