The Methodology of MFA

Case Studies

Paul H. Brunner

Vienna University of Technology
Institute for Water Quality, Resources and Waste Management
http://www.iwa.tuwien.ac.at

Content

- 1. Motivation
- 2. Definitions and STAN
- 3. Scale
- 4. Applications
- 5. Integration of MFA in governance

Vision and Motivation

- 1. Sustainable development:
 - long term environmental protection
 - "best" resource use
 - "utility and happiness forever"
- 2. How to measure and to achieve SD?
- 3. MFA as a key method in the tool box for SD
- 4. The two aspects: goods and substances
 - goods as economic units (quantity)
 - substances determining ecological and resource qualities

MFA definitions

- Goods and substances
- Processes and stocks
- Flows and fluxes
- Transfer coefficients
- System and system boundaries

Most simple case of MFA: 1-process system

10-process system "regional phosphorous flows and stocks"

Procedure to establish MFA

STAN freeware to support MFA including uncertainty

STAN:

http://www.iwa.tuwien.ac.at/iwa226_english/stan.html

composting plant.mfa

STAN allows modelling more complexe systems such as wm

Scale: from human to ...

Scale: from human to household to ...

Scale: from human to household to regional to...

Scale: from human to household to regional to national to...

[kg/c.a]

systems boundaries: region/1year

Scale: from human to household to regional to national to watershed...

- A: direct and indirect inputs of animal waste products,
- B: erosion and leaching
- C: direct flows from private households and industry
- D: diffuse inputs from forestry (erosion, percolation),

MFA for environmental protection and resources management

1st generation MFA: Environmental protection

- DDT
- CFCs
- PCBs, NP etc.
- C -> CO₂ and CH₄

MFA for greenhouse gas emission assessment

Concept of Balance Method

Balance Equation

COEfficients (given by the chemical composition of biogenic and fossil matter)

Derived from operating data

Results (annual values)

Fraction of fossil CO₂ emissions [%]

MFA for environmental protection and resources management

1st generation MFA: Environmental protection:

- DDT
- CFCs
- PCBs, NP etc.
- C -> CO₂ and CH₄

2nd generation Resource management:

- Regional nutrient flows -> integrated P management
- Regional and global metal flows and stocks (Graedel)

-> future metal management

Copper management based on MFA

source: Graedel et al. 2002 and Rechberger

Application of MFA for governance in waste management

Goal: improve waste management practice

step 1: professional MFA standard ÖWAV guideline (consensus)

step 2: Austrian Standard ONORM S 2096 "MFA- Application in waste management"

step 3: easy to use software STAN (freeware) for MFA in wm

step 4: mandatory MFA requirement for certified MSW companies

step 5: routine waste analysis by MFA on selected MSW incinerators

step 6: Link all relevant information for a new knowledge base (e.g. for national waste management plan)

Conclusions

Objective:

- sustainable resource use
- long-term environmental protection

MFA is instrumental for this objective because:

- it is a <u>rigid, transparent, and objectiv</u> method to model and visualize material flows including uncertainty
- It facilitates understanding and public acceptance of decisions
- It is a <u>key decision support</u> tool for resource management, environmental management, and waste management
- It is indispensable to <u>establish knowledge</u> bases for em, rm, and wm
- It needs to be <u>standardized</u> in order to fully exploit its potential

Thank you

