From Waste Management to Resources Management

Paul H. Brunner
Technische Universität Wien
Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft
www.iwa.tuwien.ac.at
What is the most important resource?
Tulips?

Titelblad van 'Tooneel van Flora' uit 1637.
Price of a tulip in the year 1637:

3000 Gulden, equivalent to:
8 fat pigs + 4 fat oxen + 12 fat sheep
+24 tons wheat + 48 tons barley
+2 barrels wine + 4 barrels beer
+2000 kg butter + 500 kg cheese
+1 silver cup + 1 bale cloth
+1 bed including sheets and cover
+1 boat worths 500 Gulden!
The „most crazy speculation in history“?
Salt – the most important resource?

Salzbergwerk Wielicka, Polen
The environment – most limited resource?

atmosphere 4,200 [Mio. km³]

hydrosphere 1,400 [Mio. km³]

pedosphere 0,3 [Mio. km³]

nach A. Nieman ergänzt durch G. Döberl
Limited sinks: where to dispose of carbon?

Concentration of CO_2 and CH_4 in the atmosphere

CO_2 + 75 %

CH_4 + 300 %

Quelle: Beer, Baumgartner, 1995
Iron flows and stocks in Austria in Mio t/a

Iron the most important resource?

Primary production → Production → Waste management

Σ Import ~11
Σ Export ~7,8

stock 184 \(\Delta a \)

Lithosphere 140

*LAGER EISENERZ (Siderit) ohne Taubgestein

System "Eisenhaushalt Österreich"

Iron stock

[Mio. t]
Fuel – the most important resource?

Tesla Car

0-100 kmh in 3,9 sec. < 2 liter /100 km
Oil – the most important resource?

The stone age did not finish because of a scarcity of stones!
Biomass - the most important resource?

<table>
<thead>
<tr>
<th>sun -> electron</th>
<th>Area needed to supply all electricity for phh</th>
<th>wastes due to biomass fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>utilization of biomass</td>
<td>7800 m²/capita</td>
<td>85 kg/capita&year</td>
</tr>
</tbody>
</table>
Is the sun the most important resource?

<table>
<thead>
<tr>
<th>sun -> electron</th>
<th>Area needed to supply all electricity for phh</th>
<th>wastes due to biomass fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>utilization of biomass</td>
<td>7800 m²/capita</td>
<td>85 kg/capita&year</td>
</tr>
<tr>
<td>photovoltaic cells</td>
<td>80 m²/capita</td>
<td>0 kg/cap&year</td>
</tr>
</tbody>
</table>
The most important resource!
What is the contribution of waste management to resources management?

Precautionary principle:

Waste of today’s generation may not impose any economic or ecological burden on future generations.

Goals

1. Protection of men and the environment
2. Conservation of resources
3. After-care-free waste management (landfills)

Strategies to reach the goals:

Prevention, recycling, disposal

→ EU: hierarchy!
How to reach the goals: 1. clean cycles 2. low emissions 3. safe final sinks
Plastic waste management in Austria

Source: R. Fehringer, 1998

Diagram Description

- **Raw Material**: 1,100 kt/y 1994
- **Duro- and Polymers**: 850 kt/y 1994
- **Product Manufacturing**:
 - Primary Processing: stock: 40
 - Production: stock: 50
 - Consumption: stock: 7,100 + 400
- **Collection, Transporting, Sorting**:
 - Recycling: stock: 0
 - Energy Recovery: stock: 0
 - Landfill: stock: 9,700 + 590

Flowchart

- IMPORT:
 - Raw Material: 1,100
 - Intermediate Products: 990
 - Plastic Products: 530
 - IMPORT: 990

- EXPORT:
 - Duro- and Polymers: 850
 - Plastic Products: 420
 - Intermediate Products: 210
 - EXPORT: 26

- **Regranulate**:
 - 17
 - 26

Wastes

- 720 wastes
- 28 wastes
- 590 wastes

Stock Levels

- 40 regranulate
- 42 regranulate
- 9700 + 590 landfill
- 7100 + 400 consumption

Percentages

- 80% of landfilled waste
- 7% of recycling waste
Additives as the main problem

<table>
<thead>
<tr>
<th>Material & additives</th>
<th>Total consumption [kt/yr]</th>
<th>% in packaging material [%]</th>
<th>Total stock [kt]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastics</td>
<td>1,100</td>
<td>200</td>
<td>7,100</td>
</tr>
<tr>
<td>Softeners</td>
<td>14</td>
<td>0.2</td>
<td>140</td>
</tr>
<tr>
<td>Ba/Cd- stabilizers</td>
<td>0.27</td>
<td>0.0002</td>
<td>2.6</td>
</tr>
<tr>
<td>Pb-stabilizers</td>
<td>1.8</td>
<td>0.002</td>
<td>18</td>
</tr>
<tr>
<td>Fire retardants</td>
<td>2.3</td>
<td>0</td>
<td>22</td>
</tr>
</tbody>
</table>
How to establish clean cycles?

Partitioning of cadmium contained in waste plastic by:

Plastic recycling
- Recycling plastic: 73%
- Residue I: 14%
- Residue II: 2%
- Sludge: 1%
- Residue III: 10%

MSW incineration
- Flue gas: <1%
- E-Filter dust: 92%
- Waste water: <1%
- Filter cake: <1%
- Bottom ash: 8%
The market sets limits for recycling! (example lead)

Source: Lohm et al., 1998
We need landfills

Reactor landfills versus final sinks

We need „final storage quality“
Final storage quality -> making „stones“

Döberl et al. (2001)
Thank you