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Abstract
Although the flux density map of a bulk superconductor provides in principle sufficient
information for calculating the magnitude and the direction of the supercurrent flow, the
inversion of the Biot–Savart law is ill conditioned for thick samples, thus rendering this method
unsuitable for state of the art bulk superconductors. If a thin (<1 mm) slab is cut from the bulk,
the inversion is reasonably well conditioned and the variation of the critical current density in
the sample can be calculated with adequate spatial resolution. Therefore a novel procedure is
employed, which exploits the symmetry of the problem and solves the equations non-iteratively,
assuming a planar thickness-independent current density. The calculated current density at a
certain position is found to depend on the magnetic induction. In this way the average field
dependence of the critical current density Jc(B) is also obtained at low fields, which is not
accessible to magnetization measurements due to the self-field of the sample. It is further shown
that an evaluation of magnetization loops, taking the self-field into account, results in a similar
dependence in the field range accessible to this experiment.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

At present, bulk superconductors several centimetres in
diameter and about one centimetre in thickness, trapping
remanent magnetic fields exceeding 1 T at 77 K, can be
reproducibly grown [1]. Texturing of the monolith is
achieved by top seeded melt texture growth (TSMG), where
crystallization evolves from a seed crystal placed on top of
the bulk. Five growth sectors are formed, propagating from
the facets of the crystal through the entire material [2]. The
critical currents achieved in each growth sector, especially as
a function of the seed distance, are therefore of particular
interest.

A straightforward approach is to cut the sample and to
characterize small pieces by magnetometry. However, this
procedure is destructive and takes extensive measurement time.
On the other hand, scanning Hall probe techniques can be

employed to analyse the local properties of the bulk [3].
Among them the magnetoscan technique [4] proved to provide
detailed information on the critical current flow on a local
scale. However, even the strongest permanent magnets used in
the magnetoscan device activate currents only in the uppermost
layer of the bulk. The information refers to depths of less than
1 mm [5] and the inside of the bulk cannot be probed.

Currents flowing in the entire volume of the bulk can be
activated by performing a (zero) field cooled hysteresis loop in
a magnet. In principle sufficient data to calculate the current
density on the sub-millimetre length scale, where substantial
changes in Jc are expected, can be obtained from trapped field
maps.

Although elaborate and numerically stable techniques
exist [6–8], it was shown [9] that due to the large thickness
of those samples the inverted matrix in such procedures
is notoriously ill conditioned and can even be numerically
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Figure 1. Coordinate system employed.

singular. Thus, a reduction in thickness, either by grinding or
preferably by cutting the bulk into discs, is mandatory to assess
the local critical current distribution in this way. If the disc is
sufficiently thin, a scanning mesh can be found which allows
both an analysis of the current density on the sub-millimetre
scale and a comparison to the magnetoscan signal at certain
positions.

2. Numerics

2.1. General

In the coordinate system used in the following (cf figure 1) the
top sample surface lies in the x, y-plane and the perpendicular
component of the magnetic induction B = �B · �ez is assessed.
Similarly to [6], the current density is expressed as the curl
of the magnetization density pointing in the z-direction, �J =
�∇×M �ez . This implicitly satisfies current conservation, �∇· �J =
0, for the z-independent planar current distribution �J(x, y).
Unlike in [6], the basic equation of the problem is derived
by splitting the magnetic induction into two components and
using a scalar magnetic potential (see the appendix for a
detailed derivation). Discretization of the integral equation
using cubic volume elements with constant M results in the
two-dimensional (2D) matrix equation
nx∑

k=1

ny∑

l=1

Ki, j,k,l Mk,l = Bi, j (1a)

Ki, j,k,l = F(�x,�y,�z)
∣∣∣
s(i−k+ 1

2 )

s(i−k− 1
2 )

∣∣∣
s( j−l+ 1

2 )

s( j−l− 1
2 )

∣∣∣
d

d+c
(1b)

F(�x,�y,�z) = μ0

4π
tan−1

(
�x�y

�z
√

�x2 + �y2 + �z2

)
.

(1c)

Here c denotes the sample thickness, d the distance
between the active area of the Hall probe and the top sample
surface (gap), s the step width, and i, k = 1 . . . nx , j, l =
1 . . . ny the indices on the mesh; the antiderivative F is
evaluated at the eight corners of the cubes in (1b).

Equation (1a) can be mapped one-to-one to one dimension
by substituting i ′ = i + j (nx − 1), k ′ = k + l (ny − 1). The
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Figure 2. Estimate of the condition number for the parameters used
in the experiment (s = 0.2 mm, d = 0.55 mm). Since the matrix
exceeds the Scilab memory stack, the condition number was
calculated for increasingly larger systems of up to 50 × 50 points.
The convergence of the condition number is evident. Inset:
symmetry of the matrix involved in the computation. The nine
Toeplitz blocks constitute a block Toeplitz matrix.

equation now reads

nx ny∑

k′=1

K ′
i ′,k′ Mk′ = Bi ′ (2)

and the problem can be tackled by matrix inversion algorithms.
As pointed out earlier, the matrix Ki, j,k,l is in fact a

Toeplitz block Toeplitz matrix [6]. This is a consequence of
the translation invariance of the Biot–Savart law (Ki, j,k,l =
K|i−k|,0,| j−l|,0) and results in a highly symmetric matrix K ′

i ′,k′
(cf the inset of figure 2). Therefore, both efficient storage
and a fast algorithm for solving the system can be expected.
However, [6] exploits the symmetry only for the storage of
the matrix elements, and the method of conjugated gradients
using the fast Fourier transform (FFT) is employed to solve the
linear equation. Although the procedure is fast, employing an
FFT [6, 7] implies the unnecessary assumption of periodicity
in B outside the measurement area, which may create artefacts,
if currents are flowing close to the edge of the scanning area.

Block Toeplitz matrices occur in a number of problems,
such as image reconstruction or system identification.
Fortunately, an efficient and fast algorithm, which exploits the
symmetry of the structured matrix, is provided in [10]1. The
computation time is approximately 10 min for a 200 × 200
system on a desktop PC. This is presumably longer than
FFT based algorithms, but still much less than the actual
measurement time.

2.2. Condition number

The residuum of the solution is of the order of the machine
error. However, it is shown in standard numerical algebra
textbooks that matrix inversions can amplify a relative

1 According to the online manual subroutine MB02ED uses ‘Householder
transformations, modified hyperbolic rotations and block Gaussian elimina-
tions in the Schur algorithm to solve the linear equation’. All matrices were
found to meet the prerequisite of being symmetric and numerically positive
definite.
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(measurement) error εB in the right-hand side of (2), leading
to an unknown error in the calculated magnetization density
εM . This behaviour is described by the condition number κ of
a linear system:

‖εM‖2 � κ(K ′)‖εB‖2, (3)

where the errors are measured in Euclidean norm. It was
shown in [9] that the condition number of the inverted matrix is
notoriously high for bulk superconductors. Therefore, special
attention has to be paid to the choice of the step width s,
defining κ(K ′) at a given gap d . With a realistic distance d
of about 0.15 mm (see section 3) and a sample thickness
of 0.55 mm, the condition number was estimated using the
numerical computation package Scilab [11] (cf figure 2).

As a rule of thumb one aims at a condition number κ such
that

‖εM‖2 < 1 (4)

holds. It was found that the matrix inversion is reasonably well
conditioned as long as the step width is larger than the gap. The
actual choice of s = 0.2 mm is adequate to resolve the spatial
variations of the critical current on a sub-millimetre scale. The
condition number κ ≈ 9 combined with a rough estimate
of the relative measurement error ‖εB‖2 ≈ 0.01 results in
‖εM‖2 ≈ 0.09, satisfying (4).

Calculating the current density involves computing a
(numerical) derivative, which implies that the relative error in
�J(x, y) will be high, if the change in M(x, y) (the current at

this position) vanishes, as for example outside of the bulk or in
defects. This is a peculiarity of measuring the relative error of a
quantity close to zero. Note that the absolute error in �J (x, y) is
bounded by (3) and is expected to be acceptably low for most of
the current distribution inside the sample as long as (4) holds.

3. Experimental details

A thin disc was cut from an undoped YBCO bulk
superconductor with a diameter of 26.5 mm, which was grown
by the top seeded melt growth technique [12], using a diamond
saw. The cut was made near the upper surface of the bulk
and the disc was polished with abrasive paper to a thickness
of 0.55 mm.

Commercial Hall probes from Arepoc with active areas
of 25 × 25 μm2 (trapped field map) and 50 × 50 μm2

(magnetoscan) were used in the experiments. All scans were
carried out with a step width of 0.2 mm, which allows one to
apply the inversion (see section 2.2).

For the trapped field maps a scanning area of 28 mm ×
28 mm was used. The sample was field cooled in a split coil
magnet in a field of 1.4 T. In order to minimize relaxation
effects during the measurement, the scan was started 10 min
after sweeping the magnetic field to zero. The temperature
of the liquid nitrogen bath was recorded prior to and after the
scans and was found to be 77.2 K, increasing due to oxygen
uptake by about 0.1 K during the measurement. The resistive
offset of the Hall probe was determined at the end of each
measurement, with the Hall probe still immersed in liquid
nitrogen, but at a large distance from the bulk.

A somewhat wider scanning area of 30 mm × 30 mm
was used for the magnetoscans. This precaution was taken to
assure that the magnet would not produce artefacts by stopping
over the bulk after finishing a single line of the scan. The
magnetoscan was carried out using a small SmCo permanent
magnet of 2 mm in diameter, applying an induction of around
150 mT at the top sample surface of the bulk. Further details
of the technique can be found in [4].

4. Results

4.1. Inversion of the trapped flux density profile

Assuming that the variation of the critical current over the
sample thickness can be neglected immediately implies that the
trapped field profiles recorded on the bottom and top surfaces
are identical, which was confirmed by the experiment. The
maxima of the trapped field were equal within one per cent on
both sides of the bulk and found to be 252 mT. Strong negative
fields of up to −100 mT were detected close to the edge of
the sample, which result from the high diameter to thickness
aspect ratio of the disc (cf figure 3(a)).

The high reproducibility between several measurements
shows that the gap between the Hall probe and the sample
surface (≈ 0.15 mm) remains unchanged in subsequent runs.

The inversion of the trapped flux density profile of the
bottom surface of the disc is depicted in figure 3(b). Most of
the bulk carries a current density of around 4 × 108 A m−2

in the remanent state. The defects (black arrows) close to the
edge appear as regions where the critical current is drastically
reduced, most likely due to cracks or large scale inclusions.
A remarkable result of the inversion is the detection of the c-
growth sector at the centre of the bulk. It is clearly displayed in
the current density map as a rectangular area with low critical
current density (dark region in the centre of the bulk (green
region in the online version)).

In addition, a clear negative correlation between the
critical current density and the magnitude of the perpendicular
magnetic induction B is found, for example close to one of the
a–a growth sector boundaries, where both the magnetic field
and the current density change simultaneously (small white
arrows). The correlation is most prominent at low fields, i.e.,
high current densities of up to 109 A m−2 flow close to the
sample edge, where the magnetic induction changes sign and
therefore B ∼= 0. Moreover, a point inside the bulk (lowest
white arrow) with reduced magnetic induction is reproducibly
detected, where the current density significantly exceeds the
nearby current densities. This demonstrates that a strong field
dependence of the critical current is present, especially at low
fields.

4.2. Comparison to magnetoscan

Due to the strong field dependence of the critical current, it
is difficult to compare different regions of the bulk, as the
self-field of the bulk is position dependent in the remanent
state. In contrast, in the magnetoscan the background field of
the permanent magnet is constant and the self-field is smaller,
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Figure 3. (a) A number of extended defects are detected in the
trapped flux density map (black arrows) and strong negative fields of
up to −100 mT are observed (dark area at the edge of the bulk (green
area online)). (b) The inversion reveals a strong correlation between
the magnetic induction and the current density (white arrows in (a),
(b)). In the defects (black arrows) as well as in the c-axis growth
sector (dark (green) rectangular area in the centre) the critical current
density is significantly reduced. (c) The c-axis growth sector is again
detected by the magnetoscan. The small length scale of the variations
in the signal indicates strong local changes in the critical current
(grey arrow). (The black rectangles indicate the cubes cut for
magnetometry experiments.)
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Figure 4. (a) Jc(B > 0) correlation from the inversion, showing the
average field dependence of the critical current density. The
magnetization Jc(H) data are similar to the smoothed data from the
current calculation (black line) for high fields. The curves differ at
low fields, because the self-field is not taken into account in the
Jc(H) data of the cubes. Further, the critical currents vary also from
sample to sample in the magnetization data; the cubes cut from the
seed area show the lowest critical current density. (b) Evaluation of
the hysteresis loop for cube #1 taking the self-field into account. The
field generated by the supercurrents in the sample shifts the applied
magnetic induction to higher fields (arrow), resulting in a Jc(B)
dependence, which is now similar to the average data obtained from
the current calculation. There is no indication for a flattening of the
curve at small fields.

since the currents are activated only in an area of about the
magnet’s diameter [5].

All except one of the prominent defects are found in the
magnetoscan (upper black arrow in figure 3). A possible
explanation would be a large defect or inclusion at a depth
that exceeds the penetration depth of the permanent magnet.
Similar to the inversion, the reduction of the critical current
is evident from the low magnetic response in the c-axis
growth sector. Moreover, the observable granularity on a sub-
millimetre scale of the bulk’s response indicates strong local
variations in the critical current density.

4.3. Comparison to magnetometry

The calculated current densities can be correlated with the z-
component of the magnetic induction at their position. For
this purpose the magnetic induction in the central plane inside
the bulk was calculated after the inversion (see the appendix),
resulting in a Jc(B) plot (cf figure 4). Only points with positive
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induction B > 0 were considered, which effectively cuts off
the noise due to the extended defects close to the sample edge.

For comparison four cubes (2 × 2 × 0.55 mm3) were
cut from different positions of the bulk (cf figure 3(c)) and
analysed in a SQUID magnetometer at the temperature of
the liquid nitrogen bath during the previous scans. The
magnetization loops were evaluated assuming the Bean model.
A large sample to sample variation was found, the lowest
critical current density being located at the c-axis growth sector
in the centre of the bulk (cubes #3 and #4), in agreement with
the above results. Although numerical errors in the inversion
procedure (mainly due to the numerical derivation) cannot
completely be excluded, the variation in the magnetization data
elucidates the scatter in the calculated current densities, if one
takes into account that the averaged volume is much larger in
the SQUID measurements. This suggests that the scatter is
primarily due to strong local variations of the critical current in
the bulk, which is further supported by the granularity observed
in the magnetoscan signal (cf figure 3(c)).

The average field dependence of the critical current
density from the magnetization loops Jc(H ) shows good
agreement with Jc(B) obtained from the trapped flux density
maps, except at low fields, where the curves clearly differ
(cf figure 4(a)). This can be explained in terms of the sample’s
self-field, which is not considered in the evaluation of the
magnetization experiment, since it takes only the externally
applied field μ0 H into account and neglects the field generated
by the currents flowing in the sample.

To estimate this contribution the magnetoscan serves as a
first approximation. This is because the currents are induced in
an area determined by the magnet’s diameter and therefore the
volume of current flow mainly contributing to the magnetoscan
signal is similar to the cubes used in magnetometry. Indeed the
average induction of the magnetoscan (≈ 70 mT) is close to
the field at which Jc(H ) and Jc(B) start to differ.

For a more detailed analysis an evaluation method was
applied (again based on the Bean model), which accounts for
both the externally applied field and the mean self-field in the
sample, thus providing an approximate Jc(B) dependence [13].
Especially for low applied fields, where self-field effects
become dominant, the evaluation shifts all data points to higher
fields (cf figure 4(b)). This effect is particularly clear for
the remanent state at zero applied field (arrow), where the
magnetic induction is solely due to the trapped self-field.
Consequently, a sample cannot be probed at zero magnetic
induction by SQUID magnetization experiments.

When accounting for the self-field contribution, good
agreement between the Jc(B) curve from the SQUID loops
and the average Jc(B) curve from the inversion is found in
the range accessible to the magnetization experiment (depicted
in figure 4(b) for one of the cubes). Moreover, the field at
which the correction starts to become effective and the self-
field becomes important is equal to the simple estimate made
above using the magnetoscan data (70 mT).

In contrast to SQUID magnetometry, the current
calculation allows one to analyse the Jc(B) dependence in
fields ranging from zero induction to the maximum trapped
field. A clear dependence of the critical current density on

the magnetic induction B is revealed in this way. There is no
indication for a flattening in the average Jc(B) at low fields.

5. Summary

The inversion of the Biot–Savart law represents an ill
conditioned problem for bulk superconductors, but parameters,
for example the step width of scan and the thickness of the
sample, can be found which allow its application to thin discs
cut from the sample. The matrix equation was solved without
any additional assumptions by a fast algorithm, which exploits
the symmetry of the problem. In this way, for example,
the c-axis growth sector was clearly identified as a distinct
region of low critical current density, a result which is also
obtained by the magnetoscan and confirmed by magnetization
measurements.

From a technological point of view both methods, the
magnetoscan and the inversion of the flux density map, are
complementary. The magnetoscan provides information on the
local critical current density at a certain constant background
field, which is of interest for superconducting bearings. On the
other hand, information about the remanent current flow at the
bulk’s self-field is important for magnet applications and can
be obtained by the inversion of the trapped flux density map of
thin discs cut from the sample.

In addition, the current calculation was found also to
provide the important average field dependence of the critical
current at low fields (below the self-field), a region that is not
accessible to magnetic measurements, even if the self-field is
explicitly accounted for in the evaluation procedure. There is
no indication of a plateau in Jc(B), and the critical current
density is also found to depend on the field in a continuous
way at the lowest magnetic inductions.
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Appendix

The magnetostatic Maxwell equations ( �∇ · �B = 0 and
Ampere’s law �∇ × �B = μ0 �J ) are treated by splitting the
magnetic induction into a sum of two fields:

�B = μ0( �� + �M), (A.1)

where �M is chosen to satisfy the differential equation

�∇ × �M = �J (A.2)

in entire space, which satisfies current conservation, �∇ · �J =
0. Equation (A.2) defines �M apart from a gradient field
and an arbitrary constant, which are both chosen to be zero.
Consequently �M vanishes outside the sample and can therefore
be interpreted as a magnetization, which is confined to the
sample volume and establishes the current density �J by spatial
variations. Ampere’s law results now in a homogeneous

5



Supercond. Sci. Technol. 22 (2009) 025011 F Hengstberger et al

equation for the field ��:

�∇ × �� = �J − �∇ × �M = 0, (A.3)

which can thus be derived from a scalar potential:

−�∇� = ��. (A.4)

Taking the divergence of this expression and substituting
the second Maxwell equation ( �∇ · �B = �∇ · ( �� + �M) = 0)
results in

�∇2� = �∇ · �M, (A.5)

and the problem can be solved by the method of Green’s
functions:

�(�r) = − 1

4π

∫
dV ′ �∇′ · �M(�r ′)

|�r − �r ′| + 1

4π

∮
d �f ′ · �M(�r ′)

|�r − �r ′| .
(A.6)

The planar z-independent current flow can be represented
by �M = M(x, y) �ez , and consequently the first term vanishes
since �∇ · �M = ∂z Mz = 0 in the sample volume. Further, only
the surfaces perpendicular to �M contribute to the second term.
Using (A.6), the measured induction B is expressed solely as a
function of M :

B(�r) = μ0 M(�r )

+ μ0

4π

∫ ∫
dx ′ dy ′ M(x ′, y ′) �z

(�x2 + �y2 + �z2)3/2

∣∣∣
d

d+c︸ ︷︷ ︸
�(�r)

. (A.7)

Here �x = x − x ′, �y = y − y ′, �z = z − z′, and
the notation for evaluating antiderivatives are used to indicate
the positive contribution from the top (z ′ = d) surface and the
negative contribution from the bottom (z ′ = d + c) surface.

Note that �� vanishes for the case of an infinitely long
slab (zero demagnetization) as �z → ∞ in (A.7). In this
case the induction is simply determined by the magnitude of
�M at a certain position and �B = μ0 �M inside and �B = 0

outside the slab, where �M = 0. However, for finite geometries
there will always be a contribution from �� in (A.7), and the
relation between �B and �M is non-local. Therefore the integral
equation (A.7) must be solved in order to attain �M .

The corresponding set of linear equations for the discrete
measured data is formulated by approximating the sample as
an array of cubes with constant M . Summing over all elements
results in the matrix equation

nx∑

k=1

ny∑

l=1

Ki, j,k,l Mk,l = μ0�i, j = Bi, j . (A.8)

Here, the matrix entries Ki, j,k,l are calculated by
evaluating the antiderivative

F(�x,�y,�z)

= μ0

4π

∫ ∫
dx dy

�z

(�x2 + �y2 + �z2)3/2
(A.9)

= μ0

4π
tan−1

(
�x�y

�z
√

�x2 + �y2 + �z2

)
(A.10)

at the eight corners of the cubes:

Ki, j,k,l = F(�x,�y,�z)
∣∣∣
s(i−k+ 1

2 )

s(i−k− 1
2 )

∣∣∣
s( j−l+ 1

2 )

s( j−l− 1
2 )

∣∣∣
d

d+c
. (A.11)

Once the components Mk,l are obtained by inverting (A.8),
the current density can be calculated by employing (A.2).
Further, the induction at any distance d outside the sample can
be obtained from (A.8). Note that the magnetic induction B in
the central plane (d = −c/2) of the sample, which is needed
to obtain Jc(B), is given by

μ0 Mi, j +
nx∑

k=1

ny∑

l=1

Ki, j,k,l Mk,l = μ0(Mi, j + �i, j) = Bi, j

(A.12)
as M does not vanish inside the sample.
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