
Towards a global business document reference ontology

Philipp Liegl, Christian Huemer, Marco Zapletal
Vienna University of Technology

Favoritenstrasse 9-11/188
1040 Vienna, Austria

{firstname.lastname}@tuwien.ac.at

Abstract

In the field of business document standardization a mul-
titude of different standardization efforts exist. Unfortu-
nately, most of the developed standards are designed for a
specific application domain or industry and do not consider
cross-standard interoperability. This results in several in-
compatible standard definitions. Without the provision of
a common semantical basis for business document defini-
tions, cross-domain interoperability cannot be achieved. In
this paper we provide a methodology for building a global
reference ontology based on the Core Components Tech-
nical Specification (CCTS) and Web Ontology Language
(OWL). Using our approach a common semantic business
document basis is developed. New document definitions
may be derived from this basis and existing document def-
initions may be aligned to it. Using our ’derivation-by-
restriction’ mechanism, instances derived from a common
semantical basis are interoperable to each other. Thus,
mapping mechanisms between different standard definitions
may be implemented in an easier and semantically correct
manner.

1. Introduction

In the field of business document standardization several
different approaches and standards have emerged over the
past few years. Most of these standardization approaches
focus on the definition of a common syntax definition for
business documents. In most cases the common syntax is
based on XML Schema. A multitude of different business
document standards exist nowadays, which are mostly in-
compatible to each other [2]. In case two business partners
want to engage in an automated B2B interaction they ei-
ther have to support the same business document standard or
they have to implement a costly syntactical mapping mech-
anism from standard A to standard B. As a consequence of
the sole focus on a syntactical format and the need for im-

plementing costly mappers, the requirement for a common
semantic basis for business document standards emerges.

In the field of semantic business document interoperabil-
ity we identify two important use case scenarios. On the
one hand side, business documents are standardized in a
top-down manner. Thereby, a global reference ontology
to which business partner A and business partner B have
to adhere to must be provided. Thus, any local ontologies
aligned with the global reference ontology are compatible
to each other and both business partners have a common
understanding of what they actually exchange in a business
transaction. On the other hand side, business partners might
already have their own local implementations and ontology
definitions. In such a bottom-up scenario business partner A
and business partner B map their existing local ontologies to
the global reference ontology. In both cases the provision of
a global reference ontology is of utmost importance in order
to provide interoperability in a heterogeneous environment.

In the paper at hand we propose an approach for defining
a global reference ontology based on the Core Component
Technical Specification (CCTS) [7] from the United Na-
tions Centre for Trade Facilitation and Electronic Business
(UN/CEFACT) and the Web Ontology Language (OWL).
Core components are reusable building blocks, for defining
business documents. However, they have two factors mak-
ing a concrete implementation difficult. Core components
are defined independent of any implementation syntax and
the standard itself is defined using English prose. This non-
formalization makes automated processing of core compo-
nent concepts impossible. Our paper will show how core
component concepts are formalized using Web Ontology
Language in order to provide means for building a global
reference ontology. Thereby we go beyond existing ap-
proaches based solely on RDFS [1] and use the mightiness
of Web Ontology Language as the representation format of
choice for a reference ontology.

The remainder of this paper is structured as follows: Sec-
tion 2 gives an overview of the basic concepts of core com-
ponents. Section 3 introduces the core component reference

ontology in detail and Section 4 shows how a document in-
stance is mapped to the reference ontology. Finally Section
5 concludes the paper with a final assessment.

2. Core Components at a glance

The central idea of core components is the definition
of semantic building blocks for assembling business doc-
uments in a reusable manner. Different business document
definitions are aggregated in a central library, independent
of any application domain. Industry specific solutions are
able to use the shared components from the library and tai-
lor them to the specific needs of their application domain.
The tailoring mechanism only allows a derivation of do-
main specific artifacts from core components by restriction.
Thus, it is guaranteed that all industry specific artifacts are
based on the same semantical document base - namely core
components.

The research presented in this paper is based on the most
recent version of the standard definition - UN/CEFACT’s
Core Components Technical Specification 3.0 (CCTS 3.0)
[7]. In contrast to other standardization approaches the core
component standard is defined independent of a specific im-
plementation format. Furthermore, core components are de-
fined using English prose. Thus, they are missing a formal-
ized representation allowing automatic processing of core
component information. Other business document stan-
dards mostly use XML schema as their representation for-
mat of choice. In regard to the formalization of the core
component standard at present there exists only one ap-
proved and semi-formalized representation for Core Com-
ponents - the UML Profile for Core Components (UPCC)
[8] [3]. We will use the UML representation for visualiza-
tion purposes in this Section.

The core components standard distinguishes between
two elementary concept families: Core components and
business information entities. Core components are inde-
pendent of any specific context and are defined in a generic
and reusable manner. As such they serve as the basis for
industry specific artifacts - so called business information
entities.

Core Components The main idea behind core compo-
nents is the identification of objects and of object properties.
Object properties are classified in two categories: simple
object properties (text, number, date) and complex object
properties. We refer to object types as aggregate core com-
ponents - so called ACCs. An aggregate core component
serves as a container for simple properties - so called basic
core components (BCC) - and aggregates them to a higher
entity. Each simple property has a data type known as core
data type (CDT). A core data type defines the exact value
domain of a given basic core component. Association core

components (ASCC) represent complex properties and are
used to pin out dependencies between different aggregate
core components.

The left hand side of Figure 1 shows a cut-out from
a UML representation of a core component model. The
sample model includes two aggregate core components
(ACC) Invoice and LineItem. The ACC Invoice
contains several basic core components (BCC) such
as InvoiceIdentifier, CountryIdentifier,
Description etc. In a real world example an invoice
would contain more basic core components - for presenta-
tion purpose, however, they have been left out as indicated
by the term ’and x other attributes’. Moreover, Invoice
has exactly one association core component (ASCC) named
item which denotes, that an Invoice contains zero to
many LineItems.

«ACC» «ABIE»

Core context Business context

ACC
Invoice

«BCC»
+ InvoiceIdentifier: Identifier

US ︳Invoice

«BBIE»
+ InvoiceNumber: US ︳General ︳Identifier

basedOn

+ CountryIdentifer: Identifier
+ Description: Text [1..*]
+ and x other attributes

+ Description: Text

«ASBIE»«ASCC»
basedOn

«ACC»
LineItem

«BCC»

«ABIE»
US ︳LineItem

«BBIE»
+US ︳item+item

basedOn

+ Identifier: Identifier
+ NetPrice: Numeric
+ Description: Text [1..*]
- and x other attributes

+ Identifier: Identifier
+ NetPrice: Numeric
+ Description: Text

1..*0..*

Figure 1: Core Components Overview

Each basic core component has a certain value domain,
which defines the data type of the attribute. For basic core
components core data types (CDT) are used in order to set
the value domain. The concept of a core data type in the
domain of core components distinguishes between two dif-
ferent types - content components (CON) and supplemen-
tary components (SUP). Each core data type has exactly one
content component and may have zero to many supplemen-
tary components. Thereby a content component holds the
actual information value (e.g. 12) and supplementary com-
ponents provide additional meta information about the ac-
tual information (e.g. type = temperature, measurement =
Celcius etc.).

As shown in the example in Figure 1, the basic core com-
ponent (BCC) InvoiceIdentifier in ACC Invoice
has the core data type Identifier. The exact outline
of the core data type Identifier is shown on top of
Figure 2. Identifier has exactly one content compo-
nent named Content and four supplementary components
providing additional information about the actual identifier
value. Both, content components and supplementary com-
ponents have a specified data type we refer to as primitive

type (PRIM). Primitive types are defined by UN/CEFACT
in the core component data type catalogue [9] and denote
the exact value domain of a content or supplementary com-
ponent (e.g. String, Integer etc.). The concept of enumer-
ations (ENUM) is used to restrict a primitive type to a set
of allowed values. An example for such a restriction would
be a country code enumeration in order to restrict a String
primitive type to a list of allowed country codes. Enumera-
tions are not used in the examples of this paper.

«CDT»
Identifier

«CON»
+ Content: String
«SUP»
+ SchemeAgencyIdentifier: String [0..1]
+ SchemeAgencyName: String [0..1]
+ SchemeIdentifier: String [0..1]
+ SchemeVersionIdentifier: String [0..1]

«BDT»
US ︳General ︳Identifier

«CON»
+ Content: String
«SUP»
+ SchemeIdentifier: String = An ANSI Identifier
+ SchemeAgencyName: String = ANSI.X12

«BasedOn»

Figure 2: Data Types

Business Information Entities If core components are
used in a specific business context, they become so called
business information entities. Thereby, a core component
definition is taken a tailored to the specific needs of the cur-
rent business domain. A derivation-by-restriction mecha-
nism is used to create a business information entity out of a
core component. Thus, a business information entity must
not contain any attributes, which haven’t been defined in
the underlying core component. Similar to the concept of
core components, business information entities are used to
describe objects and properties of objects. We also distin-
guish two kinds of properties: simple object properties and
complex object properties. Simple properties refer to ele-
mentary object values such as text, date etc. and complex
properties are used to show relations to other object types.
An aggregate business information entity (ABIE) is used
to define the type of a certain object. Thereby, an object
may have several simple properties, so called basic busi-
ness information entities (BBIE). The value domain for a
given basic business information entity is defined using the
concept of business data types (BDT). In order to define
relationships between different business information enti-
ties the concept of association business information entities
(ASBIE) is used.

The right hand side of Figure 1 shows an example
of business information entities. The aggregate business
information entity US Invoice has two simple proper-

ties denoted by the two basic business information en-
tities InvoiceNumber and Description. Further-
more US Invoice has exactly one association business
information entity US Item in order to show that an
US Invoice contains one to many US LineItems.

Similar to the concept of basic core components each ba-
sic business information entity has a certain value domain
defining the data type of the attribute. For basic business
information entities so called business data types are used
(BDT). The concepts of business data types and core data
types are the same, only their application domain is differ-
ent. Core data types are only used in the context of core
components and business data types are only used in the
context of business information entities. Similar to a core
data type a business data type has exactly one content com-
ponent (CON) and zero to many supplementary components
(SUP). Equivalent to the derivation-by-restriction mecha-
nism between business information entities and core com-
ponents a business data type is always derived from a core
data type by restriction. Thus, a business data type must
not use any attributes which have not been defined in the
underlying core data type.

As shown in the example in Figure 1 the ba-
sic business information entity InvoiceNumber in
ABIE US Invoice has the business data type (BDT)
US General Identifier. The exact outline of the
business data type US General Identifier is shown
at the bottom of Figure 2. The BDT has exactly one content
component and two supplementary components providing
additional meta information about the content component.
Thereby, the business data type restricts the core data type
and uses only two of the four supplementary components of
the underlying core data type.

3. The core components reference ontology

In the last section the basic core component concepts
have been elaborated and we learned that core compo-
nents are independent of a specific implementation format
and are standardized in a non-formalized way. Since core
components are agreed upon by a broad industry spectrum
and other standardization organizations and interest groups,
they provide the ideal basis for a reference ontology. How-
ever, in order to allow for core components to represent a
global ontology, a formalized representation of core com-
ponents is needed. In this chapter we formalize the core
components methodology using Web Ontology Language
(OWL).

Figure 3 gives an overview of the global reference ontol-
ogy. The top class in the ontology is owl:Thing, serv-
ing as the superclass for all other classes. For a better
legibility Figure 3 has been divided by three squares em-
bracing core component, business information entity, and

data type specific artifacts respectively. As namespace
for the reference ontology specific classes, properties etc.
http://www.umm-dev.org/owl/ccts3# with the
prefix cc has been chosen.

The upper left square of Figure 3 represents all core
component specific artifacts of the global reference ontol-
ogy. The superclass of every core component artifact is
cc:CC, which has seven owl:AnnotationProperty
values representing specific core component properties
according to the CCTS [7]. cc:businessTerm is
a term under which the core component is commonly
known and used in business and cc:definition is
used to store the unique semantic meaning of the core
component. If core components are stored and retrieved
from business registries they require a unique name. This
name is represented by cc:dictionaryEntryName.
In order to support multilingualism cc:languageCode
defines the language used for the core component.
cc:usageRule defines constraints in free-form text on
the usage of core components. cc:uniqueIdentifier
and cc:versionIdentifier are additional
meta-information fields, required for registry storage
and retrieval. cc:CC has two sub-classes namely
cc:ACC representing aggregate core components and
cc:ACCProperty, which is a newly introduced su-
perclass for basic core components and association core
components. Both, association core components and
basic core components are represented by their respective
owl:Classes cc:ASCC and cc:BCC. The annotation
property cc:sequencingKey in cc:ACCProperty is
used to assign an arbitrary order to an cc:ACCProperty.
Similar to the core component concepts the elements in
the square on the right hand side of Figure 3 represent
the business information entity specific artifacts of the
ontology. The superclass of all business information
entities is cc:BIE. Since business information entities
are based on core components and traceability between
these two artifacts must be guaranteed at any time, a
cc:isBasedOn object property is defined between
cc:CC and cc:BIE. Similar to a core component a
business information entity also has a set of annotation
properties such as cc:businessTerm etc. Their
meaning is to be read according to those of a cc:CC.

cc:BIE has two sub-classes namely cc:ABIE rep-
resenting an aggregate business information entity and
cc:ABIEProperty, which is the superclass for basic
business information entities and association business in-
formation entities. For both, association business in-
formation entities and basic business information enti-
ties the respective owl:Class elements cc:ASBIE and
cc:BBIE are defined. Similar to a cc:ACCProperty
a cc:ABIEProperty has an annotation property
cc:sequencingKey in order to specify an arbitrary se-

cc:CC

cc:businessTerm

cc:definition

cc:dictionaryEntryName

cc:languageCode

cc:uniqueIdentifier

cc:usageRule

cc:versionIdentifier

owl:Thing

rdfs:Resource

rdfs:comment : rdfs:Literal

rdfs:isDefinedBy : rdfs:Resource

rdfs:label : rdfs:Literal

rdfs:seeAlso : rdfs:Resource

cc:BIE

cc:isBasedOn : cc:CC

cc:businessTerm

cc:definition

cc:dictionaryEntryName

cc:languageCode

cc:uniqueIdentifier

cc:usageRule

cc:versionIdentifier

cc:ACC

cc:hasACCProperty : cc:ACCProperty[1..]

cc:ABIE

cc:hasABIEProperty : cc:ABIEProperty[1..]

cc:isBasedOn : cc:ACC

cc:ACCProperty

cc:sequencingKey

cc:ABIEProperty

cc:isBasedOn : cc:ACCProperty

cc:sequencingKey

cc:ASBIE

cc:hasABIEType : cc:ABIE

cc:isBasedOn : cc:ASCC

cc:ASCC

cc:hasACCType : cc:ACC

cc:BCC

cc:hasCDT : cc:CDT

cc:BBIE

cc:hasBDT : cc:BDT

cc:isBasedOn : cc:BCC

cc:BDT

cc:isBasedOn : cc:CDT

cc:CDT

cc:hasContent : cc:CON[1..]

cc:hasSupplementary : cc:SUP[0..]

cc:CON

cc:hasPRIM : cc:PRIM[1..1]

cc:modificationAllowed

cc:SUP

cc:hasPRIM : cc:PRIM[1..1]

cc:modificationAllowed

cc:PRIM

cc:isBinary : base64Binary

cc:isBoolean : boolean

cc:isDecimal : decimal

cc:isDouble : double

cc:isFloat : float

cc:isInteger : integer

cc:isNormalizedString : normalizedString

cc:isString : string

cc:isTimeDuration : duration

cc:isTimePoint : dateTime

cc:isToken : token

cc:ENUM

cc:agencyIdentifier

cc:agencyName

cc:enumerationURI

cc:isBasedOn

cc:isBasedOn

cc:isBasedOn

cc:isBasedOn

cc:isBasedOn

cc:hasBDT

cc:hasCDT

cc:isBasedOn

cc:hasContent [1..]cc:hasSupplementary [0..]

cc:hasPRIM [1..1]cc:hasPRIM [1..1]

Core Components
Business
Information Entities

Data Types

Figure 3: Overview of the reference ontology

quence order. Please note the different cc:basedOn ob-
ject properties between artifacts from the core component
and business information entity square in Figure 3. These
object properties help to trace business information entity
artifacts back to the core component artifacts they are based
on.

The lower square in Figure 3 shows the data type spe-
cific elements of our reference ontology. We learned ear-
lier, that the value of basic core components is set by core
data types (CDT) and the value of basic business informa-
tion entities is set by business data types (BDT). This fact is
reflected in the ontology as well and a cc:isBasedOn ob-
ject property is defined between a cc:BDT and a cc:CDT.
Both, a core data type and a business data type always

consist of exactly one content component and zero to
many supplementary components. This fact is reflected by
cc:hasSupplementary and cc:hasContent object
properties. Please note, that these two properties are not
shown for cc:BDT on the lower hand side of Figure 3.
Since a cc:BDT is based on a cc:CDT these dependency
properties are implicitly given.

Finally the concept of primitive types is reflected
by cc:PRIM. As outlined on the lower side of Fig-
ure 3 a primitive type has eleven data type properties.
Each data type property has a predefined data type de-
fined as rdfs:range e.g. cc:isTimeDuration has
rdfs:range xsd:duration. A specialization of a
primitive type is represented by a so called enumera-
tion type cc:ENUM. An enumeration represents a pre-
defined code list or identifier schemes e.g. a list of
predefined country codes. The three annotation prop-
erties cc:agencyIdentifier, cc:agencyName,
and cc:enumerationURI are used to provide meta-
information about an enumeration type.

Figure 4 shows the core component ontology in detail.
The top core component class cc:CC is shown on the right
hand side of Figure 4. It serves as the superclass for the two
direct sub-classes cc:ACC and cc:ACCProperty. In
turn an cc:ACCProperty is the super-class of cc:BCC
and cc:ASCC, representing basic core components and as-
sociation core components, respectively. The dependency
between a cc:ACC and its ACC properties is defined by
the two object properties in the upper left corner of Figure 4.
The object property cc:hasACCProperty indicates that
an ACC has ACC properties. Additionally the cardinality of
the object property is set to 1. Thus, there cannot be an ACC
without ACC properties. The allowed values for the object
property are restricted to cc:ACC and cc:ACCProperty
using rdfs:range and rdfs:domain.

cc:CC

cc:ACC

cc:ACCProperty

cc:ASCC

cc:hasACCType all cc:ACC

cc:hasACCProperty all cc:ACCProperty

cc:hasACCType

cc:BCC

cc:hasCDT all cc:CDT

cc:hasACCProperty

cc:hasACCProperty min 1 cc:hasCDT

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

owl:allValuesFrom

rdfs:subClassOf

owl:allValuesFrom

owl:onProperty

rdfs:domain

rdfs:range

rdfs:subClassOf

owl:disjointWith

rdfs:subClassOf

rdfs:range

rdfs:domain

owl:onProperty

owl:onProperty

rdfs:subClassOf

owl:onProperty

rdfs:domain

Figure 4: Core component ontology in detail

A basic core component has an assigned core data type
which is reflected by the object property cc:hasCDT in

the center of Figure 4. Allowed values of cc:hasCDT are
restricted to cc:CDT and cc:BCC using rdfs:range
and rdfs:domain. An association core component
points to an aggregate core component. Using the
cc:hasACCType each cc:ASCC is assigned with the ap-
propriate cc:ACC. As with all other object properties the
allowed domain and range is restricted as well. An ACC
property must be either an cc:BCC or an cc:ASCC. Thus,
an owl:disjointWith property exists between the two
classes. In the following section we dwell on how to map
specific document instance to the reference ontology.

4. Mapping instances to the reference ontology

Our global business document reference ontology will
be the starting point for integrating heterogeneous busi-
ness document standards. As shown in Figure 5 we dis-
tinguish between three different levels in regard to busi-
ness document interoperability according to the first three
Meta-Object-Facility (MOF) layers [5]. As an example we
assume a Universal Business Language (UBL) [4] and a
OAGi [6] business document schema and instances.

A B

Local
lM2

Local
l

OWL

serialize abstractGlobal Reference
Ontology OntologyM2 Ontology

abstract serialize
Ontology

Common Conceptual
Document Model

UBL
Schema

M1 OAGi
Schema

serialize abstract

Document Model

OWL OWL
map

Schema Schema

UBL
Instance

OAGi
InstanceM0

abstract

serialize

serialize

abstract

Model A Model B

OWL
I

OWL
I tInstance Instance

abstract serializeInstance Instance

Figure 5: Overview of mapping

In a typical interoperability scenario partner A and part-
ner B exchange business document instances based on
an XML based schema definition. Figure 5 shows the
main principles of our interoperability approach based on
OWL. On the lowest level (M0) business partners exchange
business document instances which are usually incompat-
ible. The different document instances are valid against
their Schema definitions - in our example against the UBL
and OAGi XML Schema definitions files. Accordingly
a mapping between the OWL representation of the UBL
schema/OAGi schema and the OWL based common con-
ceptual document model is required. In a first step the
schema definitions are abstracted from one format to an
OWL representation (resulting in OWL Model A and OWL
Model B) in Figure 5. The resulting OWL representations
of UBL and OAGi are mapped to the common concep-
tual document model based on business information enti-
ties. These business information entities are valid against

the global reference ontology based on core components.
In principle the OWL representation as shown in Figure

5 serves as the intermediary format between different busi-
ness document standards. If appropriate serialization mech-
anism and mapping mechanisms against the global refer-
ence ontology are provided, instances of different business
document standards may be transformed seamlessly. Al-
though in principle any XML representation may be chosen
as the intermediary format, our proposed approach has two
major advantages. First, it is based on the most complete
global reference ontology provided by UN/CEFACT. Sec-
ond, the OWL representation of the common conceptual
document model allows for a machine interpretable pro-
cessing.

As an example Figure 6 shows how specific OWL repre-
sentations of both, OAGi and UBL, are mapped against our
common conceptual model. On the M1 level, shown in the
center of Figure 6, we define our common conceptual docu-
ment model. Due to space limitations we do not show all el-
ements of the reference ontology, but focus on the main con-
cepts for explanatory purposes. Our common conceptual
model consists of one association business information en-
tity (abie:My Item), one basic business information en-
tity (abie:My InvoiceIdentifier), and one aggre-
gate business information entity (abie:My Invoice).
Concepts of the common conceptual document model use
the namespace prefix abie, concepts from the global ref-
erence ontology the prefix cc. UBL and OAGi ontology
concepts have the namespace prefix ubl and oagi, respec-
tively.

Using the concept of owl:equivalentClass
we map the ontological representation of UBL
and OAGi against our global conceptual document
model. In our conceptual document model we use
the concept of abie:My InvoiceIdentifier
to represent the ID of an invoice. In UBL this
concept is named Invoice.Identifier and in
OAGi ID. Both are mapped to the global concept
abie:My InvoiceIdentifier. On the lowest level
exemplary instances of the ontology are shown.

The core component concepts which are used to build
our common conceptual document model are shown on top
of Figure 6. Since all business information entities must
be based on core components an equivalent representation
of the common conceptual document model as outlined on
the M1 level in Figure 6 must be given. Please note, that
we only show the business information entity perspective in
the example, and left out the core components view due to
space limitations. This brief example has shown how differ-
ent business document ontologies are mapped to a common
conceptual document model based on OWL. A global ref-
erence ontology based on core component concepts serves
as the basis for the common conceptual document model.

abie:My_Item

rdfs:label = My_Item
abie:My_InvoiceIdentifier

rdfs:label = My_Invoice identifie...

abie:My_Invoice

rdfs:label = My_Invoice

oagi:ID

rdfs:label = ID

ubl:Invoice.Identifier

rdfs:label = Invoice.Identifier

ubl:line

rdfs:label = line

oagi:line

rdfs:label = line

oagi:ShowInvoice

rdfs:label = Show invoice

ubl:InvoiceType

rdfs:label = Invoice type

cc:ASBIE

rdfs:label = ASBIE

cc:BBIE

rdfs:label = BBIE

cc:ABIEProperty

rdfs:label = ABIEProperty
cc:ABIE

rdfs:label = ABIE

cc:BIE

rdfs:label = BIE

oagi:ID_1

rdfs:label = ID_1
oagi:line_1

rdfs:label = line_1

oagi:ShowInvoice_1

rdfs:label = Show invoice_1

ubl:line_1

rdfs:label = line_1

ubl:Invoice.Identifier_1

rdfs:label = Invoice.Identifier_1

ubl:InvoiceType_1

rdfs:label = Invoice type_1

owl:equivalentClass owl:equivalentClass

owl:equivalentClass

owl:equivalentClass

owl:equivalentClass

owl:equivalentClass

rdfs:subClassOf rdfs:subClassOf

owl:dis jointWith

rdfs:subClassOf rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf rdfs:subClassOf

rdf:type

rdf:type

rdf:type

rdf:type rdf:type rdf:type

M2

M1

M0

Figure 6: Mapping UBL and OAGi

5. Conclusion

In this paper we presented an approach to build a global
reference ontology for business documents. We based our
approach on UN/CEFACT’s Core Components and the Web
Ontology Language (OWL). Using our approach a flexible
interoperability solution coping with heterogeneous busi-
ness document standards is provided. The major advan-
tage of our approach, compared to other efforts in this area,
is twofold. First, we base our solution on a global refer-
ence ontology standardized by the United Nations. Second,
we provide an OWL based representation, which allows for
machine based interpretation using Semantic Web technolo-
gies.

References

[1] B. Hofreiter. Binding UMM Business Documents to a Busi-
ness Document Ontology. In Proceedings of the Inaugural
Conference on Digital Ecosystems and Technologies (DEST
’07), pages 666–671. IEEE, 2007.

[2] H. Li. XML and Industrial Standards for Electronic Com-
merce. Knowledge and Information Systems, 2(4):487–497,
2000.

[3] P. Liegl. Conceptual Business Document Modeling us-
ing UN/CEFACT’s Core Components. In Proceedings of
the 6th Asia-Pacific Conference on Conceptual Modeling
(APCCM2009). Australian Computer Society, 2009.

[4] OASIS. Universal Business Language 2.0, 2006.
[5] OMG. Meta Object Facility, 2006.
[6] Open Applications Group. OAGIS Canonical Model for Inte-

gration, 2009.
[7] UN/CEFACT. Core Components Technical Specification 3.0,

2009.
[8] UN/CEFACT. UML Profile for Core Components Technical

Specification 3.0, 2009.
[9] UN/CEFACT. UN/CEFACT Core Components Data Type

Catalogue 3.0, 2009.

