Teaching Model Engineering in the Large

Petra BroschT , Gerti Kappel, Martina Seidl, and Manuel Wimmer
Institute of Software Technology and Interactive Systems
Vienna University of Technology
Vienna, Austria
{lasthname}@big.tuwien.ac.at

ABSTRACT

Traditionally, models are considered as pretty pictures sup-
porting merely the documentation of a software development
project. With the rise of model-driven engineering (MDE)
this viewpoint has to be reconsidered. Models become first-
class artifacts which yield the basis for the generation of
executable program code. In modern university curricula of
computer science and related fields this paradigm shift must
not be ignored. At the Business Informatics Group (BIG) of
the Vienna University of Technology we offer an advanced
modeling course called Model Engineering where we elabo-
rate current trends, development, and state-of-the-art tech-
niques necessary to realize the visions of MDE. In this paper
we report which concrete concepts and approaches we teach
and how we structure and organize a practical hands-on lab
where the students have to build their own model-driven
development environment consisting of their own modeling
languages, certain types of model transformations, and code
generation facilities.

Keywords
Teaching Model Engineering, Design of an Advanced Mod-
eling Course, Practical Exercises for Model Engineering

1. INTRODUCTION

The term model engineering comprises different aspects of
model-driven engineering (MDE) such as model-driven ar-
chitecture (MDA), domain specific languages and software
factories. All of these approaches rely on the power of mod-
els instead of pure program code. At the Business Informat-
ics Group of the Vienna University of Technology, we offer

*This work has been partly funded by the Austrian Federal
Ministry of Transport, Innovation and Technology (BMVIT)
and FFG under grant FIT-IT-819584.

TFunding for this research was provided by the fFORTE
WIT - Women in Technology Program of the Vienna Uni-
versity of Technology, and the Austrian Federal Ministry of
Science and Research.

an advanced modeling course—consisting of a lecture and a
lab—called Model Engineering (ME). The course is obliga-
tory for business informatics master students and optional
for master students of computer science. Overall, about 150
students attend ME each term. More than half are com-
puter science students which shows that students are inter-
ested in model-driven techniques. The goal of this course is
the elaboration of basic concepts of model-driven software
development.

Preconditions. Because the course is attended by master stu-
dents only, we may presume multiple skills and experiences
in object-oriented modeling, object-oriented programming,
data modeling, and data engineering, as well as in software
engineering. All students have completed the course “In-
troduction to Object-Oriented Modeling” (cf. [2]) where the
basic modeling concepts have been presented on the basis
of the UML. In the “Data Modeling” course the students
have learned about the Relational Model and the Entity-
Relationship Model. Depending on their specialization, the
students might also have some knowledge about business
process models. So far, they have seen models either only in
a self-contained environment where the teaching goal was to
introduce the notation of a modeling language where hardly
any relation to practice could be provided. Or they used
models for documentation purposes in the traditional soft-
ware engineering course. Finally, the ME course closes the
gap between previous programming courses and modeling
courses which are not connected appropriately in the bach-
elor studies, but are rather seen as being competitive by the
students. Our course helps them to gain an idea of the prac-
tical usage of modeling techniques in a broader context. The
lecture and the lab are worth 3.0 ECTS (European Credit
Transfer System) points each which allows us to expect the
students to spend about 150 hours of work for this course.

Postconditions. As indicated by its name, during the lec-
ture the different concepts, tools, and practical approaches
from the field of model engineering are examined includ-
ing meta-modeling, model transformation, code generation,
and concrete syntax specifications (textual and graphical).
In the accompanying lab the students are given practical
assignments chosen from the topics of this lecture. The fi-
nal output of the lab part is a model-driven development
environment comprised of self-designed metamodels, model
transformations and code generation facilities for producing
running applications for a particular domain. We emphasize
that the students gain practical experience with state-of-the-

art MDE frameworks. The used frameworks include EMF!
for metamodel development, ATL? for defining model trans-
formations, and oAW? for developing code generators.

In this paper we report how we design our Model Engineer-
ing course, which tools we use, and which experiences we
have made over the four years we offer ME. In the next sec-
tion we give an overview about the contents of the lecture.
Then we show how we organize the practical part of this
course by reviewing the exercises given in winter term 2008.
We conclude the paper with the lessons we have learned
ourselves by teaching model engineering.

2. LECTURE

The lecture consists of 12 units at 90 minutes. Due to the
vast extent of the field of model engineering, we had to make
some decisions which topics to treat in a detailed manner
and which we only shortly touch or even omit. The contents
are shown in Table 1. The course covers all basic techniques
necessary to realize the basic model-driven engineering ar-
chitecture. Although we aim at a general introduction to
model engineering, we explain many concepts and meth-
ods exemplarily on concrete languages and technologies like
UML, OCL, ATL, etc. due to didactical reasons. As model
engineering is an emerging field with much progress, the
content of the lecture slightly varies each year, because we
emphasize on teaching state-of-the-art approaches and tech-
nology.

During the lecture, not only the theory of model engineer-
ing is presented but also many applications, examples, and
tool demonstrations are given in order to set the taught con-
tent in a practical context. Especially at the beginning of
the course the students are not used to deal with the high
abstraction level of the models. Often they have the impres-
sion that the usage of models introduces further complexity
compared to the direct traditional solution based on coding.
We try to motivate that using models as central artifacts in
the software development process may help to deal with the
rise in complexity of software systems and that models are
much more than just lines and boxes which visualize textual
program code. Furthermore, we usually organize one addi-
tional lecture given by an external lecturer from industry.
In winter term 2008, a talk about Microsoft’s Software Fac-
tories and Modeling Strategy was given by a lecturer from
Microsoft to show the students that ME is emerging in var-
ious commercial development environments.

Besides the set of our slides presented at the lecture as teach-
ing material, we recommend (parts of) certain books like [5,
7, 8, 9], and we assembled a reading list consisting of in-
teresting (research) articles which give deeper insights and
motivation from practice. Some parts of the list are manda-
tory for the tests, others include further reading for inter-
ested students. The teaching language is German, hence
the slides are prepared in this language. We refrain from
translating specific terms from English to German in order
to avoid confusion with the literature.

Thttp:/ /www.eclipse.org/emf
Zhttp://www.eclipse.org/m2m/atl
http://www.eclipse.org/gmt /oaw

Lecture Title Content

Introduction to
Model Engineering

principles and goals, basic archi-
tecture of ME, notions and defini-
tions, preliminaries and results, ap-
proaches (CASE, Executable UML,
...) with special focus on MDA

Metamodeling
(3 units)

meta languages (XML Schema,
EBNF, ..), metamodeling lan-
guages, MOF, XMI, language archi-
tecture of UML, concrete vs. ab-
stract syntax, semantics, FEclipse
Modeling Framework, Ecore, gener-
ation of modeling editors

UML Profiles extension of UML, definition and
application of stereotypes, prede-
fined stereotypes, MOF vs. UML

Profiles

OCL formal
(2 units)

specification languages,
background, utilization, language
constructs (types, expressions,
operations, iterations, ...), libraries,
tool support, concrete examples

ATL model transformation pattern, ATL
language overview, ATL by exam-
ple

Code Generation descriptive vs. constructive mod-
els, platform specific code genera-
tion, template languages, tools, us-

ing design patterns in code genera-

tion
Graph Transforma- | typed and attributed graphs, pro-
tion duction rules, graph transforma-
tions, negative application condi-
tions

MDA Tools overview state-of-the-art tools, clas-
sification criteria (modeling, trans-
formation, technical functionality),
evaluation of selected tools, case

study: 3-tier web application

Table 1: Contents of the lecture

To obtain a grade, the students have to pass a written test at
the end of the course. The test covers the complete content
of the lecture and consists of theoretical questions as well
as practical exercises. Typical tasks are the creation of a
metamodel from given example models, the specification of
graph transformations, the translation of natural language
constraints to OCL, finding errors in ATL code, complet-
ing XPand templates. To assess theory, we include open
questions which have to be answered textually, or we use
multiple choice which seems to be extremely challenging to
students although the answer is definitely unambiguous.

Although lecture and lab are graded independently, the top-
ics are strongly linked and the contents covered by the lec-
ture are the basics for solving the exercises of the lab and
the practical exercises of the written test of the lecture are
closely related to the exercises practiced in the lab. Hence, it
is recommended to attend both courses in the same semester.

3. PRACTICAL EXERCISES

The aim of the practical part of the course is to develop a
basic infrastructure which supports model-driven engineer-
ing for a particular domain. In our course we want the
students to understand the concepts and approaches behind
MDE. Hence, we refrain from simply applying MDE tools
and realizing a software project in a model-driven manner.
Instead, we make them develop tiny parts of MDE tools
which—when assembled—finally support a complete work-
flow for developing applications for a specific domain.

Although the exercises of our course vary in their domain
each semester, the principal setup of the exercises remains
the same. We observed that it is extremely important and
motivating for the students if the given exercises are from
familiar domains where they develop solutions for typical
problems during the course. In this way the students gain
not only knowledge of the technologies behind MDE, but
they directly see the additional benefits of using MDE. The
topic of the exercises were taken from Object-Oriented De-
velopment, Web Engineering, and, most recently, from Data
Engineering, which we will present in the following.

3.1 Exercise Description

As required from the MDA initiative [6], in the field of Data
Engineering, already in the early 1980s, distinctions between
platform-independent and platform-dependent models have
been made. A first step in this direction was the introduc-
tion of the Entity Relationship model which allowed describ-
ing the problem domain-independent of the actual solution
based on relational schema. From this distinction between
problem space (platform-independent) and solution space
(platform-dependent), the following practice for the design
of database schema evolved which yields the standard ap-
proach in this area and which may be considered as the
predecessor of model-driven approaches.

1. Conceptual Design: Conceptual modeling aims at the
definition and the analysis of the requirements in a
language which is independent from any technology
(cf. PIM in MDA).

2. Logical Design: During the logical design, the con-
ceptual model is translated to a form of representa-
tion which is close to the implementation (cf. PSM in
MDA).

3. Coding: Finally, an implementation in a concrete pro-
gramming language is possible as the logical model
contains all information necessary.

The students have experiences in Object-Oriented Program-
ming as well as in Object-Oriented Modeling. They know
the data engineering process [1] consisting of transformation
of conceptual schema to logical schema and the implementa-
tion of Data Definition Language (DDL) code from previous
courses where they performed all of those steps manually. In
the Model Engineering course, a model-driven development
environment is created which allows the automatic transfor-
mation of conceptual schema to executable DDL supporting
the following strategy.

1. Manual Conceptual Design: Building of UML Class
Diagrams which describe the structural aspects of data-
base schemas.

2. Automatic Logical Design: Transformation of the
UML Class Diagrams to Relational Schema without
losing information.

3. Automatic Coding: Derivation of the DDL Code from
the Relational Schema.

To achieve this goals, different components for the model-
driven development have to be implemented. Figure 1 illus-
trates the process of developing database schema, the cor-
respondence to the MDA paradigm, and the most impor-
tant building blocks to realize a model-driven, automatic
approach. The development of those components is divided
into three parts corresponding to the three exercises which
have to be solved by the students in our course. In the
following we describe each exercise in detail.

3.2 Labl: Meta-Modeling

In order to translate UML Class Diagrams to Relational
Schemas, a formal definition of both languages is indispens-
able. In Model Engineering, we use metamodel languages—
comparable to meta languages like EBNF or XML schema—
to define the modeling languages. The development of the
abstract syntax of the modeling languages UML Class Di-
agram and Relational Schema is the first exercise in our
course.

The output of the exercise are metamodels for the simpli-
fied variant of the UML Class Diagram and for Relational
Schema as well as automatically generated modeling editors
supporting the definition of well-formed instances of both
languages. The exercise is solved within the Eclipse Model-
ing Framework (EMF) which offers the metamodeling lan-
guage Ecore to design metamodels and a component for code
generation to automatically create modeling editors.

The specification of the modeling languages is done in a by-
example manner either in a textual or a graphical form (see
the Appendix for examples). The students understand that
metamodels may be used for both, textual and graphical
languages. Those examples contain all language constructs
which have to be included in the metamodel. Hence, the stu-
dents have to derive the abstract syntax from the concrete
syntax. This approach usually supports them to understand
the different abstraction levels, because designing a language
in this direction is often more natural than the other way
around. Usually, the metamodels are not unique, as even the
concepts of very restricted languages may be represented in
different ways. In personal conversation with our staff mem-
bers, different design decisions and metamodeling patterns
are discussed.

3.3 Lab2: OCL and ATL

The first part of the second lab is to define static semantic
constraints expressed in OCL for metamodels developed in
Labl. The second part is concerned with the development
of a model-to-model transformation between the UML Class

Database Engineering Prozess ME Lab 2008 MDE-Process
Conceptual Conceptual _[\E UML Class _>i ----- UmL 1F> Metamodel
Design Schema _Vﬂ Diagram E__l_\ﬂ_(_é’fi?r_'n_qq_eld; Modeling Language PIM
@ Modell2Modell
/ ;‘> _____ Transformation Language
v G < W | N @
)) Logical _:\E Relational | .! Relational %— Metamodel
S —(|_Schema | 7} Metamodel] Modeling Language,{| PV
;‘> _@ Modell2Code
/ “7| Transformation Language
DDL _>i DDL Grammar ,E Code

(D..tab1 @..lab2 3)..L1ab3

Figure 1: Illustration of the database engineering process

Diagram metamodel and the relational metamodel. For en-
suring a consistent evaluation, the students have to use the
example metamodel solutions of Lab 1 given by the teachers.

Exercise 1: OCL Constraints. For the UML metamodel,
several constraints cannot be directly specified within the
metamodel, thus, also inconsistent models may be created.
The students have to specify a list of constraints given in
natural language as OCL constraints. For testing the cre-
ated constraints, two sample UML models are given. The
first one represents a well-formed model for which no er-
rors should be reported during validation, whereas the sec-
ond one represents a faulty model which contains for each
constraint a violation. For developing and testing the OCL
constraints, the students use the Interactive OCL Console of
Eclipse supporting sophisticated code completion which al-
lows the incremental development of OCL statements. The
complexity of the OCL constraints range from simple con-
straints such as a class needs a unique name to more com-
plex constraints such as a class must not inherit directly or
indirectly from itself.

Exercise 2: UML 2 Relations Transformation. The
students have to develop an ATL transformation for gen-
erating relational models from UML Class Diagrams. For
this task, we provide again the metamodels for both lan-
guages as well as an input/output model pair. The trans-
formation is correct when the given input model is exactly
transformed into the given output model. Because there are
several strategies to derive a relational model from a UML
Class Diagram, we describe for each UML Class Diagram el-
ement how it should be represented in the relational model
by giving a concrete example. Thereby, we start with simple
one-to-one transformations, e.g., a class is transformed into
a table, and then more complex strategies are described for
bridging the gap between the object-oriented paradigm and
the relational paradigm as enumerated in the following:

e enumerations as domains plus check constraints

e multi-valued attributes as value tables

e n-to-m associations as join tables
e ternary associations as join tables

e attributes of association classes as columns of join ta-
bles

e inheritance as delegation

Strategy Description Example. In Figure 2, the strategy de-
scription for the resolution of n-to-m associations is shown.
The descriptions always consist of three parts, namely the
problem description (why a special transformation is neces-
sary), a solution (how to represent the concept in the re-
lational model), and a concrete example (taken out of the
input/output model pair) describing the result of the trans-
formation.

Problem: The relational model does not support N-to-M associations,
because of the first normal form. ...

Solution: N-to-M associations may be presented by introducing
additional Join Tables. ...

Example
UML RELATIONAL
ToDoList ToDolL.ist
0.% id1 (PK | Table Constraints
PK: (id1, id2),
consistsOf lj“> JoinTable_consistsOf FTK(;,';;LE[E(,ZD on
: A delete CASCADE,
m | id2 FK:id2 REF
o ToDo (id2) On
0.. ToDo delete CASCADE,
ToDo id2 (PK) |

Figure 2: Excerpt of the strategy description for
representing n-to-m associations in relational mod-
els

3.4 Lab3: Code Generation

Since the automatic generation of executable source code
by simply pushing a button is one vision of MDE, the last
step of the lab focuses on code generation. For this, we are

applying the Xpand language of the oAW framework which
is specialized on code generation based on EMF models. The
lab consists of three parts.

Exercise 1: Relational to SQL. The first part comprises
the generation of SQL-DDL code from the platform-specific
relational model of Lab2. The required code generation tem-
plates are straightforward (mostly one-to-one transforma-
tion rules) to give the students a convenient entry in code
generation.

Exercise 2: Class to Java. The second part omits the re-
lational model and asks for an Xpand template for the trans-
formation of the Class Diagram directly to annotated Java
code. Current code generation techniques work quite well
for generating skeletons out of static models. For demon-
strating the usefulness of MDE in terms of reduced time
of implementation, with guaranteed equality of code and
model at the same time, generating skeletons is not enough
for the ME lab. Instead, executable code should be gen-
erated which follows the semantics of the models. There-
fore, we apply tagging techniques at the model level as well
as at the code level. Special tags for model elements al-
low the modeler to define directly technical details in the
models and enable the translation of the model’s seman-
tics at the code level. Attribute-oriented programming is
a tagging technique at code level. Program elements like
classes, methods, and attributes can be marked to indi-
cate that they keep some application-specific or domain-
specific semantics. With the inclusion of JSR-175% in Java
1.5 attribute-oriented programming is supported by annota-
tions. For certain application-specific contexts annotations
are provided by the Java EE framework. In our example,
we make use of the annotations provided by the Java Persis-
tence API (JPA)®, which is included in the Java EE frame-
work, to preserve the information of the model about unique
values and primary key at code level, without implementing
complex transformation code.

The students must fully concentrate on developing the code
generation, because the resulting Java code as well as JU-
nit tests for self-checking the code generation templates are
given by the teachers.

Exercise 3: Mapping Problems. In the third part, the
students have to describe mapping problems consisting of
concepts of the Class Diagram which are not properly trans-
formed to the code level. This exercise reflects on Exercise
2 of this lab to understand which concepts of the Class Di-
agram are difficult to automatically transform to Java and
were left out for the lab. For example, the xor constraint
could be implemented in Java by using type variables or
by more complex patterns. Although this exercise does not
require the students to develop code generation templates,
it is of special interest for the students. When examining
which constraints are not guaranteed at the code level, the
students realize the benefit of conceptual modeling because
of its precise and concise representation possibilities for a
particular domain.

*http://jcp.org/en/jsr/detail?2id=175
®http://java.sun.com/javaee/technologies/persistence.jsp

4. CONCLUSIONS

After solving the exercises in the labs and attending the
lecture, the students should have obtained knowledge and
experiences covering the following points:

Design of modeling languages by defining metamodels

Development of rule-based model transformations

Development of template-base code generation scripts

Development of a complete MDE environment based
on Eclipse

On the way to reaching these goals we have made several
observations and experiences on which we report in this sec-
tion.

Observations in the Lab. For the students, the model-to-
model transformation is the hardest part of the exercises as
students are used to programming in an imperative manner.
Consequently, they focus on imperative aspects when using
hybrid languages, hence the solution gets sometimes more
complex than they would have got when solved declaratively.
On the other hand, the students are familiar with template-
based languages and hence they like the code generation
exercise in general. Students also like the metamodeling ex-
amples, however, they first have to explore that Ecore-based
metamodels have a concrete semantics (compared to using
UML Class Diagrams in software engineering courses where
they are mostly used as sketches) and that some guidelines
have to be ensured for producing working editors out of the
metamodels, such as the names of classes must be valid Java
identifiers. Last year, we decided not to run a dedicated lab
for developing a graphical editor with the GMF®, because of
the steep learning curve due to the size of this framework.
However, we found out that students are really interested in
developing graphical editors and that graphical editors are
beneficial also for the other labs in general and in particu-
lar for testing model transformations. Therefore, we plan to
provide again a dedicated lab for developing graphical ed-
itors, but this time we want to apply tools for developing
graphical editors which build on top of GMF and hide some
complexities of GMF such as GenGMF”.

What we often observed is that the students underestimate
the necessary effort and start too late with the solution of
the exercises. Especially making the tools run caused several
problems in the past, when they started with only very lit-
tle time left before the hand-in deadline. To overcome this
problem, we introduced additional milestones where they
have to show that they have some basic parts of the exam-
ples already solved and that they are able to deal with the
tools. The exercises are solved in groups of three students
and the results have to be presented to one academic staff
member. The group size of three persons usually works out
very well, because for the students it is still easy to organize
such a small group, but they are not working alone on their
exercises.

Shttp://www.eclipse.org/gmf
"http://sourceforge.net /projects/gengmf

Development Infrastructure. The only complaints from stu-
dents about the Model Engineering course concern the ma-
turity of MDE technologies which are often not well docu-
mented and are sometimes not as user friendly as it is known
from programming environments. However, with videos, tu-
torials, concrete suggestions, as well as forum support, we
are trying to eliminate most issues about tooling problems
in advance. Furthermore, it has to be noted that in the lat-
est versions of the employed frameworks many issues have
been eliminated.

Currently, very different technologies and tools are used in
the field of MDE, which do not integrate very smoothly.
Partly, the students are faced with different terms and speci-
fica of the tools which introduce unnecessary effort. To over-
come this, we provide a dedicated Eclipse bundle which com-
prises all necessary plug-ins. But in the future, we would
like to develop a dedicated model engineering platform for
teaching purposes based on Eclipse which is reduced to the
maximum of necessary operations for our courses and where
consistent and complete tool support is provided from lan-
guage engineering to transformation engineering. Further-
more, a text book covering the complete content of our lec-
ture (including many illustrating examples) is not available.
Currently, we are preparing a scriptum which will be pro-
vided to the students.

Student Feedback. Especially for the lab, a complete running
example is highly appreciated by the students. Those run-
ning examples must be chosen from a domain the students
are familiar with like from the fields of data engineering or
object-oriented modeling. When the students prepare so-
lutions for the model transformations and code generation
exercises, they like to see how executable applications may
be generated from models. In this sense, the Model Engi-
neering course closes the gap between previous programming
courses and modeling courses which are not connected ap-
propriately in the bachelor studies, but are rather seen as
competitive by the students. Model Engineering helps the
students recognize the benefits of modeling.

Summary. With the rise of model-driven engineering, more
and more dedicated modeling courses have been established
at different universities. For example, in [3] has been re-
ported that model-based approaches are the right mean for
teaching the development of distributed systems. Another
example is [4], where formal methods are taught with the
help of models. While the former aims at applying a given
modeling language to specify software systems with three-
layer architectures, the latter takes advantages of formal
verification for software models. However, our model en-
gineering course is different to the aforementioned courses.
We are focusing on teaching the students how to employ
industrial-strength frameworks to develop their own model-
driven engineering environment which supports the gener-
ation of complete applications from platform independent
models. The students have implemented in previous courses,
e.g., in web engineering, data engineering, and software en-
gineering, such applications by hand. After this course, the
students realize the benefits of modeling in general and using
a model-driven development approach in particular. This is
reflected by the comments of the feedback sheets which the
students have to fill out after completing the course.

In our course the students acquire a profound knowledge
and hands-on experience concerning state-of-the-art Model
Engineering techniques. Although the tool support is not
mature what results in numerous pitfalls, in general the stu-
dents appreciate to work with approaches directly stemming
from ongoing research. For multiple students this course is
the beginning of contributing in the area of Model Engineer-
ing in the form of seminar works, practicals, master theses
and sometimes even of PhD theses.

5. REFERENCES

[1] C. Batini, S. Ceri, and S. B. Navathe. Conceptual
Database Design: An Entity-Relationship Approach.
Addison Wesley, 1991.

[2] M. Brandsteidl, M. Seidl, M. Wimmer, C. Huemer, and
G. Kappel. Teaching Models @ BIG: How to Give 1000
Students an Understanding of the UML. In Promoting
Software Modeling Through Active Education,
Educators’ Symposium Models’08, pages 64—68. Warsaw
University of Technology, 2008.

[3] J. Cabot, F. Durdn, N. Moreno, A. Vallecillo, and J. R.
Romero. From programming to modeling: our
experience with a distributed software engineering
course. In Proceedings of the 30th International
Conference on Software Engineering (ICSE 2008),
Leipzig, Germany, pages 749-758. ACM, 2008.

[4] P. V. Gorp, H. Schippers, S. Demeyer, and D. Janssens.
Transformation techniques can make students excited
about formal methods. Information and Software
Technology, 50(12):1295 — 1304, 2008.

[5] M. Hitz, G. Kappel, E. Kapsammer, and
W. Retschitzegger. UML @ Work. dpunkt, 2005.

[6] OMG. MDA Guide Version 1.0.1.
http://www.omg.org/docs/omg/03-06-01.pdf, June
2003.

[7] T. Stahl and M. Vélter. Model-Driven Software
Development. Wiley, 2007.

[8] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. Modellgetriebene Softwareentwicklung.
Addison-Wesley, 2009.

[9] J. Warmer and A. Kleppe. The Object Constraint
Language: Getting Your Models Ready for MDA.
Addison-Wesley, 2003.

APPENDIX

Figure 3 shows an example describing a textual language
(Relational Schema) and Figure 4 depicts a graphical lan-
guage (simplified UML Class Diagram). Metamodels are
proposed in Figures 6 and 5.

CREATE SCHEMA Administration;

CREATE TABLE Employee (
oid INTEGER PRIMARY KEY,
name UNIQUE VARCHAR(25),
employed_since Funktion NOT NULL,
boss INTEGER
FOREIGN KEY(boss)
REFERENCES Employee (oid)
);

CREATE TABLE Person (
oid INTEGER PRIMARY KEY,
name VARCHAR(30)

)

CREATE TABLE Hobbys (
oid INTEGER NOT NULL,
hobby VARCHAR(20),
PRIMARY KEY(oid, hobby),
FOREIGN KEY (oid)
REFERENCES Person(oid) ON DELETE CASCADE
);

CREATE DOMAIN Function AS VARCHAR(30) CHECK(
VALUE IS IN {’Assistant’, ’Manager’}
)

Figure 3: Example for the Relational Schema lan-
guage

Eniry

name: String

Participation

- notification: MotficationType
- notificationTime: Time

Kalender

{disjoint}

=B L

coolidesWith
TerminTyp

Appointment

Authorzation

- typ: Stnng

- begin: DateTime {isMothull
ToDoEintrag - duration: int {isMothull} -
- end: DataTims
- due: DateTime - description: String
- topics: Strng [0..5] fisUnique}
- moveshble: boolesn |
R P
E end = start+duration - sccess: AccessType
1
— - belongsTo
belongsTo owns
belongsTo 0.1 0.1
Series
- id: int
) - endDste: Date RoomReservation
- frequency: int B
ToDolList = EL
- number int
- id:_int
) responsible

aenumearations

aenumerations

NotificationType AccessType
ama rite
sms rzad
signa delets

{owerdspping}

Student

matr_nr: String {islnique}
exarcizeGrades: int [0..3]

lengthimatr_nr==

Employee

- i: intfisUnique}

lengthidi== 10

Teacher

- lectures: int [1..5]

language

lagram

Example for the Class Di

Figure 4

B constrant
= name : EString
 ——

[E cHe:

T [EFRIMARY_KEY
[]

[HOT_NULL
E] UNIQUE

checkCondition

1.1

[CheckCondition

< predicate : EString
/1

H Literal
< value | EString

2."

literal

derivationannotation

[Enumeration

0.

canstraints

1

columnsUsedinTableConstraint

1%

= name : EString

E RelationalSchernd

= name : EString
—— 1

 —

domains

H Coman
= name : EString
= dataTyps : DataTypes

0.1

domainType

referencedColumn E Calurnn

onDelete
0.

orupdate
0.1

ferentialintegretyRule
= action : Referentialintegrityctions

17| o ame Estring

= dataType : DataTypes

<<enumeration=>
eferentiallntegrityAction:
= NO_ACTION

- CASCADE

= SET_NULL

Figure 5: Metamodel of the Relational Schema language

complexType

assaciations

o

H Class
T hame | EStrine
= isAbstract @ EBoOlean

o+ atiributes
0.1
[Annotation H Attribute
< name : EString 5 eI 8 g
5 value : EString / = default : ESTng
01 = isNothull : EBoolean
" = isUnicue : EBaolean
lengthannotation | = isldentifier : EBoolean

= primitiveType : PrimitiveTypeTypes

[Model
= name : EString

[Association

generalizations

subClasses

E Generalization

= isOverlapping : EBoolean
= name : EString

[Multiplicity
= lowerBound : EInt
= upperBound : Elnt

0.1
muliplicity
rultplicity
E role

< name : ESting

© aggregationkind : AggregationkindTypes
~<<enumeration>>
© PrimitiveTypeType: <<enumeration>>
— STRING regationkindType:
- INTEGER — none
= FLOAT — strong
- BOOLEAN
- DATE
- TIME
- DATETIVE

Figure 6: Metamodel of the Class Diagram language

