
Kato: A Plagiarism-Detection Tool for
Answer-Set Programs?

Johannes Oetsch, Martin Schwengerer, and Hans Tompits

Institut für Informationssysteme 184/3, Technische Universität Wien,
Favoritenstraße 9-11, A-1040 Vienna, Austria

{oetsch,schwengerer,tompits}@kr.tuwien.ac.at

Abstract. We present the tool Kato which is, to the best of our knowledge,
the first tool for plagiarism detection that is directly tailored for answer-set pro-
gramming (ASP). Kato aims at finding similarities between (segments of) logic
programs to help detecting cases of plagiarism. Currently, the tool is realised for
DLV programs but it is designed to handle various logic-programming syntax
versions. We review basic features and the underlying methodology of the tool.

1 Background

With the rise of the Internet and its easy access of information, plagiarism is a growing
problem not only in academia but also in science and technology in general. In soft-
ware development, plagiarism involves copying (parts of) a program without revealing
the source where it was copied from. The relevance of plagiarism detection for conven-
tional program development is well acknowledged [1]—it is not only motivated by an
academic setting to prevent students from violating good academic standards, but also
by the urge to retain the control of program code in industrial software development
projects.

We are concerned with plagiarism detection in the context of answer-set program-
ming (ASP) [2]. In particular, we deal with disjunctive logic programs under the answer-
set semantics [3]. Answer-set programming is characterised by the feature that problems
are encoded in terms of theories such that the solutions of a problem instance correspond
to certain models (the “answer sets”) of the corresponding theory. It differs from imper-
ative languages like C++ or Java (and also to some extent from Prolog) because of its
genuine declarative nature: a logic program is a specification rather than an instruction
of how to solve a problem; the order of the rules and the order of the literals within
the heads and bodies of the rules have no effect on the semantics of a program. Hence,
someone who copies code has other means to disguise the deed.

For conventional programming languages, sophisticated tools for plagiarism detec-
tion exist, like, e.g., YAP3 [4], Sim [5], JPlag [6], XPlag [7], and others [8]. However,
most techniques are not adequate for ASP. The reason is the declarative nature of ASP
as well as the lack of a control flow. Especially the fact that the order of statements
(and of the literals of a statement) is not relevant for a program causes that existing

? This work was partially supported by the Austrian Science Fund (FWF) under project P21698.

techniques are unsuitable in general. As well, many commonly used tools work with
a tokenisation: the source code is translated into a token string where code strings are
replaced by generic tokens. For instance, a tokeniser could replace each concrete num-
ber by the abstract token <VALUE>. The resulting token strings are used for the further
comparisons by searching for common substrings. However, the structure of a DLV
program is rather homogeneous—there are not many built-in predicates—which makes
this technique unsuitable for detecting copies.

The need for tools for plagiarism detection in ASP is clearly motivated by the grow-
ing application in academia and industry, but our primary interest to have such a tool
is to apply it in the context of a laboratory course at our university. We thus developed
the tool Kato which, to the best of our knowledge, is the first system for plagiarism
detection that is directly tailored for ASP.1 Kato aims at finding similarities between
(segments of) logic programs to help detecting cases of plagiarism. Currently, the tool
is realised for DLV programs but it is designed to handle various logic-programming
syntax versions as well.2 In what follows, we review the basic features of Kato and
outline its underlying methodology.

2 Features and Basic Methodology of Kato

Kato was developed to find suspicious pairs of programs stemming from student as-
signments in the context of a course on logic programming at our university. Hence,
the tool can perform pairwise similarity tests on a rather large set of relatively small
programs. In what follows, we provide basic information concerning the implemented
features of Kato and how they are realised.

Figure 1 shows the basic working steps needed to perform a test run, which can
be divided into three major phases: First, the programs are parsed and normalised in a
preprocessing step. Then, test specific preparations are applied. Finally, the programs
are compared.

Following a hybrid approach, Kato performs four kinds of comparison tests, real-
ising different layers of granularity: (i) a comparison of the program comments via the
longest common subsequence (LCS) metric (see the work of Bergroth et al. [9] for an
overview), (ii) an LCS test on the whole program, (iii) a fingerprint test, and (iv) a struc-
ture test. We recall that the LCS of two strings is the longest set of identical symbols in
both strings with the same order. Hence, the LCS metric tolerates injected non-matching
objects. Note that (i) and (ii) are language independent while (iii) and (iv) need to be
adapted for different language dialects. All of these tests, outlined in more detail below,
compare files pairwise and return a similarity value between 0 (no similarities) and 1
(perfect match).

LCS-Comment Tests. It is surprising what little effort some people spend to mask copied
comments. This test reveals similarities between program comments when interpreted
as simple strings via the LCS metric.

1 The name of the tool derives, with all due acknowledgments, from Inspector Clouseau’s loyal
servant and side-kick, Kato.

2 See http://www.dlvsystem.com/ for details about DLV.

Fig. 1. Overview over a test run

LCS-Program Tests. Similar to the LCS-comment test, the whole programs are inter-
preted as two strings which are then tested for their longest common subsequence. This
test represents an efficient method to detect cases of plagiarism where not much time
has been spent to camouflage the plagiarism or parts of it.

Fingerprint Tests. A fingerprint of a program is a collection of relevant statistical data
like hash-codes, the number of rules, the number of predicates, the number of constants,
program size, and so on. After fingerprints of all programs are generated, they are com-
pared pairwise. This gives a simple yet convenient way to collect further evidence for
plagiarism.

Structure Tests. This kind of tests gives, by taking the structure of the programs into
account, the most significant information in general. The central similarity function
underlying the structure tests is defined as follows: Let litH (r) be the multiset of all
literals occurring in the head of a given rule r and litB (r) the multiset of all literals
occurring in the body of r. Then, for two rules r1 and r2, the rule similarity, σ(r1, r2),
is defined as

σ(r1, r2) =
|litH (r1) ∩ litH (r2)|+ |litB (r1) ∩ litB (r2)|

max(|litH (r1)|+ |litB (r1)|, |litH (r2)|+ |litB (r2)|)
.

Furthermore, for two programs P1 and P2 (interpreted as multisets of rules), the simi-
larity, S(P1, P2), is given by

S(P1, P2) =

∑
r∈P1

max(σ(r, r′) : r′ ∈ P2)
|P1|

.

Note that S is not symmetrical in its arguments. For any two programs P1 and P2,
S(P1, P2) is mapped to a value between 0 and 1 which, roughly speaking, expresses to
which extent P1 is subsumed by P2 by similar rules.

By definition, S thwarts disguising strategies like permuting rules or literals within
rules. However, a more advanced plagiarist could also uniformly rename variables
within rules or rename some auxiliary predicates. Therefore, our similarity test comes
with different levels of abstraction to counter these malicious efforts. Such renaming
is handled by finding and applying suitable substitution functions. Without going into
details, the problem of finding such functions is closely related to the homomorphism
problem for relational structures which is known to be NP-complete. To circumvent the
high complexity, we use an efficient greedy heuristic to obtain our substitutions.

To make the similarity function sensitive to common rule patterns, we also im-
plemented a context dependent extension: A global occurrence table gives additional
information how specific two rules are. The main idea is that rare rules yield better ev-
idence for a copy than common ones. Therefore, Kato collects and counts all rules in
the considered corpus of programs and stores this information in an occurrence table.
During the comparison, the rule similarity is then weighted depending on the frequency
of the involved rules.

3 Further Information and Discussion

The tool is entirely developed in Java (version 6.0). The results of the program com-
parisons are displayed in tabular form with features like sorting and filtering. For the
structure tests, the tool shows program pairs and highlights similar rules. Currently,
Kato is designed for DLV’s language dialect but it can be easily extended to other
dialects—it is planned to consider standard Prolog as well. Kato was successfully ap-
plied in a logic programming course at our university; all cases of plagiarism detected
by the supervisors showed high similarities, and even further cases of plagiarism could
be detected.

Detailed empirical analyses in terms of precision and recall, as well as comparisons
of our approach with existing tools for plagiarism detection, are left for future work. A
further topic for future work is to develop means to visualise the comparison results,
e.g., to spot clusters of cooperating plagiarists more easily.

Another interesting aspect of Kato is a possible use as a software engineering tool:
If a team is working on a program, different versions will emerge. Then, the question
about the actual differences between two versions is immanent. Kato can be adapted
to answer such questions.

Additional information about the tool, and how to obtain it, can also be found at

http://www.kr.tuwien.ac.at/research/systems/kato .

References

1. Clough, P.: Plagiarism in natural and programming languages: An overview of current tools
and technologies. Technical Report CS-00-05, Department of Computer Science, University
of Sheffield, UK (2000)

2. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving. Cam-
bridge University Press, Cambridge, England (2003)

3. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9 (1991) 365–385

4. Verco, K.L., Wise, M.J.: YAP3 : Improved detection of similarities in computer program
and other texts. In Klee, K.J., ed.: Proceedings of the Twenty-Seventh SIGCSE Technical
Symposium on Computer Science Education, New York, ACM Press (1996) 130–134

5. Gitchell, D., Tran, N.: Sim: A utility for detecting similarity in computer programs. In:
Proceedings of the Thirtieth SIGCSE Technical Symposium on Computer Science Education,
ACM Press (1999) 266–270

6. Prechelt, L., Malpohl, G., Philippsen, M.: JPlag: Finding plagiarisms among a set of programs.
Technical Report 2000-1, Fakultät für Informatik Universität Karlsruhe, Germany. (2000)

7. Arwin, C., Tahaghoghi, S.M.M.: Plagiarism detection across programming languages. In:
Proceedings of the Twenty-Ninth Australasian Computer Science Conference (ACSC 2006).
Volume 48 of CRPIT. Hobart, Australia, ACS (2006) 277–286

8. Jones, E.L.: Metrics based plagiarism monitoring. In: Proceedings of the Sixth Annual CCSC
Northeastern Conference. (2001) 1–8

9. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms.
In: SPIRE. (2000) 39–48

