
On Using UML Profiles in
ATL Transformations?

Manuel Wimmer and Martina Seidl

Business Informatics Group,
Vienna University of Technology, Austria

{wimmer|seidl}@big.tuwien.ac.at

Abstract. For defining modeling languages, metamodels and UML pro-
files are the proposed options. While metamodels are supported by sev-
eral dedicated model transformation approaches, currently no transfor-
mation language exists which supports UML profiles as first class lan-
guage definitions. Instead, the usage of UML profiles in transformations
is implicit by using calls to external UML APIs.
In this paper, we first discuss the state-of-the-art of using UML profiles
in ATL. Subsequently, three approaches for supporting profiles as first
class language definitions within ATL transformations are introduced
and discussed. In particular, these approaches aim at using stereotypes
and tagged values within declarative rules without using external API
calls. The benefits are: first, the enhanced static checking of ATL trans-
formations, second, the more explicit representation of transformations
logic enhances the application of higher-order transformations, and third,
enhanced tool support such as code completion may be provided.

1 Introduction

Context. For defining languages in the field of model engineering, metamodels
and UML profiles are the proposed options. While metamodels, mostly based
on the Meta Object Facility (MOF) [3], allow the definition of languages from
scratch, UML profiles are used to extend UML [4] with new concepts.

Problem. Metamodels are supported by current model transformation lan-
guages as first class language definitions, however, UML profiles are not. Never-
theless, UML profiles may be used in transformations with a little work-around.
UML profiles are considered as additional input models and by calling exter-
nal UML APIs, profiles are applied. Although this is a technical possibility, the
development of such transformations code is challenging (cf. Section 4).

Solution. As a first step of using UML profiles as first class language defi-
nitions in model transformations, we discuss the state-of-the-art of using UML
profiles in ATL [1], identify some shortcomings, and propose three ways of using
UML profiles in ATL transformations more systematically. We demonstrate this

? This work has been funded by the Austrian Science Fund (FWF) under grant
P21374-N13.

by employing a running example. The explicit use of profiles as language defini-
tions provides various benefits. First, errors concerning the misuse of profiles may
be detected at design time. Second, transformations may be easier enhanced by
higher-order transformations. Third, tooling issues may be improved, e.g., code
completion for recommending applicable stereotypes.

2 Motivating Example

Two main scenarios exist where UML models annotated with profile information
have to be transformed. The first one is the vertical transformation scenario by
following the model-driven architecture proposed by the OMG. Platform inde-
pendent models are created which are subsequently refined with platform spe-
cific information by applying profiles consisting of stereotypes and tagged values
for specific platforms. From these platform specific models, code is generated
where the profile information is one of the main driver for the code generation.
The second scenario is the horizontal transformation scenario, where modeling
languages have to be bridged to UML. For example, in the context of the Model-
CVS project [2], one industry partner was using the CASE tool AllFusion Gen1

(AFG) from ComputerAssociate which supports a language for designing data-
intensive applications and provides sophisticated code generation facilities. Due
to modernization of the IT department and the search for an exit strategy (if
tool support is no longer guaranteed), the need arises to extract models from the
legacy tool and import them into UML tools while at the same time the code
generation of AllFusion Gen should in the future be usable for UML models
as well. Therefore, models have to be exchanged between AFG and UML tools
without loss of information which requires the extension of UML.

Running Example. As a running example, we are using an excerpt of a
tool integration case study conducted in the ModelCVS project. The goal was to
bridge the structural modeling part of AFG and UML, i.e., the AFG Data Model
with the UML Class Diagram. Since AllFusion Gen’s data model is based on the
ER model, it supports ER modeling concepts like EntityTypes, Attributes, and
Relationships. Furthermore, two concrete subtypes of the abstract EntityType
concept can be distinguished, namely AnalysisEntityType and DesignEntityType.
AllFusion Gen is typically used for modeling data intensive applications which
make excessive use of database technologies. Therefore, the data model allows
the definition of platform specific information typically usable for generating op-
timized database code, e.g., EntityTypes have special occurrence configurations.
It is obvious that the corresponding UML model type for AllFusion Gen’s data
model is the class diagram.

3 State-of-the-Art in ATL

After having introduced the modeling languages to be integrated, we now pro-
ceed with bridging AFG with UML. Due to space limitations, we only consider
1 http://ca.com/us/products/product.aspx?ID=256 (accessed 6 June 2009)

Micro-View – EntityType 2 Class

AFG::DataModel

EntityType
I t B l

Class

UMLModelCorrespondences

C2C
noInstances: Bool
avgOccurrence:Int
minOccurrence:Int
maxOccurence:Int

A2A isAbstract:Bool

AnalysisEntityType DesignEntityType
phase : String store : String

«profile»
AFG

«stereotype»
EntityType

O I t

«metaclass»
Class

«stereotype» «stereotype»

avgOccurrence:Int
minOccurrence:Int
maxOccurrence:Int

yp
AnalysisEntityType

yp
DesignEntityType

phase :String store : String

3© 2007 BIG Vienna University of Technology, TK & IFS University Linz

Fig. 1. EntityType to Class mapping

an excerpt which is used in the subsequent ATL listings. Details for the Enti-
tyType 2 Class mapping are illustrated in Fig. 1. The abstract metaclass En-
tityType of AFG is mapped to the metaclass Class in UML. In addition, the
attribute noInstances on the LHS is mapped to the attribute isAbstract on the
RHS. Several platform specific attributes of AFG remain unmapped which have
to be represented as tagged values in the UML profile.

AFG Profile. The profile excerpt

Micro-View – EntityType 2 Class

DataModel

EntityType
I t B l

Class

UMLModelCorrespondences

C2C
noInstances: Bool
avgOccurrence:Int
minOccurrence:Int
maxOccurence:Int

A2A isAbstract:Bool

AnalysisEntityType DesignEntityType
phase : String store : String

«profile»
AFG

«stereotype»
EntityType

O I t

«metaclass»
Class

«stereotype» «stereotype»

avgOccurrence:Int
minOccurrence:Int
maxOccurrence:Int

yp
AnalysisEntityType

yp
DesignEntityType

phase :String store : String

3© 2007 BIG Vienna University of Technology, TK & IFS University Linz

Fig. 2. AFG profile excerpt

resulting from the EntityType 2 Class
mapping is shown in Fig. 2. An ab-
stract stereotype EntityType is defined
for the abstract metaclass EntityType.
Furthermore, unmapped attributes are
represented as tagged values. Two con-
crete sub stereotypes are defined in
addition which have tagged values at-
tached for their unmapped attributes.

Transformation Architecture. Cur-
UML Model

Execute ATL AFG 2 UML

Output

UML ModelTransformation

UML ProfileAFG Model

UML MMAFG MM

Input

UML ProfileAFG Model

UML MMAFG MM

Execute ATL
UML 2 AFG

Output

AFG Model
Execute ATL

Transformation

UML MM AFG MM

Input

UML Profile
(constant)

UML Model

UML MM
(constant)

AFG MM
(constant)

Fig. 3. ATL runtime configuration

rently the only way to make use of UML
profiles in model transformations is that
the profiles are additional input models
for the model transformation. Fig. 3 illus-
trates this by showing the runtime con-
figuration for transforming AFG models
into UML with ATL. The user has to de-
fine the AFG model as first input model,
and the UML profile as second input model. The output model is the UML
model, which both conforms to the UML metamodel and to the UML profile,
which also conforms to the UML metamodel. This configuration reveals the
problem, that UML profiles are located on the M1 layer according to the OMG
metamodeling layers (because they conform to the UML metamodel being lo-
cated at the M2 layer), and also on the M2 layer (because UML models are
located at the M1 layer and instantiate the profile, which is thereby located at
the M2 layer).

ATL Transformation Code. Listing 1.1 illustrates an excerpt of the trans-
formation from AFG to UML. It consists of an abstract transformation rule,
which results from the EntityType 2 Class mapping. The current ATL version
does not allow to define do blocks for super rules, thus, feature to tagged value
mappings, e.g., for avgOccurrence, must be defined in concrete sub rules. In
fact, two concrete subrules are necessary for our running example, one for trans-
forming AnalysisEntityTypes (cf. second rule in Listing 1.1) and one for De-
signEntityTypes (not shown due to space limitations). These subrules have to
implement stereotype applications and feature to tagged value assignments for
super stereotype tagged values (e.g., avgOccurrence) as well as for leaf stereotype
tagged values (e.g., phase).

Listing 1.1. AFG to UML excerpt
1 module AFG2UML;
2 create OUT:UML from IN :AFG, IN2 :PRO;
3

4 helper def : s t e : PRO! Stereotype = PRO! Stereotype . a l l I n s t a n c e s ()
5 −> s e l e c t (e | e . name = ’ AnalysisEntityType ’) . f i r s t ()) ;
6

7 abstract rule ET 2 Class {
8 from s : AFG! EntityType
9 to t : UML! Class (i sAbs t r a c t <− s . noIns tances)

10 }
11 rule Analys i sET 2 Class extends ET 2 Class{
12 from s : AFG! Analys isEntityType
13 to t : UML! Class
14 do{
15 t . applyStereotype (s t e) ;
16 −−ass ign tagged va lues from super s t e reo types
17 i f (not s . avgOccurrence . oc l I sUnde f ined ()){
18 t . setTaggedValue (ste , ’ avgOccurrence ’ , s . avgOccurrence) ;
19 }
20 . . .
21 −−ass ign tagged va lues from l e a f s t e reo type
22 . . .
23 }
24 }

4 Profile-Aware Transformation Language

In this section we first discuss some shortcomings of ATL concerning the usage of
UML profiles based on the afore presented listing and present three approaches
for tackling these shortcomings.

Shortcomings. When taking a closer look on the afore shown ATL listing,
the following shortcomings may be identified. 1) Feature to tagged value assign-
ments have to be done in do blocks. Because do blocks cannot be used for super
rules, these assignments have to be done for each sub rule again and again. 2)
The application of stereotypes is only implicit by calling external UML APIs.
Therefore, it cannot be checked if a certain stereotype is applicable for the UML
element and because of stereotypes are only encoded as a String values, it is not
ensured that the stereotype actually exists in the profile. 3) The same problems
as for stereotype assignments exist for tagged value assignments. 4) Some low-
level details of external UML APIs have to be considered in the transformations.

For example, the assignment of a null value to a tagged value results in a runtime
exception.

Profile-aware Transformation Language. Now, three approaches for us-
ing UML profiles as first class language definitions are proposed and discussed.

(1) Merge. This approach is a lightweight approach, meaning that no ATL
language modification is necessary. Instead of using the UML metamodel and
the UML profile as separated definitions, they are merged into one metamodel.
For this, stereotypes become metaclasses, tagged values become features, and
extension relationships become inheritance relationships. In Listing 1.2, the ATL
code is shown which is capable of transforming AFG models into UML models
which conform to the merged metamodel. Please note that the transformation
code is more concise compared to Listing 1.1. Advantages of this approach are as
follows. The merged metamodel is automatically created and it is not necessary
to extend the ATL language with new syntax elements. However, there are also
some drawbacks. In addition to the merged metamodel, model adapters are
needed to transform UML models conforming to the merged metamodel into
standard UML models using profiles. Furthermore, in cases where more than
one stereotype is applicable on the same element, this approach is not sufficient.

Listing 1.2. AFG to UML (merged UML metamodel)
1 module AFG2UML;
2 create OUT: UML ext from IN :AFG;
3

4 abstract rule ET 2 ET {
5 from s : AFG! EntityType
6 to t : UML! EntityType (
7 i sAbs t r a c t <− s . noInstances ,
8 avgOccurrence <− s . avgOccurrence ,
9 . . .

10)
11 }
12 rule AnalysisET 2 AnalysisET extends ET 2 ET{
13 from s : AFG! Analys isEntityType
14 to t : UML! Analys isEntityType (phase <− s . phase)
15 }

(2) Preprocessor. This approach uses a slightly modified ATL syntax for
describing UML profile aware transformations and a preprocessor which creates
standard ATL transformations for execution purposes. The modified ATL syntax
is used in Listing 1.3. Please note that we have introduced a using keyword in the
header definition for referencing the used profile and an apply keyword which is
used in the to part for applying stereotypes on target elements. For this modified
ATL syntax, we are now able to provide dedicated code completion and static
validation to ensure the proper usage of UML profiles. Furthermore, we allow to
use feature to tagged value assignments in the to parts of the transformations,
thus the inheritance feature between declarative rules can be fully exploited.
Advantages of this approach are that only a modified syntax of ATL has to be
provided as well as a transformation to standard ATL. Disadvantages are that
debugging is only supported for the generated standard ATL transformations
and a new development line is created that requires a parallel development with
the standard ATL development line.

(3) Extending ATL. Finally, the additional syntax elements for using UML
profiles can be directly integrated in ATL. This requires to extend not only
the syntax, but also the ATL compiler which is much more implementation
work compared to the previous approaches. However, the benefit is that neither
a preprocessing of metamodels and models (first approach) nor of ATL code
(second approach) is necessary. In addition, the complete tool support of ATL,
e.g., the debugger, may be used.

Listing 1.3. AFG to UML (extended ATL syntax)
1 module AFG2UML;
2 create OUT:UML using AFG Profi le from IN :AFG;
3

4 abstract rule ET 2 ET {
5 from s : AFG! EntityType
6 to t : UML! Class apply EntityType (
7 i sAbs t r a c t <− s . noInstances ,
8 avgOccurrence <− s . avgOccurrence ,
9 . . .

10)
11 }
12 rule AnalysisET 2 AnalysisET extends ET 2 ET{
13 from s : AFG! Analys isEntityType
14 to t : UML! Class apply AnalysisEntityType (
15 phase <− s . phase
16)
17 }

5 Conclusions and Future Work

In this paper, we discussed the state-of-the-art of using UML profiles within ATL
transformations, identified some shortcomings, and proposed three approaches
how to use UML profiles as first class language definitions. In future work, we
plan to realize experimental ATL versions for UML profiles by following the three
presented approaches. Furthermore, we plan to evaluate vertical ATL transfor-
mations in which UML profiles are heavily used.

References

1. F. Jouault and I. Kurtev. Transforming Models with ATL. In Proceedings of Satellite
Events at the MoDELS 2005 Conference, Jamaica, 2006.

2. E. Kapsammer, H. Kargl, G. Kramler, G. Kappel, T. Reiter, W. Retschitzegger,
W. Schwinger, and M. Wimmer. On Models and Ontologies - A Semantic In-
frastructure Supporting Model Integration. In Proceedings of Modellierung 2006,
Austria, 2006.

3. Object Management Group. Meta Object Facility (MOF) 2.0 Core Specification
Version 2.0. http://www.omg.org/docs/formal/06-01-01.pdf, Oct. 2004.

4. Object Management Group. UML Specification: Superstructure Version 2.0.
http://www.omg.org/docs/formal/05-07-04.pdf, August 2005.

