
Why Model Versioning Research is Needed!?
An Experience Report?

Kerstin Altmanninger2, Petra Brosch1??, Gerti Kappel1, Philip Langer2,
Martina Seidl1, Konrad Wieland1, and Manuel Wimmer1

1 Business Informatics Group, Vienna University of Technology, Austria
{lastname}@big.tuwien.ac.at

2 Department of Telecooperation, Johannes Kepler University Linz, Austria
{firstname.lastname}@jku.at

Abstract. The status of current model-driven engineering technologies
has matured over the last years whereas the infrastructure supporting
model management is still in its infancy. Infrastructural means include
version control systems, which are successfully used for the management
of textual artifacts like source code. Unfortunately, they are only limited
suitable for models. Consequently, dedicated solutions emerge. These
approaches are currently hard to compare, because no common quality
measure has been established yet and no structured test cases are avail-
able. In this paper, we analyze the challenges coming along with merging
different versions of one model and derive a first categorization of typical
changes and the therefrom resulting conflicts. On this basis we create a
set of test cases on which we apply state-of-the-art versioning systems
and report our experiences.

Key words: model versioning, conflict categorization, tool evaluation

1 Introduction

With the increasing employment of model-driven engineering techniques for soft-
ware development, the call for adequate infrastructural means supporting the
effective management of software models grows ever louder. Tools successfully
used for versioning textual artifacts like source code are only limited suitable for
models, due to their line-oriented text comparison component.

The urgent need for a suitable infrastructure supporting effective model ver-
sioning has been widely recognized and first solutions start to emerge (cf. [3] for a
survey and [1, 16, 18, 20] for model versioning approaches). In this young research
area we are currently in such an early phase that even the research questions
are not clearly stated and that goals and borders are not clearly defined, going
seldom beyond the demand for precise conflict detection and supportive conflict
? This work has been partly funded by the Austrian Federal Ministry of Transport,

Innovation and Technology (BMVIT) and FFG under grant FIT-IT-819584.
?? Funding for this research was provided by the fFORTE WIT - Women in Technology

Program of the Vienna University of Technology, and the Austrian Federal Ministry
of Science and Research.



resolution. Furthermore, no established quality criteria are available. Hence, the
evaluation and comparison of model versioning systems in a structured and com-
prehensible manner are hardly possible. Related work to this paper only focuses
on particular phases of the versioning process as it is done in [10, 14]. Recently,
Barett et al. [4] have performed an evaluation of the versioning capabilities of
commercial modeling tools and provide an experience report. In this paper, we
follow a similar approach with the difference that we start from a discussion of
the phases passed through the merge process. This allows us to create a struc-
tured test set and categorize the open issues and problems of model versioning.

The paper is organized as follows. In Section 2 we propose a criteria cat-
alogue consisting of test cases for the evaluation of model versioning systems.
To establish a comprehensive test set, we analyze and categorize the phases run
through during the merge of diverging working copies of one model. In Section 3
we apply state-of-the-art model versioning systems on the test cases in order to
devise requirements and challenges for model versioning in Section 4 before we
conclude the paper in Section 5.

2 Criteria Catalog for the Evaluation of Model Versioning
Systems

In this paper, we aim at establishing test cases for the structured and repeatable
evaluation of model version control systems. The test cases emerge from model
versioning scenarios potentially leading to conflicts in order to test change detec-
tion and conflict detection facilities at various complexity levels. These scenarios
are systematically categorized according to the phases of the versioning process
and the different dimensions of the model merge problem. Due to space limi-
tations we only discuss the categorization briefly and give some representative
examples. For a complete description of the criteria catalog we kindly refer to
our project homepage1.

The most general layer of the categorization is set up according to the three
phases of the versioning process, which are depicted on the right side of Figure 1.
In the change detection phase the performed modifications on two working copies
of one model are identified. The detected changes build the basis for the two sub-
sequent phases, the conflict detection and inconsistency detection. In the second
phase conflicts are detected by analyzing concurrent changes solely, whereas
in the third phase consistency problems are revealed which would occur in the
merged model incorporating all changes.

Change Detection. In this phase changes performed in parallel on the common
base revision V0 resulting in the modified versions V0’ and V0” are identified
(cf. ∆ in Figure 1). The change detection may be realized either in a state-
based manner which considers only the final states of the modified versions
or by a change-based approach where the modeling editor tracks the executed

1 http://www.modelversioning.org



C
on

fli
ct

s

Overlapping
Changes

Contradicting

Equivalent

In
co

ns
is

te
nc

ie
s

Syntax Semantic

Change

Generic 
Atomic

Specific 
Atomic

Specific 
Composite

• Add
• Delete
• Update

• Move
• Rename
• ...

• Convert to Singleton
• Extract Superclass
• ...

C
ha

ng
es

• Update/Update
• Delete/Update
• ...

• Dangling Reference
• ...

• Equivalent Concept
• ...

• AddClass/AddClass
• ...

A

C

V0

V0’ V0’’

V0’+V0’’

V1

A
A

AA

A

A

A A

C

C

A
A C

A

A

Fig. 1. Conflict categorization according to the phases of the versioning process.

operations directly [19]. However, the quality of the change detection directly
correlates with the quality of the merged version.

We classify changes according to two orthogonal dimensions. The first di-
mension represents their dependency on an underlying modeling language. A
change is generic if it may be applied to any model irrespectively of the mod-
eling language. In contrast, a specific change depends on a certain metamodel.
Consequently, a specific change is a specialization of a generic change. The second
dimension considers the divisibility of an operation by distinguishing between
atomic and composite changes.

From the resulting four combinations of these classifications, we omit generic
composite because a composite operation makes only sense in the context of
a specific modeling language. Generic atomic changes comprise the primitive
atomic operations add, delete, and update. They may be performed on model
elements (add, delete) and model properties (update) independently of the
modeling language, i.e., the underlying metamodel. Generic atomic operations
build the basis for more complex and language specific operations. Specific
atomic changes are indivisible language-dependent operations like rename and
move. The operation rename modifies a specific property which assigns—according
to the underlying metamodel—a name to a model element. The operation move
changes the containment of a model element which also requires knowledge on
the underlying metamodel. Note that in certain environments move is realized
as composite operation if allowed by the metamodel. The detection of specific
composite changes like refactorings is challenging, but extremely important for
the quality of the overall merge result [8, 12]. It enables a more compact repre-
sentation of the difference report by folding atomic operations which belong to



(a) (b) (c)

V0 V0 V0

V0’ V0’ V0’

V0’’ V0’’ V0’’

Car Engine

Car Engine

Car Engine

11

1*

has

has

has

Assistent Professor

Researcher

Assistent Professor

Researcher

getLectures()

Assistent

getLectures()

Professor

getLectures()

Researcher

ProjectAss

Person

Employee

Person

Employee

Person

(d) (e) (f)

V0 V0 V0

V0’ V0’ V0’

V0’’ V0’’ V0’’

Person

name
birthday

Person

name
dateOfBirth

Person

name
-birthday

Person

Person

getName()

C

B

A

C

B

A

C

B

A

getLectures() getLectures()

Fig. 2. (a) Unit of comparison (b) Add same class (c) Delete class vs. add method
(d) Inheritance cycle (e) Contradiction in reference (f) Inheritance of methods

a composite operation. Thus, detecting applied composite operations allows a
faster and better understanding of the modeler’s original intention. Furthermore,
it facilitates smarter conflict detection and resolution leading to a reduction of
conflict alerts and identification of otherwise unrevealed merge issues.

The detection of the changes yields the basis for the conflict detection. Con-
flicts potentially occur whenever the modifications performed by two different
modelers are overlapping, i.e., if the same model elements are involved. In some
cases overlapping changes might not result in conflicts at all. Figure 2 (a) illus-
trates a test scenario in the domain of UML Class Diagrams where both modelers
modify different properties, namely the visibility and the name, of the same at-
tribute. It depends on the unit of comparison whether this situation ends up with
a conflict or not. If the unit of comparison is the class or the attribute, then a
conflict occurs. If the unit of comparison is more fine grained and the proper-



ties of the attribute elements are observed independently, no conflict should be
reported.

Conflicts. Conflicts arise if parallel changes are overlapping within the same unit
of comparison. Overlapping changes may either be equivalent or contradicting.

As indicated by its name, for equivalent overlapping changes two modelers
perform the same modifications or different modifications with the same impact.
Although such operations are overlapping, i.e., changing the same parts of the
common base model, no conflict should be reported and only the modifications
performed in one working copy should be included in the merged model. Fig-
ure 2 (b) illustrates a test scenario where both modelers add an equally named
class inheriting from the same superclass.

Contradicting overlapping changes are concurrent modifications that do not
commutate, i.e., their execution order affects the result [17]. Consequently, the
operations cannot be merged and a conflict occurs. Such conflicts are caused
by two concurrent update changes performed on the same property. Another
kind of contradicting overlapping changes are concurrent delete and update
operations involving the same model elements and properties as depicted in
Figure 2 (c). Resolution of update/update conflicts as well as delete/update
conflicts usually require manual interaction.

Inconsistencies. Finally, problems may occur regarding the consistency in the
merged version of the working copies. According to the classification of Mens [19]
we group such problems based on the level of language-specific representation.

If the merged model is not conforming to the metamodel or violates any other
validation rules, a syntactic problem should be reported. Obviously, language-
specific information, i.e., the metamodel and validation rules, has to be regarded
to enable the detection of such problems [5]. Two examples of such a problem are
shown in Figure 2 (d) and (e). In Figure 2 (d) both modelers add an inheritance
relationship between the same classes but with different directions resulting in
an inheritance cycle when merged. In the second example one modeler turns an
association into a composition whereas the other increases the multiplicity at
the same association end. Given these scenarios, a naive merge simply combines
both modifications, resulting in an invalid model.

Although a merged model is valid, i.e., no syntactic problems are at hand,
several issues may exist with respect to the static and/or operational seman-
tics. Since the semantics and the correct interpretation of a model is difficult to
express in a formal way, the detection of such problems is challenging. For in-
stance, if two modelers express the same concept in linguistically different ways,
a semantic-aware merge may prohibit an undesired merge result in which the
same concept is contained twice. An example is given in Figure 2 (f) where one
modeler shifts a method contained in two classes into their common superclass
whereas the other modeler introduces a new subclass. Consequently, the new
class inherits also the shifted method which might not be intended.



3 Evaluation of Model Versioning Systems

The categorization given in the previous section allows us to create test cases for
the evaluation of conflict detection components in model versioning systems. In
the following, we apply selected versioning systems on our test cases and discuss
the results of the experiment.

Selected Versioning Systems. In previous work [3] we have conducted a sur-
vey on the state of the art of three-way merging approaches for model versioning
systems. On basis of this survey, we have selected a set of versioning systems
consisting of a text-based tool, a commercial tool, an open-source tool, and a
tool developed in the context of a research project.

We have evaluated Subversion2 as representative of line-based versioning sys-
tems for text-based artifacts and three solutions dedicated to set model artifacts
under version control. The IBM Rational Software Architect (RSA)3, a UML
based model-driven development tool, provides a series of model management
operations, including comparison and merge functions. The Eclipse plug-in EMF
Compare [9] allows matching, comparing, and merging Ecore-based models. Fi-
nally, the CASE tool Unicase [13] provides a repository which is under version
control. The Unicase client allows viewing and editing models in a textual, tab-
ular, or graphical representation. The comparison algorithm uses the editing
operations obtained from the Unicase client.

Experimental Setup. For this evaluation, we have focused on versioning UML
Class Diagrams as this language is supported by all tools. The test cases cover
all previously identified conflict categories. Due to space limitations we kindly
refer to the AMOR project website4 for a detailed description.

To compare the quality of the conflict detection results of the selected tools,
we reuse measures stemming from the field of information retrieval to compare
the manually determined conflicts (the “relevant conflicts”) to the automatically
found conflicts. The primary measures are precision and recall which are nega-
tively correlated. Thus, we use a common combination of the primary measures,
namely the F-measure. The measures are based on the notion of true-positives
(tp), false-positives (fp), false-negatives (fn), and true-negatives (tn). In our eval-
uation we strictly rated the outcome in comparison to the expected result which
we specified for each test case.

Results. Table 1 reports the results of our evaluation for representative test
cases, summarized by the precision, recall, and F-measure values. The high-
lighted fields indicate that although other conflicts have been reported the ex-
pected result has not been accomplished. The precision values reflect the impor-
tance of operating on adequate representations of the graph-based models (cf.

2 http://subversion.tigris.org/
3 http://www-01.ibm.com/software/awdtools/architect/swarchitect/
4 http://www.modelversioning.org/



Table 1. Evaluation results.

Category Examples Subversion RSA EMF
Comp.

Unicase

No Conflict Add Different Class fp tn tn fp
Add Different Reference fp tn tn fp
Unit of Comparison fp tn fp tn
Rename vs. Move fp tn fp tn

Contradicting Rename Class tp tp tp tp
Delete Rename Class tp tp fn tp
Delete Class vs. Add Method tp tp tp tp
Containment fn fn tp fn

Equivalent Add Same Class fn fn tp fn
Contradiction in Hierarchy fn fn fn fn

Syntax Dangling Reference fn tp tp tp
Inheritance Cycle fn tp fn fn
Contradiction in Reference fn tp fn fn

Semantic Inheritance of Methods fn fn fn fn
Semantics in Associations fn fn fn fn

Measures Precision 0.43 1 0.71 0.67
Recall 0.27 0.55 0.45 0.36
F-Measure 0.34 0.71 0.55 0.47

Subversion vs. RSA). In contrast to the high precision values, the recall values
are less promising, indicating that certain conflicts are not automatically de-
tectable at all influencing the F-measures values. In the following we report our
experiences with the different tools.

Subversion. We used Subversion to put the serialized models under version con-
trol. This has been directly done in the file system independently of the modeling
editor. For the conflict resolution we have used the default text-based tool which
marks and shows the location of the conflicting changes in the files. First, we have
tried to version XMI-serializations of models created with the Enterprise Archi-
tect (EA). Since the EA includes much additional information like on graphical
representation and time stamps in the XMI-files, many conflicts have been re-
ported which are not related to our artificially provoked conflicts. Hence, the
application of Subversion has been impractical for this kind of serialization.

Second, we have tried to version XMI-files created with the Eclipse UML 2.1
plug-in5 which serializes the models in two files: one containing the actual model
information and one containing information on the graphical representation.
Due to the very generic comparison algorithm, the conflict report confines itself
on indicating modifications occurring at the same location in the text file. For
example, in the “Add Different Class” test case, a conflict is reported, as the
new classes are inserted at the same position. Also in the “Add Same Class” test
case a conflict is reported, as the inserted classes have different IDs. If not the
same lines are affected, the merge is performed without any further inquiry. This
may result in invalid models which, e.g., contain compositions with a multiplicity

5 http://www.eclipse.org/uml2



higher than one or dangling references. Subversion naturally provides no specific
validation mechanisms.

Overall, using Subversion showed up as being as expected, i.e., even for small
examples the conflict resolution is challenging and error-prone due to missing tool
support.

Rational Software Architect (RSA). The “Compare with each other” command
of the RSA enables the comparison between three UML models where one of
them has to be declared as ancestor. The differences of the models V0’ and
V0” are presented in separate windows and a preview of the merged version is
provided. The RSA also reports changes concerning the graphical representation
of the model.

The RSA supports the merging process in a semi-automatic manner because
manual interaction is always required even if no conflict is reported. When con-
flicts occur, the user must decide which change—either from the left or from
the right model—to perform first. Obviously, the resolution order influences the
result. Furthermore, the RSA also provides the two language-specific operations
rename and move. Thus, contradicting changes caused by these operations are
handled without any problems. After resolving all conflicts the user has to over-
write either the left or the right working copy. The RSA also provides a validation
mechanism to detect consistency problems concerning the syntax of the merged
model. Unfortunately, the user may only validate the new merged version of the
model after overwriting one of the working copies.

Overall, equivalent changes like “Add Same Class” are not identified as con-
flicts; thus, both classes exist in the merged version. The same is true for con-
sistency problems concerning the semantic of models. The RSA detects contra-
dicting changes in a fine-grained manner, but only if dedicated, language-specific
rules exist.

EMF Compare. For using the three-way merge of EMF Compare three different
files of EMF-based models need to be selected from the Eclipse workspace. With
the command “Compare with each other” and the according selection of the
origin model the differences and conflicts between the origin model and two
modified versions are visualized in a tree-based manner. Additionally to the
tree-based presentation, the differences and conflicts are visualized between the
edited model versions (V0’ and V0”) with colors (blue for changes and yellow for
conflicts). To merge the parallel evolved models changes can be “copied” from
the left model artifact (V’) to the right one (V”) and vice versa. A special option
exists to just copy the non-conflicting changes.

As stated in Table 1, about half of the test cases result in accurate conflict
detection reports. Since EMF Compare does not incorporate the metamodel of a
modeling language nor offers language-specific extensions, it is not able to con-
sider language-specific constructs (e.g., inheritance, constraints, refactorings).
Hence, especially for the test cases belonging to the categories syntax and se-
mantics EMF Compare determines a series of false-negative results. Moreover,
since the unit of consistency for comparison cannot be adapted according to



specific languages, false-positive results may occur like in our test cases in the
“Unit of Consistency” and “Rename vs. Move” examples.

Summing up, EMF Compare offers an adequate conflict detection report for
versioning any kind of EMF-based model artifacts but has naturally deficiencies
in detecting language-specific conflicts.

Unicase. The CASE tool Unicase incorporates versioning support using a central
repository. When checking in a model based on an outdated version, the conflict
detection process is started. Although conflicts are not reported explicitly, the
merge of two concurrently modified versions is intuitive and does not allow to
apply conflicting changes. When merging, all changes of both sides are listed
in two columns. The user may now choose which changes she likes to apply
to the merged version. If the user selects a change, all conflicting changes are
automatically unselected and highlighted in the opposite side. Two versions are
never automatically merged without user interaction even if there is no conflict.

Changes are directly tracked while the user modifies a model. Consequently,
the detection of atomic changes works precisely. However, composite changes like
refactorings are not detected and as a result, they are not regarded in the conflict
detection process. In general, Unicase detects delete/update conflicts as well
as update/update conflicts using a fine-grained granularity (element property).
Any concurrent modification of the same property may not be merged. Although
this is straightforward in most of the cases, e.g., concurrent renaming of a class,
it often leads to an undesired behavior. For instance, Unicase does not allow to
apply all changes of both sides if two classes have been concurrently added in
the same package because the containment property of the package has been
updated on both sides. Unfortunately, this has often resulted in false-positives
in our evaluation even though Unicase generally provides an accurate conflict
detection in the first two categories. Language-specific conflicts like syntactic
problems have never been reported. Even a manual validation after the merge
has not reported validation problems which shows that the metamodel used by
Unicase does not seem to offer detailed validation rules.

To sum up, Unicase offers an adequate conflict detection on a metamodel
level. Generic atomic changes and their potential contradictions are detected
correctly. However, specific composite changes and conflicts which require mod-
eling language specific knowledge remain unrevealed.

4 Lessons Learned

As the evaluation results show, unreliable tool support for model versioning
forms an insurmountable obstacle for the professional application of MDE. In the
following, found issues and lessons learned from the evaluation are summarized
and research questions to be answered for tackling those problems are stated.

Benchmark Availability. To the best of our knowledge, there is currently
no common benchmark for model versioning systems available in the related
work. Hence, neither detailed requirements nor the expected run-time behavior



of such systems is specified yet. Only very high-level requirements analyses are
presented in [6] and [7] elaborating the demand for precise conflict detection and
supportive conflict resolution without establishing concrete test cases.

Unreliable Conflict Detection. A major deficiency is the unreliable con-
flict detection. False-positives as well as false-negatives occur regularly already
in our small test cases. False-positives are often reported due to updated con-
tainment properties, since conflict detection mostly works on metamodel level.
Furthermore, semantic inconsistencies are hardly detected as such problems are
usually ignored. Research for answering the question “What is the expected
result?” is needed for improving the overall check-in process.

Confusing Difference Report. The representation of changes in concur-
rently edited models differs from tool to tool. Since concurrent changes are not
visualized by using the model’s concrete syntax, but by presenting a list or a tree
structure of atomic changes, those metamodel based difference reports are not
intuitive and rather confusing for modelers. For providing the modeler a better
understanding of what happened, two improvements are necessary. First, differ-
ences and conflicts should be presented on the modeler’s point of view, i.e., on
model level. Second, related atomic changes should be grouped as one composite
change.

Aggregating atomic changes to composite changes in generic modeling envi-
ronments is no trivial task because of the numerous combination possibilities.
To tackle this problem, Brosch et al. [8] present an operation recording approach
allowing the user to define language-specific composite operations by modeling
small examples. Weber et al. [21] define composite change patterns for process-
aware information systems in order to reduce the complexity of process changes
while raising the level of expressiveness. Küster et al. [15] compute critical pairs
of dependencies and conflicts for compound change operations in process models.

Single Diagram Support. Even if some specific diagram types (e.g., UML
Class Diagram) are well supported by tools, extensive application of optimistic
model versioning in MDE projects does not prove satisfactory. Current devel-
opment strategies include employment of specific modeling languages for spe-
cific problem domains. Like Subversion [11] for the versioning of arbitrary text
files, model versioning systems must provide support for arbitrary modeling lan-
guages. For making use of the rich semantics of the model’s graph-based na-
ture, language-specific adaptation of generic model versioning systems is a key
research field as it is done by Altmanninger et al. [2]. Furthermore, conflicts
involving multiple types of diagrams have to be considered.

Unreliable Conflict Resolution. We have learned from the evaluation
that due to the open challenges in conflict detection any support for automatic
conflict resolution is only a vision and current tools only support manual de-
cision of approving changes from left or from right. This manual approach is
not only cumbersome but error-prone as well. Unfortunately, checks for ensuring
correct syntax and semantics of the merged version were seldom performed in
the testbed. Thus, the consistency of the merged version is not guaranteed.



5 Conclusion

In this paper, we presented a first categorization of conflicts occurring during
the check-in process in model versioning systems. On this basis we inferred nu-
merous test cases which allowed us to conduct experiments with state-of-the-art
tools. Our tests enabled us to compare the tools in a structured and fair man-
ner. The results were far from satisfying, but promising. For the moment, we
focused on the UML Class Diagram, but in future work we will extend the test
set with test cases containing other kinds of diagrams like UML State Charts or
Activity Diagrams. The long-term objective is to establish a comprehensive, ex-
pressive benchmark for the evaluation of model versioning systems which covers
a multitude of different scenarios.

Overall, many interesting research questions are open in the young research
area of model versioning, demanding for a common terminology and an exact
formulation of the research goals. We are aware that the model versioning test
cases presented in this paper are only a drop in the ocean. But in fact, having
test cases is a corner stone for structured research and we are looking forward
to investigate the open issues together with the model versioning research com-
munity.

References

1. M. Alanen and I. Porres. Difference and Union of Models. In UML 2003 - The
Unified Modeling Language, volume 2863 of LNCS, pages 2–17. Springer, 2003.

2. K. Altmanninger, G. Kappel, A. Kusel, W. Retschitzegger, M. Seidl, W. Schwinger,
and M. Wimmer. AMOR - Towards Adaptable Model Versioning. In 1st Int.
Workshop on Model Co-Evolution and Consistency Management, 2008.

3. K. Altmanninger, M. Seidl, and M. Wimmer. A Survey on Model Versioning
Approaches. Int. Journal of Web Information Systems, 5(3), 2009.

4. S. Barrett, P. Chalin, and G. Butler. Model Merging Falls Short of Software
Engineering Needs. In 2nd Workshop on Model-Driven Software Evolution, 2008.

5. C. Bartelt. Consistence Preserving Model Merge in Collaborative Development
Processes. In Int. Workshop on Comparison and Versioning of Software Models,
pages 13–18. ACM, 2008.

6. L. Bendix and P. Emanuelsson. Collaborative Work with Software Models—
Industrial Experience and Requirements. In 2nd Int. Conference on Model Based
Systems Engineering, pages 60–68, 2009.

7. P. A. Bernstein and S. Melnik. Model Management 2.0: Manipulating Richer
Mappings. In ACM SIGMOD Int. Conference on Management of Data, pages
1–12. ACM, 2007.

8. P. Brosch, P. Langer, M. Seidl, and M. Wimmer. Towards End-User Adaptable
Model Versioning: The By-Example Operation Recorder. In Int. Workshop on
Comparison and Versioning of Software Models. IEEE, 2009.

9. C. Brun and A. Pierantonio. Model Differences in the Eclipse Modelling Frame-
work. UPGRADE: The Europ. Journal for the Informatics Professional, IX(2):29–
34, 2008.



10. A. Cicchetti, D. D. Ruscio, and A. Pierantonio. Managing Model Conflicts in Dis-
tributed Development. In 11th Int. Conf. on Model Driven Engineering Languages
and Systems, volume 5301 of LNCS, pages 311–325. Springer, 2008.

11. B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato. Version Control with
Subversion. O’Reilly Media, July 2004.

12. D. Dig, T. N. Nguyen, K. Manzoor, and R. Johnson. MolhadoRef: A Refactoring-
aware Software Configuration Management Tool. In 21st Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages 732–733.
ACM, 2006.

13. M. Kögel, J. Helming, and S. Seyboth. Operation-based Conflict Detection and
Resolution. In Int. Workshop on Comparison and Versioning of Software Models,
pages 43–48. IEEE, 2009.

14. D. S. Kolovos, D. D. Ruscio, A. Pierantonio, and R. F. Paige. Different Models
for Model Matching: An Aalysis of Approaches to Support Model Differencing. In
Int. Workshop on Comparison and Versioning of Software Models. IEEE, 2009.

15. J. M. Küster, C. Gerth, and G. Engels. Dependent and Conflicting Change Oper-
ations of Process Models. In 5th Europ. Conference Model Driven Architecture -
Foundations and Applications, pages 158–173. Springer, 2009.

16. Y. Lin, J. Gray, and F. Jouault. DSMDiff: A Differentiation Tool for Domain-
specific Models. Europ. Journal on Information Systems, 6:349–361, 2007.

17. E. Lippe and N. van Oosterom. Operation-Based Merging. In 5th ACM SIGSOFT
Symposium on Software Development Env., pages 78–87. ACM, 1992.

18. A. Lucia, F. Fasano, G. Scanniello, and G. Tortora. Concurrent Fine-Grained
Versioning of UML Models. In Europ. Conference on Software Maintenance and
Reengineering, pages 89–98. IEEE, 2009.

19. T. Mens. A state-of-the-art Survey on Software Merging. IEEE Transactions on
Software Engineering, pages 449–462, 2002.

20. D. Ohst, M. Welle, and U. Kelter. Differences Between Versions of UML Diagrams.
In 9th Europ. Software Engineering Conference, pages 227–236. ACM, 2003.

21. B. Weber, S. Rinderle, and M. Reichert. Change Patterns and Change Support
Features in Process-Aware Information Systems. In Advanced Information Systems
Engineering, pages 574–588. Springer, 2007.


