
Makumba: the Role of the Technology for the
Sustainability of Amateur Programming Practice and

Community

The Technological Religion of a Student Tribe

Cristian Bogdan
School of Computer Science and

Communication
Royal Institute of Technology
10044 Stockholm, Sweden

cristi@csc.kth.se

Rudolf Mayer
Institute of Software Technology and Interactive

Systems
Vienna University of Technology

1040 Vienna, Austria
mayer@ifs.tuwien.ac.at

ABSTRACT
We address the issue of sustainability of practice, which we
regard as crucial for the sustainability of the community at
large. In the absence of material reward, sustaining a spe-
cialized activity such as programming is not trivial especially
when members move often in and out of the community. Our
case is the group of voluntary, amateur student programmers
from a European-wide student organization. We present this
setting as an Amateur Community and as a Community of
Practice, and show how such framing helps in understanding
sustainability of practice. Although being totally voluntary
and managing a large intranet, the group has been thriving
for six years. To explain such high practice sustainability,
we examine the role of the technology framework used by
the group during this time. We then propose a more general
framework for understanding practice sustainability in the
context of amateur communities of practice.

Categories and Subject Descriptors
K.4.0 [Computing Milieux]: Computers and SocietyGen-
eral

General Terms
Design, Human Factors, Languages

Keywords
Sustainability of Practice, Case studies, Amateur Commu-
nity, Community of Practice

1. INTRODUCTION
The Intranet of an European-wide organization had just

over 600 dynamic pages at its launch in 2002. The Intranet
grew steadily in both size and functionality and at the end of
2008 it has almost 2000 dynamic pages. Throughout, except
for a few glitches, the system was highly available and fast.
Today the Intranet has around 2000 users from among the
organization members, and its public part can be accessed
by 4000-5000 organization customers at a time.

Copyright is held by the author/owner(s).
C&T’09, June 25–27, 2009, University Park, Pennsylvania, USA.
ACM 978-1-60558-601-4/09/06.

Such figures would not be surprising for a professional
international organization, which hires or outsources profes-
sional programmers and system administrators. The figures
are however unusual for a voluntary student organization
(BEST, www.best.eu.org), whose IT crew (referred to as
the Tech Committee) is made of amateur voluntary student
programmers who often do not study Computer Science or
related subjects, or are at the early stages of their education.
Since 2002, the Tech Committee had over 10 active members
at any given time, and the Intranet was extended with more
and more subsystems even if about one third of the Tech
Committee membership was renewed each year. Reflection
on this sustainability is the subject matter of this paper. We
further assert that the design of the technology used to build
the Intranet, called Makumba (www.makumba.org), is a de-
termining factor in the Tech Committee sustainability. Prior
to Makumba introduction, the student organization had dis-
parate IT systems, and the Tech Committee was formed in
1997 to maintain them but had much lower membership
counts and was highly dependent on a few people.

In this paper we aim to characterize sustainability of prac-
tice and community based on this positive experience. We
also aim to discuss the role of technology in achieving such
sustainability, and to draw design implications that would
help to devise technologies that encourage sustainability.

While we recognize the importance of environmental sus-
tainability in IT and interaction design [1], we focus on a
topic that is only abstractly related, yet we believe impor-
tant in community and technology research. It is e.g. com-
mon knowledge that most virtual communities are “either
young or dead” [16], and various cookbooks for making the
community thrive were produced [8]. Even for non-virtual
communities such as our student organization and its Tech
Committee, it is sometimes difficult to sustain a specialized
activity within the community, and this issue was raised un-
der the name of sustainability in the field of Participatory
Design (PD), e.g. as a basic principle of a PD method [10]
or as a call for “self-sustaining [PD] processes within work
settings” [5]. While managerial aspects such as leadership
and incentives for work are certainly important in sustain-
ing an activity, we also advocate a focus on the methods
and tools used in such specialized activities, as them being
easy to learn or entertaining to use should lead to better
sustainability of the respective practice. As immediately

205

apparent liabilities to practice sustainability one can exem-
plify lack of material rewards, or frequent changes in com-
munity membership, both of which affect voluntary student
organizations. A related useful notion is self-sustainability,
whereby a specialized activity such as PD [5] or program-
ming is started by professional intervention in the setting,
yet it is able to continue using only community resources
(human and otherwise), after the specialized professionals
leave the setting. In our case both types of activity were
initiated in the student organization by the first author as a
Human-Compute Interaction researcher and computer engi-
neer, who left the setting in 2003. The programming activity
and its sustainability are addressed in this paper.

In what follows, we will present the student organization,
its Intranet, and will frame the Tech Committee as a Com-
munity of Practice [12, 21] and as an Amateur Commu-
nity [2, 4]. We will then introduce the topic of practice
sustainability, highly related to learning and essential for
community sustainability. We then present the design of
the Makumba technology that powers the Intranet, then we
characterize the sustainable evolution of the Intranet and
the Tech Committee, as it comes out from examining the
source code repositories and Tech Committee membership
lists. We then present the results of a survey that we used
to elicit data on Makumba learning aspects in general and
sustainability especially. We finally discuss our results with
a focus on learning, sustainability and design implications
for technology.

2. SETTING
BEST– Board of European Students of Technology, the

student organization running the Intranet of our interest,
was grounded in 1988 and is currently present in 79 mainly
technical universities across 30 European countries. The or-
ganization grew from being present in 60 universities in 2003,
and has at the moment about 2,500 members. Their aim is
to organize complementary education in the form of courses
and competitions for all students of the member universities
(i.e. not just for its members), to assist them with career
support, and to encourage the educational involvement of
students by organizing symposia on engineering education
aspects.

BEST maintains contact with and raises funds from the
European Union bodies and from a number of company part-
ners. Internally, the organization has two statutory meet-
ings per year and several less formal, smaller meetings in
between. While most members worked on international top-
ics only during such meetings, and for the rest they worked
in their local organization chapters, since 1997 the organi-
zation was able to sustain “committees” on several topics:
marketing, fund-raising, training and internal education, in-
formation technologies (the Tech Committee), and comple-
mentary education program management. The committees
met in the international meetings but kept on working on
their topic also in between meetings, employing e-mail and
instant messaging systems, as well as dedicated tools as part
of the Intranet.

The Intranet is supporting the activities of the student or-
ganization. It was assembled as an integrated system in 2002
from several systems. The first such system was an event ap-
plication system for complementary education courses. The
system registered student applications to the course events,
and let the organization manage their acceptance (to one

event out of maximum three applied for) and participation.
The system had been re-built yearly since around 1993 to
different levels of completeness, including several years when
it failed to work and the members had to resort to manual
management. The application system was based on e-mail
for communication initially, and a Web-based system was
devised in 1995, built using the C programming language.
The system finally stabilized’ as a Java software which was
re-used for several annual editions of the complementary ed-
ucation program starting in 1997. This system was helping
the management of the most important student organization
activity and was heavily dependent on the first author until
its Makumba re-implementation was completed in 2002, and
still runs today.

The second system was an internal document archive and
member profile management system known as the “Private
Area”. The system started as a set of manually maintained
Web pages, storing documents produced and voted upon
in international meetings, and it was automated using Lo-
tus Notes in 1998, when internal event management was
added to facilitate member application to and participation
in statutory meetings and other internal events. At the time,
a need for a common technology for the IT systems of the
organization was recognized and Lotus Notes was intended
to be that technology. However its shortcomings for the
Tech Committee context were recognized and the Makumba
technology was designed in response.

Third a “virtual jobfair” was built as part of the ‘career
support’ organization mission, allowing companies to post
job adverts, and students to post their profiles. This system
was among the first coordinated implementation efforts of
the Tech Committee, as different from the previous spon-
taneous implementation endeavors by individual members.
Several technologies were tried out, starting in 1997 with
Lotus Notes, continuing with Java Servlet technology before
the system was finally launched in 2000, using an incipient
Makumba version.

Besides heavily extending and integrating the above sub-
systems, several Intranet features were added since its in-
ception: a Wiki, email archives for BEST’s over 500 mail-
ing lists, a training database, a survey-engine, a career-
newletter, and a unique sign-in system that allowed students
to share their accounts between the Intranet, the course ap-
plication system and the“virtual jobfair”. Further, a number
of team support tools were implemented, like project and
task management for both international committees and lo-
cal chapters, company relations management for both the
fund-raising committee and the local chapters, and several
specific tools for the committees, often in the form of sta-
tistical analysis of student account data, subscription to the
newsletters, etc. Another major new tool is an online vot-
ing system, intended to make the statutory meetings less
crowded.

The Tech Committee is in charge of developing and main-
taining the Intranet, as well as supporting it with activities
such as helpdesk. The committee also coordinates activities
of interaction design for further new areas of the Intranet.
Administration of the Intranet, as well as of communication
systems such as e-mail are also Tech Committee responsibil-
ities. There are two formal membership levels (“trainee” and
“active member”) and there is a formal coordinator, elected
each year, who is also a member of the BEST’s overall co-
ordination bodies. In its early (less sustainable) days, the

206

Tech Committee consisted of 1-5 members who were mainly
responsible for the individual systems and had difficulties
backing each other up when they did not have time for vol-
untary commitment. This is similar to the present day situa-
tion of IT bodies from other student organizations in Europe
and Canada who have approached the Tech Committee for
know-how and technology transfer. Tech Committee mem-
bership levels increased after 2002, and new members are
usually attracted in international meetings with a three-hour
Makumba training, including exercises in making dynamic
pages that browse Intranet data in various ways, improv-
ing existing Intranet pages, followed by assignment of more
complex Intranet-related tasks.

3. METHODS
We regard sustainability as a long-term matter that can-

not be investigated with a short focused study. Throughout
our contact with and involvement in the Tech Committee we
were concerned with sustainability and at times we consid-
ered theoretical frameworks and recipes for how to achieve
it, thus sustainability was an ever-present research issue for
us, but also a practical issue in the community life. Both au-
thors were active in the Tech Committee at different times
(1997-2003 and 2004-2008 respectively), and action research
was a conscious investigation approach for the first author,
who also designed the Makumba technology together with
Tech Committee members in a conscious act of cooperative
design [9]. This paper is the occasion for a reflection exer-
cise [17], on the part of the second author, who was not a
founder and followed a learning path of the kind described
in this paper. Sustainability being a long-term issue, we
expect other writings about it to be reflective accounts.

We are highly aware that our first-hand involvement with
the Tech Committee is a potential hinder for us produc-
ing an objective’ account of its sustainability and on other
matters of interest, and this is probably not uncommon in
community-related research endeavors. We therefore com-
plemented our personal experiences with both non-elicited
and elicited data, as described below. Furthermore, our in-
volvement having taken place at different times has resulted
in a fruitful confrontation process that allowed us to depart
from our personal opinions and arrive at more reliable and
valid results.

For assessing quantitatively and qualitatively the sustain-
ability of the Tech Committee and its practice, we regard
as non-elicited data the code repository that the community
has maintained, which allowed us to assess and reflect upon
the progress of the Tech Committee work. The repository
uses the Concurrent Versioning Systems (CVS) technology,
which allows us to examine the incremental changes and ad-
ditions that were made to the code, their time, and their
authors. We are thus able to reconstitute the Intranet code
as it was at any moment in time since 2003. A number of
code analysis tools are also available for investigating CVS
repositories, and we found them useful for our inquiry.

We have also elicited data from the Tech Committee mem-
bers, for purposes related to the Makumba technology. In
2002 the first author evaluated the design of Makumba with
a questionnaire that had 12 respondents. In 2005 the first
author also ran a questionnaire with 32 respondents to asses
the status of Tech Committee work and technology use, and
thus to indirectly look at its sustainability. Finally, both
authors designed a questionnaire at the end of 2008 where

30 out of the 45 past (since 2003) and present members who
were approached reflected on their activity in the Tech Com-
mittee over their whole 1-4 year-long membership period.
This questionnaire provides this paper with both quantita-
tive and qualitative data.

During our membership we had access to the e-mail traffic
and other communication of the Tech Committee. A further
form of non-elicited data is constituted by Tech Committee
membership lists at different times during the committee ac-
tivity since 2002. Such lists can be made by examining mem-
ber profiles in the Intranet. Number of members, as well
as their level of activity are useful indicators in assessing
sustainability. Therefore the membership lists were com-
plemented with levels of member activity as elicited from
committee leaders and self-assessed by members themselves
in questionnaires. Personal acquaintance with many of the
members and knowledge of their skill evolution has come to
complement this further. Some members continued on an IT
career after graduation, and this was yet another indicator
of their IT skills.

To be able to better comment on our data, we will go
through some conceptualizations of learning, community,
practice, amateur and voluntary work, and sustainability.
We will also describe in more detail the design of Makumba.

4. COMMUNITY OF PRACTICE
Patterns of learning in the Tech Committee, as well as

in the other committees and in the student organization at
large, are well described by the Community of Practice so-
cial theory of learning [12, 21]. This learning perspective
captures the social, informal and everyday aspects of learn-
ing, and emphasizes the community aspect of learning, i.e.
members learn as part of and the ways of belonging to a
community. This is referred to as “learning the ropes” or
more formally “learning in doing”. As community members
learn, they evolve from peripheral participants to ‘full’ com-
munity members, i.e. full participants. At first, they want,
try, then pretend to be members, then they identify with
the community and finally they become expert members.
In effect this is a description of the social relations between
newcomers and old timers, and of the individual acquiring
of knowledge and skill. The process of becoming a full par-
ticipant “configures” learning in doing.

This theory captures accurately the kinds of learning pro-
cesses taking place in voluntary settings, where there is lit-
tle incentive for attending elaborate formal education or re-
sources for providing it. Instead, learning takes place while
doing and participating, informally. Practice is not all infor-
mal however, it is slowly reified [21] to canonical forms such
as books of rules and regulations, training and other formal
learning arrangements and material, etc.

The Community of Practice perspective was extracted
from field studies in five settings ranging from midwives to
tailors and non-drinking alcoholics [12], but it of course ap-
plies well beyond, e.g. in insurance claim sorting [21]. Many
programming-related activities and their ‘learning/member-
ship paths’ covered by the community members are well-
described by the theory, for example MUD community mem-
bers becoming magicians (MUD programmers) [15, 16], open
source contributors becoming “committers” i.e. earning the
rights to commit new code to the open source project reposi-
tory. It is worth noting that in both cases a formal, canonical
member role has been reified out of existing practice, in a

207

similar distinction to the trainee–full member reified in the
Tech Committee.

5. AMATEUR COMMUNITY
A further conceptualization that encompasses work in vol-

untary communities such as the Tech Committee, or other
student groups, is the Amateur Community [2, 4]. The per-
spective was extracted from studies of Amateur Radio (ham)
[4] and has been tentatively applied also to open source and
other programming related communities [2].

The term ‘amateur’ is often used in a pejorative sense
in everyday speech to denote ‘novice’, ’unprofessional’, ’bad
approach to work’ or ’bad quality of work’ . However, upon
close examination of people who talk of themselves as be-
ing “amateur”, authors have encountered that the skills of
e.g. amateur mycologists [7], actors, baseball players and ar-
chaeologists [18] range from novice-level to an expertise that
rivals their professional counterparts. Sciences like astron-
omy still depend on the work of amateurs for their progress.
Amateurs carry out their activities primarily out of their
love (French “aimer”) for the activities themselves, as differ-
ent from paid (or otherwise rewarded) work activities such
as jobs. An ethnographic account of various amateur set-
tings [18] describes amateurs as being socially situated “on
the margin between work and leisure”; amateurs often de-
scribe their activity as work, and they rarely pursue it alone.
Relevant social categories for amateurs are the professionals
of the activity that they pursue, which they draw influence
from and sometimes exercise influence towards, and the pub-
lic towards which they relate in doing their work an benefit
from it. This is referred to the Professional-Amateur-Public
system. In relation to the professionals, amateurs can be
professionals of their trade at the same time, or they may
aspire to become professionals, in which case they are re-
ferred to as pre-professional, or they have been professionals
of the domain and presently continue it as amateurs (post-
professionals).

Within the Amateur Community perspective, amateur
work is mainly driven by challenge, which generally orig-
inates in contingencies that need to be negotiated during
the activity [4]. Unlike professional work where contingency
is often not welcome, and expensive to address (yet capacity
to address it is regarded as competence), in amateur work
contingencies of a specific kind are almost requisite. The
challenge, and its constitutive contingencies are thus req-
uisite but must also be addressable, i.e. there should be
enough skill within the amateur community to address the
challenge. At the individual level, balancing a challenge with
skill is regarded as essential for the psychology of the opti-
mal experience [6]. A healthy contingency space will include
contingencies addressable by experts or old-timers as well as
by novices or newcomers.

Besides being addressable with various levels of skill, a
contingency space should ideally be inexhaustible. For the
example of radio amateurs, the weather is likely to always
provide radio-related contingencies. On the contrary, an am-
ateur community whose members aim to travel to all points
of integer geographical latitude and longitude1 have a re-
markable, yet exhaustible contingency space. For a further
example (also illustrating the diversity of amateur settings),
amateurs who aim to teach re-populated bird species to mi-

1www.confluence.org

grate again by leading their flight with light aircraft2 have a
virtually inexhaustible contingency space, as increasing the
number of re-populated birds, possibly in new places, or fo-
cusing on further bird species are always valuable challenges.

A further Amateur Community work driver is the audi-
ence [2]. Challenge addressing, shows of mastery, are rarely
kept for oneself; peers are normally expected to benefit from
contingencies being negotiated, or members of the commu-
nity public will benefit. A notable form of community con-
tribution is pioneering of new contingency spaces, i.e try out
and pursue new kinds of challenges, different from but re-
lated to what the amateur community used to do before.
Worth noting here is that challenge is socially constructed,
i.e. a new contingency space may be adopted by all or some
community members, or it can be totally rejected as some-
thing that is not worth pursuing by the community.

5.1 Amateur software development
It is useful to characterize amateur software development

such as hackers [13] or open source [11] as amateur commu-
nities because Tech Committee is a less professional (pre-
professional) correspondent of such communities. In such
communities, code challenges are hardly exhaustible, as pro-
gramming a machine leads to a rich set of contingencies,
bringing along lots of ‘trial and error’.

It is also easy to open new contingency spaces partly due
to the immateriality of the working artifact, new projects, or
project modules can always be started, or the existing ones
can be re-organized (“refactored” in the professional jargon).
For a newcomer, the complex architecture of large software
projects adds to the challenge, and their skills of mastering
the programming language will not be enough, they will also
have to learn the way the project is set up.

Code is shared typically via plain text messages, and care-
fully examined before being committed to the code repos-
itory, which suggests another amateur community feature,
related to the notion of audience, the peer review of chal-
lenge addressing. Plain text is regarded as a very suitable
medium for such distributed development and review efforts
[22]. Another important part of the community audience
is its public, which can be a crucial motivation factor: for
very generic projects it may be the world at large (e.g. in
the case of an open source operating system kernel, an office
suite), or very specialized professionals and amateurs in the
software development field (e.g. for an open source compiler
suite).

6. SUSTAINABILITY OF PRACTICE IN
AMATEUR COMMUNITIES

Based on the theoretical considerations made on Amateur
Communities and Communities of Practice, we can now con-
sider in more detail the issue of sustainability. First, practice
being crucial to the community, sustainability of a commu-
nity appears to be inextricably linked to the sustainability
of its practice: a community will thrive if its practice can
thrive. For that, in an amateur community, its challenges
should not be easily exhaustible, yet they should also be
addressable by newcomers. Furthermore, there should, at
all times, exist interesting challenges for both newcomers
and old-timers. In short, the features of “healthy contin-
gency spaces” are essential ingredients for sustainability of

2www.operationmigration.org

208

practice in Amateur communities. But most of all, besides
challenges to address, and skills to match them, there should
exist enough members who take these challenges. A healthy,
sustainable amateur community, will have enough members
at all the milestones on “learning paths”, i.e. at all the im-
portant learning thresholds on these paths.

7. MAKUMBA, THE TECH COMMITTEE
TOOL

Makumba was designed with influences from Lotus Notes,
but without the visual programming approach that was found
to be troublesome in the distributed Tech Committee set-
ting; instead, all code is in plain text (cf. [22]). As another
difference from Lotus Notes, Makumba was designed to offer
as few features as possible to its user (i.e. a programmer)
and this minimalsitic design was thought to facilitate learn-
ing.

Makumba organizes a system in three parts. The Makumba
Data Definition (MDD) describes data structures and rela-
tions between them. MDDs are simple lists of data fields,
with name and type; an example can be seen in Listing 1
for the data type “Student”. The JSP level is technically
a tag library for the Java Server Pages dynamic web page
technology, which allows displaying and changing the data
stored in a database and described in MDDs. Finally the
business logic (BL) describes, in the Java programming lan-
guage, “business rules” that restrict the changing of data,
and provide authentication and authorization mechanisms.
The JSP level, illustrated in Listing 2, provides for a com-
bination of HTML and a subset of SQL (Structured Query
Language). The example shows a list of students and, for
each student, their completed studies. The data for this
list is described in the “Student” MDD shown in Listing 1.
Notably the SQL data combinations (so-called joins) and
data selections (so-called projections) are generated auto-
matically from notations like “s.education” and “s.surname”
respectively. Therefore working with a Makumba JSP would
typically not require as much knowledge as using SQL by it-
self.

name = char [5 0]
b i r thdat e = date
hobbies = text

educat ion = se t
education−>name = char [5 0]
education−>un i v e r s i t y = ptr Un ive r s i ty

Listing 1: Makumba Data Definition “Student”

<mak : l i s t from=”Student s”>
Name : <mak : value expr=”s . name”/>

Born on : <mak : value expr=”s . b i r thdate”/>

Completed s t ud i e s :
<mak : l i s t from=”s . educat ion e ”

where=”e . graduationDate < now()”>
<mak : value expr=”e . name”/>
(<mak : value expr=”e . un i v e r s i t y . name”/ >) ,

</mak : l i s t >

</mak : l i s t >

Listing 2: Example of viewing data with the
Makumba JSP tag library

Year MDD JSP BL # files LOC CVS

2002 42 676 80 801 78479 N/A
2003 52 961 116 1132 104805 1143
2004 64 1208 140 1415 127873 702
2005 76 1354 190 1628 151801 1324
2006 99 1719 229 2062 175315 1632
2007 111 2135 287 2559 219456 2391
2008 114 1860 289 2304 196867 1898

Table 1: Size of the Intranet

Through this design, the assumption was that it will be
easy for students to read MDDs, and based on that, it will be
possible for them to combine HTML and a subset of SQL
(itself based on natural language) which they might know
prior to start working with Makumba or might learn “on
the job”. Later on, they would become interested in writing
new business rules, and might learn procedural Java for that,
maybe using previous knowledge of another procedural pro-
gramming language. This then would be the “learning path”
assumed for a Makumba practitioner.

Besides the design of the Makumba framework itself, a
web-based tool was devised where potential members can
experiment with modifying existing code, work with new
code, and look at each other’s code, using example Intranet
data and the necessary programming tools already set up [3].
Such ‘sandboxes’ were found to be important in cooperative
design endeavors [19].

Initially Makumba was designed and developed under an-
other, more neutral name (“Metadata”). When a more spe-
cific name was sought, designers remembered of a term that
was well-known to many members of the BEST student orga-
nization: the Makumba party. The name was widely known
but not the actual meaning because of an established rit-
ual whereby members who had attended a Makumba party
usually described it in very little detail, so the only way
other members can find more about such parties was to at-
tend them. Makumba-initiated BEST members described
the parties as follows:

“You enter a room, the lights are turned off
and then somebody tells the Makumba joke.”

The rest could only be learned by joining a party (and
will not be described here either ...). Ironically, the main
Makumba designer had never attended a Makumba party,
but knowing about its existence and its fame within BEST
was enough to decide on a name that would be connected
to the BEST culture. As the word “macumba”3 refers to a
tribal religion, the aim was to achieve a technological religion
for the BEST ‘student tribe’.

8. SUSTAINABILITY OF THE TECH
COMMITTEE

Let us first illustrate the Tech Committee activity in what
we perceive as its sustainable period. Table 1 shows the evo-
lution of the size of the Intranet since its launch seven years
ago, detailed for the different technological levels MDD,
JSP and BL. Additionally, the total number of code files

3Using the Makumba spelling was a matter of Internet do-
main name availability

209

Figure 1: Size of the Intranet

is shown, along with the total lines of code (LOC). Figure
1 shows the evolution of the code figures graphically. It is
worth noting that there was a rather high amount of data
definition (MDD) files defined in the beginning of the In-
tranet, representing data used in the first three sub-systems.
Even though more data definitions have been added over
time, a certain saturation level has been reached in the last
years, with only minor additions. It is not unexpected that
the data definitions of an organization (its “domain model”)
change seldom after an initial development time. As dif-
ferent from that, the amount of Business Logic (BL) files
has continuously increased, with a leveling in the last year.
This leveling, as well as a JSP file number decrease, are
due to the Tech Committee finding the time to clean up the
code without adding functionality, but simplifying it in the
process, thereby allowing future members to understand it
easier, and making it possible to implement more powerful
features over the new, simplified, code structure. Finding
the time and resources for such cleanup is itself a sign of
‘establishment’, i.e. sustainability.

Table 2 illustrates the number of active members in the
Tech Committee since 2003, differentiated on the different
levels of Makumba, and on their activity in newcomer (“pe-
ripheral”) and old-timer (“full”) members. This data was ex-
tracted on the one hand from the latest questionnaire filled
in by the members, and then refined and amended by some
of the committee coordinators (for the year 2003, only the
total number of active full and peripheral members could be
estimated). It is interesting to note that while the overall
number of active members increased over the years and sta-
bilized in the last years, the (relative) number of members
working on data definitions (MDD) was rather decreasing;
this might be explained with the arrival at data maturity
level as described above, and thus less work and challenges
to take for the Tech Committee members, while plenty of
challenge is left at other levels. An important sign of sus-
tainability as we characterized it earlier is the sufficient num-
ber of members at both novice (peripheral) and expert (full)
members active at all the Makumba usage levels at all times.
As Table 2 shows, the “learning paths” are well populated
with community members.

8.1 Survey
A survey was conducted among current and former mem-

bers of the Tech Committee in the end of 2008, and filled
in by 30 members. The time of Tech Committee member-

Year MDD JSP BL Active
Per Full Per Full Per Full Per Full

2003 4 5
2004 3 4 7 3 3 3 6 5
2005 5 6 8 11 7 3 8 13
2006 7 8 9 12 9 3 10 12
2007 7 7 14 9 10 5 12 11
2008 6 5 13 7 6 7 12 8

Table 2: Members in the Tech Committee

Figure 2: Learning curve for different aspects of
Makumba

ship ranges from their activity starting around 2001, to fresh
members that just joined in the second half of 2008. Also
the educational background is diverse – 13 members study
computer science, computer engineering or informatics; the
other respondents follow various other curricula, ranging
from mechanical engineering to physics and biomedical en-
gineering. Also, the membership duration in the commit-
tee varies, from 6 members who were active for around four
years, to members who were (or currently are) active for one
to two years. Most members had no knowledge of Makumba
before joining.

The questionaire consisted of 53 questions. The main fo-
cus was on gathering an understanding of the learning aspect
of Makumba in the context of the Tech Committee, thus the
participants were asked to answer several questions on their
self-assessed skill level on database design, SQL, general pro-
gramming, Java, and three aspects of Makumba: JSP pages
to view data, JSP pages to change (create, edit, and delete)
data, and business logics (BL). The questions were asked
repeatedly for several different points in time, namely when
joining the committee, and after the first, second, third and
fourth year of membership, and allowed answers from “no
skills” via “little knowledge”, “some experience” and “experi-
enced” to “master”. To balance the self-assessments and to
facilitate recall, the participants were further asked to es-
timate their contribution to the committee during the spe-
cific year, and to list the projects and technologies that they
worked with in that year. Also to improve the quality of the
self assessment, members were informed that the commit-
tee coordinators from their time of activity will review their
answers.

Figure 2 shows the averaged skill levels of all the members
at different points in time, separated for three Makumba us-

210

Figure 3: Skill development of selected survey re-
spondents

(a) Julian (b) Peter

(c) Kim (d) Sam

age aspects: JSP for viewing data, JSP for modifying data,
and BL. It can be observed that apparently, learning to view
and display data in JSP level is faster than handling forms
to create, edit, and delete data, while Business Logics are
the most difficult concept, especially in the first two years of
membership. Most members who stay in the committee for a
longer period, however, master all levels of Makumba almost
equally well, but that is not a case of challenge exhaustion as
they can (and many do) continue working on the internals of
Makumba itself as a next step. While MDD editing skills are
less and less actual, we can consider that currently the learn-
ing path milestones in the Tech Committee are: JSP viewing
data, JSP changing data and BL. To further illustrate the
skill evolutions, we have selected the charts of four individ-
ual members in Figure 3. This also shows that, although the
dynamics vary a lot, the JSP data-changing skills almost al-
ways lag behind the JSP data view skills, and BL skill is
acquired last. Overall, the per-year self-assessment results
suggest that the learning path designed into Makumba has
achieved its goal, allowing members to have an easy start
by visualizing data in JSP (which also requires MDD under-
standing), then starting to change data and finally learning
how to write business rules in Java.

Two open questions concluded the questionnaire. We will
comment them briefly here, and elaborate in the discussion.
The first question aimed at helping to assess how the mem-
bers experience learning technologies in the Tech Commit-
tee. Several respondents emphasized the simplicity and con-
ciseness of Makumba code, therefore easiness to start work-
ing with, in various ways: as an intuitive link between code
and result, or as a praise to simplicity perceived as being able
to express things in only one way, with a direct reference to
people coming into and leaving the Tech Committee, or as a
technology that provides for rapid achievement, thereby en-
couraging further involvement. It is important for the Tech
Committee in the international meetings to ‘catch’ people
fast, by allowing them to realize that they can do some-
thing, that they can contribute. If this would not happen
fast, the prospective new member might lose interest and
maybe try to join another international team where contri-
bution is more facile.

“I would say that the code is very close to the
result (’what you code is what you get’), or at
least, very logically connected.”

“One big advantage is the syntax, which makes
it straight forward to understand other people’s
work. With Makumba, it doesn’t happen so of-
ten that 2 people write totally different pieces of
code for the same feature, and this is very useful
for BEST (where people change very often).”

“anybody is able to get a working page after
10 minutes of theory and 5 minutes of practice.
That’s provide motivation to do more difficult
features.”

A respondent emphasizes that “there is life” beyond the
first simple steps, i.e. there are more complex things to be
done, and Makumba accommodates for these as well. Sev-
eral respondents compare Makumba with other Web devel-
opment frameworks in this regard. More than one respon-
dent referred explicitly to “non-IT people”, thereby empha-
sizing the suitability for amateur settings.

“[...] allowing to reach very quickly decent re-
sults with its basic features (allowing new joiners
not to get tired of the learning effort and to con-
tribute quickly) while also providing more pow-
erful stuff for advanced users (allowing them to
still find new challenges).”

“All the other frameworks and technologies I
know (Struts, PHP + templating engine, Zope)
require a higher degree of computer technologies
knowledge to achieve similar results. This might
be changing with new frameworks like Ruby on
Rails in which the model definition is done in
a similar way as in Makumba, but still I think
Ruby on Rails’ learning curve is steeper than
Makumba’s”

“Makumba being specifically designed for web
applications, it is both extremely simple to learn
for the basics - easier than PHP, especially for
non-programmers - mainly through the easy in-
teractions with databases; yet can be as powerful
as any other language”

“But the main advantage is that everyone can
learn, without too much of a technological back-
ground. I think that for [Tech Committee], or
for any organization who wants to involve non-IT
people in the development of their applications,
the use of Makumba can make things much eas-
ier.”

Respondents refer to their learning primarily from other
members, sometimes even without explicit training and with-
out even mastering the basics of the entry-level skill (HTML
and SQL). Also learning by reading a mailing list is men-
tioned. Other informants report having asked questions on
the Tech Committee mailing list and getting a multitude
of good answers, also usable in the professional life of the
then-amateur.

“I didn’t attend any organised Makumba train-
ing, but learned the basics during events, in the
first year. It was quite easy, although I didn’t
even know HTML or SQL when joining [the Tech

211

Committee]. On the first 1-2 projects, I was di-
rectly helped by [the Tech Committee]’s experi-
enced members. Afterwards, I started following
also the emails and learned a lot from other peo-
ple’s problems/experiences.”

“The [Tech Committee] community is helpful,
it is very easy to learn new technologies. I think
makumba gives a very good starting point for
learning web programming (separation of con-
cerns, data model design). Everything that I
learned in [Tech Committee] has proved to be
true also in the professional web development
world.”

Learning by reading examples (existing code) is empha-
sized by most respondents. Knowing how the Intranet is
organized helps to find relevant code:

“Learning is easy thanks to a lot of exam-
ples: for most of the tasks I could find another
place where a similar feature had been imple-
mented. Having a good knowledge about BEST
IT systems helps more than having strong pro-
gramming skills. Other [Tech Committee] mem-
bers also very often help and give advice when a
problem or mistake occurs.”

A problem with learning Makumba is raised: since it is
little known outside the student organization, there is no
chance that some joining members already come in the Tech
Comittee with the skill:

“The main disadvantage is that everyone must
learn it, since it is quite different from other web
technologies.”

The last question asked the respondents for a comparison
of Makumba with other technologies and frameworks aimed
for web development. Many of the former or present mem-
bers of the Tech Committee, currently working in IT jobs,
were able to provide comparisons from a qualified profes-
sional perspective, with references to related technologies.
Notably a number of members make architectural remarks,
referring to some technical imperfections of Makumba, which
does not provide a good separation between data (“model”),
its visualizations (“view”) and the data change mechanisms
(“controller”), within a widely accepted professional paradigm,
called Model-View-Controller. However most respondents
regard this as an asset in the end, leading to easier pro-
grammer access to the data and higher maintainability.

“Mak is significantly more suitable for [the
Tech Committee] than anything else I’ve seen,
despite the horrible inflexibility of the J2EE plat-
form. Most other frameworks/setups insist on a
very clear separation between the model and the
view, and in most situations, this makes sense.
However, by moving certain typically controller-
world operations, such as database queries, to the
view in a simple and accessible way, pages
become much more maintainable without very
strong documentation discipline, because they some-
what self-document.”

“atm. I can’t think of frameworks that do
mix view and model, i.e. view and data query.

they all go through a DAO layer, which would
break the ‘what you code is what you get’. other
frameworks also do have a lot of configuration
overhead and rely on Java, which make it difficult
for beginners to grasp. e.g. Struts needs to have
several files changed in order to get a form to
work, which is not so straightforward and slows
down the ‘try and error’ process.”

“Technology-wise, I love Makumba as how it’s
designed – the whole way the view/controller sep-
aration is less sharp than in other frameworks,
how this is made very accessible and maintain-
able using the Makumba tag library, and how in
the end this makes a large intranet maintainable
by a community of people of variable skills.”

9. DISCUSSION
We should first mention that we cannot deny the merits of

the non-technological aspects of the Tech Committee work
and organization that contributed to its sustainability: the
managerial skills of its leaders and experienced members, or
the well-organized mentoring of the newcomers, are all as-
pects that surely help sustaining the Tech Committee prac-
tice. However, our data (including explicit statements from
members of different generations) shows that Makumba’s
learning-oriented design and the meanings associated with
Makumba in the student community play a crucial role in
the Tech Committee sustainability.

Our data shows that designing a programming technol-
ogy that allows member activity at various levels of skill,
thereby prescribing a learning path for the members of the
amateur community of practice, allows for sustainability of
the amateur programming practice. In the case in point,
we saw that the ‘learning departments’ of the setting, corre-
sponding to the different programming languages used, were
well populated at all times, in all our annual counts, even
if members left the setting every year while others joined.
We can recommend as a design implication to design ‘skill-
modular’ technologies, with ‘modules’ that require differ-
ent levels of skill, with the first such module having a low
learning threshold (HTML and simplified SQL-queries in the
Makumba case), in order to provide for challenge address-
ability, and the next modules providing new challenge levels
(e.g. BL in the Makumba case, with the procedural Java
skill to be learned), thereby helping towards challenge in-
exhaustibility [4]. Such learning modules with new chal-
lenges also provide for progressing from the periphery to
fuller membership, thus molding themselves well on Com-
munity of Practice social learning. The technology can then,
as we believe Makumba does, be part of the configuration
process emphasized by Lave and Wenger [12].

Especially for the entry-level skill modules (the JSP level
of Makumba), code legibility is an important design feature
for an amateur programming technology, in such a context
of learning in doing, from peers, or from the artifacts they
produced. Most of our respondents mention looking at a
working example when performing a task, and this is not
unexpected in a Community of Practice. A major part of
the Makumba JSP level simplicity and legibility is inherited
from the corresponding feature of SQL queries, as legibility
and intuitiveness were among its design principles, since it is
based on natural language. Members who do not know SQL
simply have to rely on their English to find their way around

212

initially. This is further helped by Makumba JSP using a
simplified form of SQL queries. Using plain text code rather
than visual programming further helps the sharing and un-
derstanding of existing examples [22]. We will also empha-
size here the importance of an amateur programming exper-
imentation (cf. [4] for experimentation with amateur radio
equipment). Few programmers work on the actual ‘officially
running’ system, instead they work on a copy of it running
with some example data. The lower the skill available, the
more important the space for experimentation becomes, as
a space for making initial mistakes, trial and error, and low-
risk attempts to find solutions. It is difficult to imagine what
Makumba programming would have been without the Tech
Committee members’ sandbox [3], i.e. without a possibility
for them to easily experiment, make mistakes, and to repair
them by looking at the work of their peers, or by asking
questions to peers.

We were however not satisfied when discussing our data
that this theoretical ‘skill modularity’ picture captures the
Tech Committee sustainability entirely.The first author, who
proposed it, has never actually been active in the sustain-
able period of the Tech Committee, and has coded little
of the the Makumba Intranet. It was the second author,
along with former and present Tech Committee leaders dur-
ing its sustainable days, who pointed out several other as-
pects that lead to sustainability, some of which were con-
firmed by questionnaire respondents. First, BEST student
organization members regard Makumba as being something
that belongs to them but also something that they give out
to the world, therefore it is a way for them to relate to a
public [18], or a wide audience [2], thereby increasing am-
ateur motivation. Entering the Tech Committee gives one
a privilege to work with a technology that is unique, and
designed by previous Tech Committee generations. Enter-
ing the Tech Comittee also means being part of the team
who had in 1995 an automated online application system
at a time when many companies barely had a static web-
site. While such an early achievement is not directly re-
lated to Makumba, it emphasizes the Tech Committee long-
lasting tradition in the area of dynamic Web applications,
Makumba’s application domain, and is supplemented by
other similar war stories [14] that have a role in learn-
ing, but also in creating a sense of belonging. Further-
more, entering the Tech Committee often means attending
a Makumba party, one of these mysterious events that other
people talked about but never wanted to give details. This
reminds us of an initiation rite [20] and plays a role in at-
tracting ‘new blood’ to the community. In retrospect, choos-
ing the Makumba name in favor of other, more technology-
oriented but less student-community-oriented names was an
inspired act. This teaches us that, while skill modularity
has its merits, it can always use complementation from cul-
tural meanings ascribed to the technology within the com-
munity: traditions, war stories, rituals, world-unique speci-
ficities. An implication then is to try to link the technology
with community meaning. If this was possible to achieve
(albeit somewhat accidentally) for such an intricate thing as
a web development framework by a simple act of baptizing,
it could work for many other technologies.

The relative uniqueness of Makumba to the student or-
ganization has an interesting consequence: since it is not a
well-known technology, there are very few Tech Committee
members who already know the technology when they join

the committee, so they have to learn it when they join, at
the same time as they come in contact with the traditions
and rites associated with it. As there are not many resources
dedicated to Makumba on the Internet, they have to resort
to their fellow Tech Committee members, thus being ‘forced
into socialization’, and thus fueling peer learning.

Reflection on Makumba as a technology for pre-professionals
[18] leads us to two apparently contradictory considerations.
On the one hand, Makumba imposes a professional rule,
preventing the amateurs from mixing business rules with
data views. The two are programmed in very different lan-
guages, requiring different skills, and different skills levels,
making it difficult for the amateurs to even attempt to mix
them. Many technologies in use by amateurs (like PHP) do
not enforce this separation, leading to lack of code scaleabil-
ity of application development: applications can be started
fast, like with Makumba, but once they grow large, prob-
lems start to occur due to not enforcing this major princi-
ple, affecting in the end sustainability. On the other hand,
another professional rule, the separation of data view from
data access is violated by Makumba, as emphasized by sev-
eral former members, currently professionals. Ironically, the
two rules are part of the same professional design pattern,
the Model-View-Controller. Selecting relevant professional
principles is thus yet another design implication that we
draw for amateur technology, and as the example shows, it
can lead to fine-grained decisions. In other words, even if the
professional counterpart is a potential role-model to be fol-
lowed by the amateurs [18], not all its aspects will be useful
in the amateur programming setting. We can draw a simple
consequence of this implication: many professional technol-
ogy designer use “more is better” as a principle in designing
a feature set. In an amateur community, like it happened for
the Tech Committee with Lotus Notes, members trying to
employ such a technology would have a hard time choosing
the feature they need. The small number of Makumba data
types as well as the small amount of keywords in languages
used (HTML, SQL-query) come to suggest that “more is
better” is not a good professional principle to select, as it
doesn’t fit the amateur learning situation, where members
need to get involved (and get some sense of achievement)
fast.

A further feature that we can recommend for amateur
programming technologies, related to code legibility, is to
provide for easy code navigation. As emphasized by some
respondents, Makumba has fewer types of files than profes-
sional technologies in the same application domain, there-
fore requiring less navigation between files when performing
a task. Although this sometimes breaks the professional
principle of separation of concerns (like data access concern
and data view concern, as illustrated above) it helps the
novices to make easier progress, and achieve better orienta-
tion when contributing to a large project like the Intranet.
Furthermore, this source file compactness, especially at the
JSP level, leads to little interdependency between the JSP
source files (i.e. changing one such file is not prone to af-
fect the working of many others), which helps when several
of amateur programmers work on different parts of the In-
tranet, as they are not prone to affect each other’s work, and
thus the likely mistakes that a novice makes will not affect
his or her peers. Such team scaleability is ideal for amateur
programming sustainability.

213

10. CONCLUSIONS
We have described the sustainability of an amateur pro-

gramming group, and examined it as an Amateur Commu-
nity and as a Community of Practice. Based on this frame-
work and on data collected over several years, we proposed
several technology design implications for achieving sustain-
able practice in communities. We suggest that technologies
should be learning-oriented, more precisely they should be
organized around skill modules. We further suggest that
technologies should be associated with community tradi-
tions, rituals and specificities. Finally, we suggest that a
careful selection must be done from among the principles
used within professional counterpart of the amateur com-
munity. Such a selection should also be made with learning
in mind: professional principles can be broken at the expense
of easier learning, yet other professional principles must be
enforced to ensure long-term sustainability.

11. ACKNOWLEDGMENTS
Thanks to the students, members and associates of the

Tech Committee who have worked hard to overcome Makumba
imperfections and to make the Intranet what it is today,
while also taking time to answer our surveys. Thanks are
also due to all the Makumba contributors. Yngve Sund-
blad and John Bowers have supervised this work with good
advice during the crucial Makumba design phases.

12. REFERENCES
[1] E. Blevis. Sustainable interaction design: invention &

disposal, renewal & reuse. In CHI ’07: Proceedings of
the SIGCHI conference on Human factors in
computing systems, pages 503–512, San Jose,
California, USA, 2007. ACM.

[2] C. Bogdan. IT Design for Amateur Communities.
PhD thesis, Royal Institute of Technology (KTH),
Stockholm, 2003.
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:

diva-3470.

[3] C. Bogdan. Longstanding success without awareness
support: lessons from a collaborative programming
tool. In Proceedings of the International Conference on
the Design of Cooperative Systems (COOP 2008),
Institut d’Etudes Politiques, Aix-en-Provence, France,
2008.

[4] C. Bogdan and J. Bowers. Tuning in: Challenging
design for communities through a field study of radio
amateurs. In Proceedings of the Third Communities
and Technologies Conference, pages 439–461, Michigan
State University, MI, USA, June 2007. Springer.

[5] A. Clement and P. V. den Besselaar. A retrospective
look at pd projects. Communications of the ACM
Special issue on Participatory Design, 36(4):29–37,
1993.

[6] M. Csikszentmihalyi. Flow: The Psychology of
Optimal Experience. Harper and Row, New York,
1990.

[7] G. A. Fine. Morel Tales. The Culture of Mushrooming.
Harvard University Press, 1998.

[8] M. Goodwin. Nine principles for making virtual
communities work. Wired 2.06, pages 72–73, June
1994.

[9] J. Greenbaum and M. Kyng. Design at work:
cooperative design of computer systems. Lawrence
Erlbaum, Hillsdale, NJ, USA, April 1991.

[10] F. Kensing, J. Simonsen, and K. Bödker.
Participatory design at a radio station. Computer
Supported Cooperative Work, 7(3-4):243–271, 1998.

[11] P. Kollock. The economies of online cooperation. In
M. Smith and P. Kollock, editors, Communities in
Cyberspace. Routledge, London, 1999.

[12] J. Lave and E. Wenger. Situated Learning: Legitimate
Peripheral Participation. Cambridge University Press,
September 1991.

[13] S. Levy. Hackers: Heroes of the Computer Revolution.
Penguin Books, New York, 1994.

[14] J. E. Orr. Talking about machines: An Ethnography of
a Modern Job. Cornell University Press, 1996.

[15] D. Pargman. Code begets community. On social and
technical aspects of managing a virtual community.
PhD thesis, Linköping University, 2000.

[16] D. Pargman. Virtual community management as
socialization and learning. In Proceedings of the
Second Communities and Technologies Conference,
pages 95–110, Milano, Italy, 2005.

[17] D. A. Schon. The Reflective Practitioner: How
Professionals Think in Action. Basic Books, New
York, 1983.

[18] R. A. Stebbins. Amateurs. On the Margin Between
Work and Leisure. Sage Publications, 1979.

[19] R. H. Trigg. From sandbox to “fundbox”: Weaving
participatory design into the fabric of a busy
non-profit. In Proceedings of the Conference on
Participatory Design, pages 174–183, Palo Alto, CA,
USA, 2000. Computer Professionals for Social
Responsibility, New York, USA.

[20] A. van Gennep. The rites of passage. Routledge &
Kegan Paul, London, 1909/1960.

[21] E. Wenger. Communities of Practice: Learning,
Meaning, and Identity. Cambridge University Press,
1998.

[22] Y. Yamauchi, M. Yokozawa, T. Shinohara, and
T. Ishida. Collaboration with lean media: how
open-source software succeeds. In CSCW ’00:
Proceedings of the 2000 ACM conference on Computer
supported cooperative work, pages 329–338,
Philadelphia, PA, USA, 2000. ACM.

214

