Eur. Phys. J. B (2008)
DOI: 10.1148/epib/e2008-00421-5

THE EUROPEAN
PHYSICAL JOURNAL B

Uephasing in two decoupled one-dimensional Bose-Einstein
condensates and the subexponential decay of the interwell

coherence

L.E. Mazets®>?:® and J. Schmiedmayer!

! Atominstitut der Osterreichischen Universitdten, TU Wien, 1020 Vienna, Austria
2 AF. Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia

Received 17 July 2008 / Received in final form 3 September 2008
Published online 22 November 2008 — © EDP Sciences, Societd Italiana di Fisica, Springer-Verlag 2008

Abstract. We provide a simple physical picture of the loss of coherence between two coherently split one-
dimensional Bose-Einstein condensates. The source of the dephasing is identified with nonlinear corrections
to the elementary excitation energies in either of the two independent condensates. We retrieve the result
by Burkov, Lukin and Demler [Phys. Rev. Lett. 88, 200404 (2007)] on the subexponential decay of the
coherence o exp[—(t/t0)?/3] for the large time ¢, however, the scaling of to differs.

PALCS. 03.75.Gg Entanglement and decoherence in Bose-Einstein condensates — 03.75.Kk Dynamic prop-
erties of condensates; collective and hydrodynamic excitations, superfluid flow

Effectively one-dimensional (1D) systems of ultracold
atoms are a model systems to study the fundamental pro-
cesses of the coherent dynamics and decoherence in inter-
acting many body systems. In addition in the limit of zero
temperature they are a primary example of the exactly in-
tegrable Lieb-Liniger model [1,3].

Recently experimental progress on both, optical lat-
tices [3] and atom chips [4,5], allow to confine ultra cold
atoms in strongly elongated traps with w, > w, (wr,
w, being the frequencies of the radial and longitudinal
confinement, respectively). These traps are an ideal sys-
tem for studying 1D physics as long as both the tem-
perature T and chemical potential p are small compared
to the energy scale given by the {ransverse confinement:
4 < hwr, kT < hw,. Optical lattices enable study of
global properties of ensembles of 1D systems down to
very small atom numbers and into the strongly correlated
regime, atom chips allow to study the properties and dy-
namics of single 1D systems.

Strong inhibition of thermalization, a signature of in-
tegrability, was observed with bosons deep in the 1D
regime [8], and interference experiments on atom chips
with pairs of weakly interacting Bose gases, easily fulfill-
ing the above conditions for one dimensionality, allowed
to study the dynamics of decoherence [7] and the interplay
between thermal and quantum noise [8].

The special interest in the decoherence in such ef-
fectively one-dimensional ultracold atomic systems is
rooted in the fact that they display decoherence and
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thermalization despite being at the first glance a prime ex-
ample of the exactly integrable Lieb-Liniger model [1,%]. In
a recent paper [3], we have shown that even if the temper-
ature and chemical potential are well below the energy of
the radial excitation (u < Aw,., kT < Aw,) radial modes
can be excited virtually. These virtually excited radial
modes give rise to effective three-body velocity-changing
collisions which lead to thermalization and the break down
of integrability. The typical thermalization scale for typ-
ical 1D atom chip experiments [7,8,10] is in the order of
100 ms even when thermalization due to two body col-
lisions is completely suppressed. However the dephasing
dynamics observed in such coherently split ultracold 1D
atomic clouds [7,11] is even one order of magnitude faster.

In addition, the experiment on the time evolution of
interference between two coherently split one-dimensional
(1D) atomic Bose-Einstein condensates (BECs) [7] re-
vealed a surprising sub-exponential decay of the inter-well
coherence (1/;}11/311)

(Wh(x, )P (z,1)) o exp[—(t/t0)°]. 1)

The measured decay exponent o ~ 2/3 is in agreement
with the theoretical calculations of Burkov, Lukin and
Demler [12] which predicts o = 2/3. In their theoret-
ical approach the inter-well coherence decay is treated
in the terms of the heat flow between symmetric, 1, =
(¥ + ¥r)/ V2, and antisymmetric, $_ = (1, — ¥r)/V2,
modes. The two individual (fully split) condensates are
designated as right (R) and left (L), ¢z (z,t) being the
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corresponding atomic field annihilation operator in the co-
ordinate representation.

In the present work we choose a different, more in-
tuitive way of describing the system and consider de-
phasing of two independent integrable systems with inter-
correlated initial conditions. Similarly to Burkov, Lukin
and Demler [12], we consider the weak interaction limit,
which, together with the finite size of the system, allows
for a finite condensed fraction, in contrast to the Tonks
limit or the case of an infinitely long quasicondensate. In
what follows we use the system of units where Planck’s
and Boltzmann’s constants are set to 1.

After the splitting, the system consists of two indepen-
dent BECs, each being described by the Hamiltonian

Yo __}__ 4 91D 21 5+
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where m is the atomic mass, gip is the 1D coupling con-
stant. The main contribution to the coherence reduction
stems from phase fluctuation, so that

Dz ie(@ ) ~rexp (-(8), ()

where the phase operators ¢+ = (¢, + ¢r)/+v/2 and their
conjugate density fluctuations operators 6. = (AL &
8fir)/V2 are defined via 4; = (7 + 0n;)/2 exp(id;),
Jj = L, R, and 7 being the average 1D BEC density. In
what follows, we consider only classical (thermal-like) fluc-
tuations and therefore omit operator notations, writing
simply ¢; etc.

The local fluctuations can be expanded in plane waves,

¢g(.7}, t) = “\/‘E Z ‘]Eﬁ (t) exp(ikx)a
k

1
one(x,t) = —= £ (t) exp(ikz), 4
(z,1) \/ng: & (t) exp(ikz) (4)
L being the quantization length, ¢ = +,—, L, R. The

linearization of equation (2) yields Bogoliubov spectrum
wi = /k?/(2m)[k?/(2m) + 2mc?], ¢ being the speed of
sound. In what follows we consider BEC at temperatures
below the chemical potential, so that we assume phonon
spectrum of excitations of the uniform 1D Bose gas at rest,
wr = c|kl.

The key idea of our treatment is to recall that the
local density and velocity fields in BEC fluctuate, thus
giving rise to the random non-linear corrections dwj, to
the phonon frequency 2] = wi + dw},, j = L, R. Phonons
propagating in the left and right condensates interact with
different fluctuations, and this is the source of dephasing.

The phonon energy depends on the BEC local density
n; = fi + én; via the speed of sound, which is propor-
tional to the sqare root of density. Also the fluctuating
local velocity V; = m™18¢;/8z in the BEC contributes

to the random energy correction as the advective term,
so that the total correction to the average phonon energy

c(n)lk| is

T4
Swl = [d—_c(ﬁ)énj -H/}} Ik|

— k] (5”’ ﬁ).
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Fluctuations of the density and local velocity differ for the
right and left BECs, because the splitting process is never
completely adiabatic (the degree of nonadiabaticity has
been recently quantified by Polkovnikov and Gritsev [13]),
and initial quantum (zero-point) fluctuations of ¢~ and
n~ can be amplified to the values, comparable at low mo-
menta to the initial thermal (classical) fluctuations of ¢t
and n*. Still quantum fluctuations on their own can initi-
ate the decay of the interwell coherence {14] (on a different
time scale). Since the density and local velocity fluctua-
tions in the right and left BECs are different, the random
energy shift is also different for the excitations propagat-
ing in these two BECs:

(5)

&u,f’R = dwi & dwp . (6)

By definition, the upper sign (+) in the right-hand side of
equation (8) corresponds to the left BEC, the lower sign
(-) corresponds to the right BEC. Since |6w,Ic"R| < k|
and |~6%5w,€“’R[ <« c*k?, we can approximately describe the
evolution of the phases in each of the two {qdependent
BECs on the time interval from ¢ to t+ At by ¢7,(t+ At) =
¢1.(t) cos ft+At dt’ 2 — [mwk/(nk2)]nk(t) sin ft+At dt’ 2.
Transformatlon from the basis of the j = L, R modes to
that of the symmetric and antisymmetric modes results in
the following expression:

(Z); (t + At) = [43]; (t) cos Dy, (t, At) mwk ~—(t)

x sin B (t, At)] cos Jk(t, At) - [qs,j(t)

x sin @y (t, At) + ——= k2

x sin Ji (¢, At),

At () cos B (¢, At)]
(7

where Py (t, At) = c|k|At+ [T dv’ s (¢') and

t+A¢
Je(t, At) = / dt’ wy, (t'). (8)
t

We assume that fluctuations in each k-mode at the time ¢
are not correlated with the values of the random frequenc ir
corrections at later times. This is reasonable, because duw,

is determined, as we shall see below, by a superposmon
of a large number of modes and, hence, does not bear any
significant correlation with a particular k-mode. This en-
ables us to decouple correlations in equation (7). Then we
take into account the statistical properties (d)k n,c) = 0 and
[mw/(RE?)P((R5)?) = (($£)%), £ = +,— (which mean
that energy in each k-mode is equally distributed between
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the phase and density fluctuations, although initially there
is no equilibrium between modes with different momenta
or between the symmetric and antisymmetric modes with
the same k), and obtain a finite-difference equation

(165 ¢+ A0 - (65 (1) = {18 O)F)
(% (1) } (sin? Ji(t, AD). (9)

If the time difference At is taken to be shorter than the
typical time of the phase evolution (deccherence) in the
system, equation ($) reduces to the differential equation

8, - ~ ~_

5@ = 0o [(BDD - @0)D], (o)
where I%(t) = limag—o (JZ(¢, At)) /At. Moreover, since
the system under consideration is closed and consists
of two independent (L and R) integrable subsystems,
the sum ((6£)?) + ($F)* = ((F])?) + (8¢ )?) is time-

independent, and we obtam

81 - - - g

7 [(B5)2) = (65| = —25(®) [{(5)%) = (80)D)]

ot i)
Since the correlation function for the random interwell
frequency shift can be expressed as

{Bwy, (B)dwy, (8)) = (8wi)? fu(t” — ¢'),

where 6w;;‘ characterizes the amplitude of the frequency
shift fluctuations for the mode with given k, and fi(7) is
the correlation function in dimensionless form, equal to 1
at 7 = 0 and rapidly approaching 0 if its argument exceeds
certain correlation time 77. Then equation (11) yields

(12)

(G — (3 wexp [-LO)2/55], t < E (13)
(@07 ~ (@ <o [-2 [ )|
(14
where the dephasing rate is
1) ~ (Guf . (15)

Note that the validity of the assumptions resulting in
equations (9-11) does not depend on the ratio between
the time ¢, elapsed since the end of the BEC splitting pro-
cess and the onset of independent evolution of the two
separate BECs, and characteristic time scales such as 7¢,
1/T or 1/(77102)

Assuming that the condensate splitting is close to adi-
abatic and, hence,

(185 (O)1%) < ([g{ ()

and neglecting the change (approximately by a factor of

2) of {(¢{)?) in the course of the system evolution (similar
approximations are assumed in Ref. [12]), thus making a

(16)

qualitatively good approximation I'y = const., we obtain
in the limit ¢ 2 7f

((6%)%) = {(#5)) [1 — exp(—2Tt))]. (17)
The remammg issue is to determine dwf! and 7¢. To esti-
mate ka at least roughly, we apply the following method.
Instead of plain waves, we consider a wave packet centered
at the momentum k and having the momentum uncer-
tainty Ak ~ k. Such a width allows us to choose the shape
of the wave packet close to the minimum-uncertainty wave
packet, that allows us to localize it on a length of the order
of 2r/k. Then we can identify the random energy shift ex-
perienced by such a wave packet with that of the phonon
with momentum k.

In such a context, obviously, only the density and ve-
locity fluctuations at wavelengths longer than 27/k con-
tribute to dwy . Fluctuations at shorter wavelengths are
effectively averaged out and cause no influence to the dy-
namics of a wave packet of a spatial extension ~27/k. Tak-
ing into account that fluctuations at different momenta. are
not correlated and replacing sum over discrete states by
integration over continuous spectrum, we obtain

k I ~—\2 2/(71—\2
dk’ [ {("g)?) | K*{(4x)?)
A2 _ 212 k k
owip =k /_k 27 { 82 | am2ed

(18)

The remaining issue is to estimate the correlation time 7£.
Say, the wavepacket propagates along z in the positive di-
rection. Half of the surrounding fluctuations propagates in
the opposite direction, bringing about a short correlation
time scale ~1/(ck). However, half of the fluctuations co-
propagate with the wave packet, in the first approximation
at the same velocity. If there were no dephasing (with re-
spect to each other) of fluctuations at different momenta,
the corresponding correlation time would be infinite. How-
ever, longer-wavelength correlations dephase as well, at a
rate similar to that of the wave packet under considera-
tion. Averaging the dephasing rates over the ensemble of
fluctuations restricted to |k’| < |k|, we obtain the corre-
lation time of the fluctuations affecting the dynamics of
phonons with momentum k to be
e~ I (19)
The correlation time cannot be longer than given by equa-
tion (15), because otherwise equation (13) holds instead
of equation (14), and the dephasing is slowed down signif-
icantly. Equations (15, 18) result in
Ty = dwit. (20)
It is unlikely that deeper insight to the short-time dy-
namics of nonlierly interacting modes of a 1D BEC can
enhance the dephasing rate further compared to equa-
tion (20), because short-time dephasing given by equa-
tion (13) is of the form exp(—const. t?) ~ 1—const. t?, and
fast perturbation can cause only slowdown of the evolu-
tion (Quantum Zeno effect), but not speed up (anti-Zeno
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effect) [15]. Equations (17, 20) vield finally the following
dephasing dynamics:

{(96)%) = (@)% [1 ~ exp(~duwi)]

(the factor of 2 in the decrement is omitted, because of
inexact nature of the estimations involved).

In the asymptotically long time limit we may estimate
fluctuation amplitudes from the 1D Bogoliubov treatment
for the phononic ensemble at temperature T as illustrated
in {18)] (the same assumption is taken in Ref. [12]):

(21)

1

2@ = (2

mc

2
o T
JRCACETNCS

where u = mc? is the zero-temperature approximation
for the chemical potenial. Substituting equation (22) into
equation (18), we obtain

T
TUT

Swit = RE (23)

Finally, equation (21) takes the form

((¢)%) = ﬁm—; [1 — exp (—0.4 \/Mzﬁdkﬁ/zt”, (29)

which is to a certain extent similar to equation (14) of
reference [12]: in both cases the dephasing rate is propor-
tional to |k[3/2, but there is also an important difference:
the relaxation rate predicted in reference [12] is by the
factor of 72/(mc) faster than our estimate. Equation (24)
has a generic form

- b
()% = ng‘(bzlklmt), (25)
where by, by are certain constants and F(0) is a function
that is finite at @ — oo and decreases faster than ©2/3 if
© — 0, to provide the convergence of the integral

kmas )
= [ @

o (26)

kmas

that appears in the coherence factor equation (3). The
cut-off momentum k4, depends on the temperature and
chemical potential and is of the order of mc if T ~ u. For
t > T7!, u~! we can substitute k., by co. Changing
the integration variable from momentum k to the dimen-
sionless time @ = by|k|3/2¢ we obtain

@) = @22 [ " 46 0-5(6) = (1/1),

) (27)
that provides the subexponential decay equation (1) with
a = 2/3. Comparing equations (%4) and (#5) we find the
scaling time #p of the subexponential decay equation (1):

= 2 =2

[T ) 7l
~ 3. —] = 3.2 —.
to 32T2 (mc) 3 mT?

(28)

Note that the time limit ¢ 3> 771, 4! is not sufficient
for equation (27) to hold, since the latter is derived under
assumption of significant thermalization of the antisym-
metric mode that should happen at ¢ ~ #,. Surprisingly,
the inter-well coherence decay experimentally measured
in reference 7] is well described by equation (1) also on
its initial stage. Our estimation of #y is by the factor of
0.247/(mc) > 1 longer than that of reference [12] and the
scaling with experimental parameters are also different.
Recalling that x4 = g1p#fi with gi1p proportional to the ra-
dial trapping frequency v, of the atomic waveguide and
regarding it, the 1D number density and experimentally

obtained o as input parameters, we obtain T ﬁ/tcl,/ 2,
whereas reference [12] gives T' ~ 73/ 41/_1L/ 4 tcl,/ 2,

Let us now compare our results to the findings of
Burkov, Lukin and Demler [12] in more detail. In the
theoretical approach of reference [12], the inter-well co-
herence decay is treated in the terms of the heat flow

between symmetric, ¢, = (¥, + Pr) /2, and antisym-
metric, P_ = (@L - 'LﬁR) /+/2, modes. This point of view is
counterintuitive for two completely split one-dimensional
BECs which are two independent systems [1,2] close to
exact integrability. The thermalization times calculated,
even when including the virtual 3-body collisions, whose
role in breaking down the integrability in quasi-1D BECs
has been recently studied theoretically [9], are much longer
then the observed decoherence. The termalization time
scale should be the one at which the heat flow arguments
should not apply.

The results of reference [1%] seem to imply some un-
physical consequences: if we consider T ~ p and estimate
the dephasing rate for phonons with the energy close to
the chemical potential reference [12] gives a rate in the
order of \/7/(mc) i > p (since the experimentally acces-
sible 1D BECs are characterized by 7/(mc) = 30), which
is quite counterintuitive: the phonons with k& ~ mc be-
come overdamped, and their dephasing rate exceeds any
frequency scale available in the system with T ~ u. Un-
der the same condition our theory predicts dephasing rate

~p//Rf{me) < p.

The time scale ty as suggested by our estimates im-
plies the reconsideration of the temperature estimations
for the experimental data of reference [7]. Our model sug-
gests that the actual final temperatures were higher by
a factor of order 2 than it was concluded from [12]. This
may easily happen, since the mechanisms of the heating of
a BEC during the splitting (which is adaibatic only par-
tially, taking into account its time scale ~10 ms) are not
yet explored and understood.

This difference between the prediction of the
timescales and the scaling with experimental parameters
between our model and the calculations by Burkov, Lukin
and Demler [12] demands both new more detailed exper-
iments over a wider parameter range and a comprehen-
sive numerical calculation of the splitting and coherence
dynamics. New ways to measure temperature using the
statistics of interference patterns [3], and more refined RF
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potentials for atom manipulation [17] will greatly extend
the capability for experimental investigations.
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