
Replication of the Demographic Prisoner’s
Dilemma

Wolfgang Radax? and Bernhard Rengs

Vienna University of Technology, Austria

Abstract. This paper documents our efforts in replicating Epstein’s
(1998) demographic prisoner’s dilemma model. While, qualitatively speak-
ing, our replicated model resembles the results of the original model rea-
sonably well, statistical testing reveals that in quantitative terms our
endeavor was only partially successful. This fact hints towards some un-
stated assumptions regarding the original model. Confronted with a num-
ber of ambiguous descriptions of model features we introduce a method
for systematically generating a large number of model replications and
testing for their equivalence to the original model. With the help of
this approach we show that the original model was probably based on a
number of dubious assumptions. Finally we conduct a number of statis-
tical tests with respect to the influence of certain design choices like the
method of updating, the timing of events and the randomization of the
activation order. The results of these tests highlight the importance of
an explicit documentation of design choices and especially of the timing
of events.

Key Words: Demographic, Prisoner’s Dilemma, Replication, Simulation,
Complex Adaptive Systems, Social Science Models

1 Introduction

The evolution of cooperation between egoistic individuals has attracted the at-
tention of researchers from a great number of disciplines ranging from biology
over political science to economics. Out of this effort the branch of cooperation
theory came into existence, spearheaded by Robert Axelrod’s groundbreaking
works. Typically formulated as a prisoner’s dilemma, the quest usually consists
of discovering sufficient circumstances to allow for the emergence of cooperation
or of deriving strategies, which generate high utility in a variety of situations.

While the common one shot-game leads to the outcome of mutual defection
despite being an inferior solution, for repeated games Axelrod has shown Anatol
Rapoport’s Tit-For-Tat (TFT) to be a highly efficient strategy since it fairs very
well against cooperators and defectors alike. In another interesting twist Nowak
and May [6] tried to show within a spatial context that it’s possible to arrive at

? Corresponding author. Wolfgang Radax contribution to this paper is funded by
research grant #P19973 of the Austrian Science Fund FWF. We would like to thank
two anonymous referees for their insightful comments.



a cooperative solution with zero-memory-strategies as well. Their results were
later shown, however, to be critically dependent on the timing of events [5]. In
the more plausible setting of asynchronous updating no clusters of cooperation
were able to evolve.

Epstein’s demographic prisoner’s dilemma (DPD henceforth) [3] was yet an-
other interesting take on the topic. Agents arranged on a torus are allowed to
move freely and propagate. When they encounter another individual a round of
prisoner’s dilemma is played. This comparably simple setup serves as a proof of
existence for the evolution of cooperative clusters, although only zero memory-
strategies are employed and agents cannot distinguish cooperators from defec-
tors, i.e. they are tag-less.

The goal of our work was to replicate the results of this model using the
Repast framework for Java, but as the following report shows we succeeded only
partially. Nevertheless, our efforts are instructive for a number of reasons, laid
out in later sections.

In the next section, Epstein’s DPD is presented in detail. Section 3 deals
with our replication efforts while Sect. 4 summarizes our insights. In the closing
section we discuss the implications of our results.

2 Original Model

The remarks in this section are completely based on Epstein’s model description
in [3]. The DPD is played on a 30x30 matrix with wrapped-around borders, which
topographically corresponds to a torus. Initially 100 agents are placed on random
locations of the torus. Each of these agents is born with an initial endowment of
resources and a fixed strategy; either Cooperate (C) or Defect (D). This strategy
is randomly assigned during initialization with equal probabilities. Each turn
every agent is allowed to move randomly to an unoccupied site within its Von
Neumann-neighborhood. If all neighboring sites are occupied, no movement takes
place.

If there happen to be other agents in the Von Neumann-neighborhood after
the movement, the currently active agent plays one game of prisoner’s dilemma
against each of them. As usual the payoff for mutual cooperation is R (reward)
for both participants, P (punishment) for both agents in the case of mutual
defection and if one agent cooperates while the other defects, the defector receives
T (temptation) and the cooperator gets S (sucker’s payoff). The payoffs follow
T > R > 0 > P > S and R > (T + S)/2.

Payoffs accumulate and since some payoffs of the game form are negative, the
total amount of an agent’s resources may turn negative. In this case, the agent
instantly dies and is removed from the game. If, however, an agent’s resources
exceed a given threshold, this agent may give birth to a new agent in its Von
Neumann-neighborhood which is born in a random vacant neighboring site of
the agent. The newborn agent inherits its parent’s strategy and is endowed
with the afore mentioned amount of initial resources. Should all sites within
the neighborhood be occupied, giving birth is not possible. After an agent has



completed all these steps, it is the next agent’s turn, and so forth, until all agents
have been active. All agents having been activated once corresponds to one time
period.

This schedule resembles what is called asynchronous updating. Instead of
assuming some kind of external timer, which synchronizes the individual actions,
an agent takes all actions as soon as it is its turn. The choice of updating schedule
has been shown to be of the utmost importance by Huberman and Glance [5]. In
their own words ”if a computer simulation is to mimic a real world system with
no global clock, it should contain procedures that ensure that the updating of
the interacting entities is continuous and asynchronous. This entails choosing an
interval of time small enough so that at each step at most one individual entity is
chosen at random to interact with its neighbors. During this update, the state of
the rest of the system is held constant. This procedure is then repeated throughout
the array for one player at a time, in contrast to a synchronous simulation in
which all the entities are updated at once” (emphasis added). To avoid artifacts
the order of activation is shuffled at the end of each period.

Given these basic assumptions Epstein investigates the behavior of the model
for five different settings. For Run 1 he assumes no maximum age so that agents
may die only from the consequences of playing the prisoner’s dilemma. This
first setting already proves his basic point that ”cooperation can emerge and
flourish in a population of tagless agents playing zero-memory fixed strategies of
cooperate or defect in this demographic setting” (emphasis in the original paper).
After only a few periods a stable pattern emerges and cooperators dominate the
landscape counting nearly 90 percent (800 out of 900 agents at the maximum
on a 30x30 torus), while the defectors fill up the rest of the space.

In Run 2 a maximum age is introduced so that agents may die of age as
well. The maximum lifetime is set to 100 periods. This change leads to slight
oscillations in the time series of numbers of cooperators and defectors but the
mean values are not affected much.

Runs 3 and 4 change the payoff for mutual cooperation. In Run 3 R is de-
creased from 5 to 2. The effect of this change is an accentuation of the oscillatory
dynamics. Furthermore, defectors fare comparatively better (on average count-
ing about 200 agents) and cooperators do worse, ranging from 250 to 450 agents.
Run 4 decreases R further down to 1 which pronounces the oscillatory dynam-
ics even more, resembling predator-prey-cycles between the defectors and the
cooperators. Because of these extreme oscillations, Run 4 leads to a number of
different outcomes depending on the random seed. In some runs, cooperators
dominate the scene while in others they die out (soon followed by the defectors
who then have no prey and ”feed” on each other until extinction).

Finally, in Run 5 Epstein introduces mutation while setting R to its original
value of 5 to investigate the stability of the emergence of cooperation. Until now
offspring inherited the fixed strategy from its parent. Mutation is defined ”as the
probability that an agent will have a strategy different from its parent’s.” The
mutation rate is set to 50 percent. Still, cooperation persists despite pronounced
oscillatory dynamics.



3 Replication

Although agent-based models are clearly on the rise as a modeling tool, with but
a few exceptions most of these models have not been replicated or replications
haven’t been published. It is only in recent years that the importance of the
replication of agent-based models is recognized and the problems associated
with it are acknowledged. The original model and the replicated model may
differ along many dimensions which complicates the process of replication. In [7]
Wilensky and Rand have suggested a list of items to be included in publications
of replication. We follow their suggestions and list our details in Table 1. In the
case of multiple choice-issues we highlighted our choice with bold typeset.

Table 1. Details of replication

Standard
Numerical identity
Distributional equivalence
Relational alignment

Focal measures Number of cooperators,
Number of defectors

Level of communication

None (original author didn’t
answer our request)
Brief email contact
Rich discussion and personal meetings

None
Familiarity with language/toolkit Surface understanding
of original model (C++) Have built other models in

this language/toolkit

Examination of source code
None
Referred to for particular questions
Studied in-depth

Exposure to original implemented model

None
Run1

Re-ran original experiments
Ran experiments other than
the original ones

Exploration of parameters space

Only examined results
from original paper
Examined other areas of
the parameter space

1 We ran a reimplementation of the model provided with the accompanying CD of [4]
a few times. The CD only contained executable versions of the model, source code
was not provided.



The original model was written in C++ (a reimplementation for AScape is
available in [4] – cf. footnote 1). Our replication was realized with the Repast
3.1 framework for Java.

As stated in Table 1 we aimed for distributional equivalence which [1] defined
as two models producing distributions of results that cannot be distinguished
statistically. We compared the results of both models in respect to the numbers
of cooperators and defectors for Runs 1 and 2 by using t-tests for the equality of
means of two samples with the same unknown variance – an approach already
used, for instance, by [7].

Since we didn’t get into touch with the author of the original model we had
no exposure to the original source code and had to base our replication efforts
solely on the published description of the model given in [3].

The first version of our reimplementation matched the reported results rea-
sonably well with respect to the qualitative behavior of the original model for all
five runs given in the original paper, although our model showed much more pro-
nounced oscillatory dynamics. Statistical testing revealed that our results didn’t
reproduce the ones of the original model. So we went back to the published
description and looked for clues where we could have gone wrong or possibly
misinterpreted Epstein’s assumptions. We identified a number of issues that we
were not able to draw clear conclusions from. Additionally we wanted to test for
a number of assumptions which we a priori assumed to be inconsequential (either
because it has been stated so explicitly in the original article or because in fact
they shouldn’t matter anyway), but regarded as interesting tests nevertheless.
We arrived at seven assumptions we wanted to test in a systematical way:

1. Timing of the removal of dead agents: In our first naive implementation
of the DPD we assumed that dead agents are removed from the torus at
the end of each period. This contradicts the assumption of asynchronous
updating and may have considerable influence on the results, since the dead
agents may fill up the space where other agents try to give birth to offspring.
So we introduced the option to remove a dead agent exactly at the moment
of its death.

2. Timing of the death of agents: Also connected with the issue of the death
of agents was the question whether an agent may die although it is not its
turn. This may happen if the active agent plays a game of prisoner’s dilemma
against the agent in question and, as a result of this game, the latter agent’s
accumulated payoff drops below zero. Although our first implementation
already considered this ”passive death” we allowed for an option that an
agent doesn’t die until it is activated next time.

3. Origin of initial endowment: When an agent’s accumulated payoff ex-
ceeds a certain threshold, it may give birth to an offspring. The newborn
agent starts with an initial endowment of six resources. We asked whether
this initial endowment is inherited directly from the parent (i.e. subtracted
from its accumulated payoff) or if the new agent receives this amount of
resources from an exogenous source.



4. Birth age: Here, the original article was a little bit ambiguous stating that
”[a]n agent’s initial age is a random integer between one and the maximum
age.” We were not quite sure whether this only concerned the initial popu-
lation of 100 agents or if offspring born during the simulation started with
a random birth age as well. So, although it seems counter-intuitive, we in-
cluded an option for random birth age as well.

5. Updating mechanism: Although the article explicitly emphasizes the use
of asynchronous updating, we thought it to be an instructive lesson to inves-
tigate the extent of differences in the results when alternatively allowing for
synchronous updating. The inclusion of this option was additionally moti-
vated by the fact that the Ascape-reimplementation of this model provided
by [4], allowed for ”execution by agent” as well as ”execution by rule”, which
seem to be labels for synchronous and asynchronous updating, respectively.

6. Random number generator: When coding in Repast for Java you have
the choice between two random number generators, Repast’s CERN Random
Library and Java’s own random library. We were quite curious if the choice
of the random number generator might have an effect on the results and
therefore included an option to choose one of these two libraries.

7. Randomization of the order of activation: Epstein explicitly describes
his method of shuffling the activation order of agents: ”Agent objects are held
in a doubly linked list and are processed serially. If there are N agents, a pair
of agents is selected at random and the agents swap positions in the list. This
random swapping is done N/2 times after each cycle.” Our first implemen-
tation disregarded this explicit description and for matters of convenience
made use of Repast’s own method for shuffling lists which, according to the
Repast documentation, shuffles a list ”... by iterating backwards through
the list and swapping the current item with a randomly chosen item. This
randomly chosen item will occur before the current item in the list.” We
thought that this might have as well been a reason for the divergence in
results and included an option to switch between Repast’s shuffling method
and the one described by Epstein.

We formulated each of these points as a binary parameter for our model being
either true or false. The exact meaning of each value of the parameters is given
in Table 2.

Testing for all possible combinations of these seven binary options leads to
27 = 128 different settings to be investigated or more precisely to 128*2*30=7680
runs of the model (2 because of testing Epstein’s settings called Runs 1 and 2
and 30 because in the original model each setting was repeated 30 times to
eliminate the role of the random seed. We adopted this measure.) These 128
different candidate models are then tested by means of t-tests. By process of
elimination of those cases where the equality of means-hypothesis can be rejected,
we arrive at those solutions which approximate the original model reasonably
well. The pseudo code of our replication is given in Table A-1 and Table A-2 for
asynchronous and synchronous updating, respectively.



Table 2. Description of the binary parameters

No. Name in the model TRUE FALSE

1 Remove dead An agent is removed at the Dead agents are removed at
agents immediately moment it dies either of age the end of each period after

or as a result of playing the all agents have been active.
prisoner’s dilemma.

2 Die immediately An agent dies immediately An agent can only die while
when its accumulated being active. In consequence,
resources drop below zero. if its resources drop below
This can also happen when zero when it’s not its turn,
it’s not the agent’s turn it dies not immediately but
as a result of another active only the next time after
agent playing the prisoner’s taking its turn.
dilemma with the former.

3 Initial endowment The initial endowment of The initial endowment of
inherited a new offspring is subtracted a new offspring is independent

from its parent. from its parent’s and not
subtracted from the latter’s.

4 Random birth age A new born agent’s initial A new born agent’s initial
age is a random integer age is set to one.
between one and the
maximum age.

5 Asynchronous If an agent is active it In each period, first all
updating performs all possible steps agents move, then all agents

before it’s the next agent’s play against all of their
turn. neighbors. Afterwards all

agents give birth to
offspring if possible.

6 CERN Random Repast’s own random Java’s own random
library is used. library is used.

7 Repast List-Shuffle Repast’s own method for The activation order of
shuffling lists is used for agents is shuffled
shuffling the activation according to Epstein’s
order of agents at the end algorithm.
of each period.



To level out the influence of the random element we conducted 30 runs per
combination of true/false-values for the binary parameters; each time using dif-
ferent random seeds for the random number generator for each model corre-
sponding to the parameter settings of Runs 1 and 2. As in the original model we
sampled the numbers of cooperators and defectors at t=500 and calculated the
mean and the standard deviation which we then tested against the values of the
original model by means of a t-test. The results of this endeavor are summarized
in the following section.

4 Results

Regarding Run 1, for 127 of the 128 cases tested, the null hypotheses of equal-
ity of means could be rejected for the number of cooperators or the number of
defectors at α = 0.05. So only one parameter combination remains that isn’t
statistically distinguishable from the original model with respect to both focal
measures. We, however, are very confident to claim, that this candidate solution
is radically different from the original model, for it assumes synchronous up-
dating, while Epstein explicitly emphasizes the use of asynchronous updating.
Details for this case are given in Table 3. The table reports the averaged values
over 30 runs and additionally the respective standard deviations in parentheses.
The results of the replicated model are rounded. Furthermore, the results of the
t-tests on the equality of means are reported.2

Table 3. Details of statistical testing for Run 1

Binary parameter No.

Original Model (Run 1)
No. Coop. No. Def.
779 (15) 121 (15)

Replicated Model (Run 1)
1 2 3 4 5 6 7 No. Coop. t-Value No. Def. t-Value

F F F T F F T 785 (16) -1.63 114 (16) 1.65

Although having discovered one candidate solution whose results can’t be
distinguished from the original model, we can say that our goal of achieving
distributional equivalence was not attained with respect to Run 1.

For Run 2 we were able to reject the null hypothesis in 121 of 128 cases,
leaving seven cases where the results are statistically indistinguishable from the
original model. The details of these seven cases are presented in Table 4.

Since we are interested in finding a model with a close fit to the original
model, lower t-values are desirable. By far the best result is achieved by the
parameter combination reported in the fifth row of the table (highlighted in
bold typeset). The respective solution shares some features with the majority of

2 Detailed results of all 128 cases are available upon request.



Table 4. Details of statistical testing for Run 2

Binary parameter No.

Original Model (Run 2)
No. Coop. No. Def.
784 (29) 99 (25)

Replicated Model (Run 2)
1 2 3 4 5 6 7 No. Coop. t-Value No. Def. t-Value

T T F T T T T 796 (24) -1.70 110 (24) -1.67

T F T F T T T 788 (27) -0.50 111 (27) -1.77

F T T T T T F 789 (24) -0.79 88 (22) 1.86

F T T T T F F 787 (29) -0.44 90 (26) 1.30

F T F T T F F 780 (25) 0.53 97 (22) 0.28

F F T T T F T 773 (23) 1.61 103 (21) -0.66

F F F T T T T 769 (31) 1.98 108 (27) -1.28

candidate solutions making it even more probable that the respective parameters
resemble the choices undertaken in the original model.

As expected, all cases resembling the results of the original model employ
asynchronous updating. A little bit more surprising is the result that in the
majority of the candidate solutions agents are born with a random birth age.
The meaningfulness of this assumption is very dubious if the propagation process
is to resemble giving birth3. Another problematic result of our extensive testing
is that in the majority of successful replications of Run 2, dead agents are not
removed immediately at the time of death but are removed only at the end of
each period collectively. This result is problematic insofar as it contradicts the
approach of asynchronous updating to some degree.

Unfortunately, we were not able to find a single parameter combination which
is capable of reproducing the results of Runs 1 and 2 of the original model at
once. This fact hints to additional assumptions regarding Run 1 which were not
stated in [3] or to put it differently that the results of Run 1 were achieved by a
slightly different model than those of Run 2.

The large quantity of data produced in the course of replicating the model
led us to the idea to conduct further series of tests regarding the influence of
each binary parameter ceteris paribus on the outcomes. Holding six of the seven
parameters constant, we compared the two models with the seventh parameter
being true and false, respectively with the t-test introduced above. This proce-
dure was repeated for all seven parameters and all combinations of the six re-
maining parameters amounting to 64 tests per Run and parameter. To illustrate
this more vividly, let’s consider one specific test on the importance of the pa-
rameter remove dead immediately. Adopting the order of parameters employed
3 In his Ascape-Reimplementation [4], Epstein no longer calls the propagation process

giving birth but calls it fissioning instead (Model Settings Screen, Rules Section).
One anonymous referee suggested that ”another plausible variation for birth age
would be to assign the new child the same as the parent.” In this case, however,
each simulation for Run 2 would end after 100 periods. Therefore, this option can’t
account for the irregularties concerning birth age, either.



in the tables above we have to test 26 = 64 different combinations of binary
parameters having remove dead immediately = true against their counterparts
having remove dead immediately = false.

Table 5. Summary of statistical tests on the influence of parameters

Parameter Times H0 is rejected
Run 1 Run 2

Remove dead agents immediately 57 (89.06%) 60 (93.75%)
Die immediately 45 (70.31%) 51 (79.69%)
Initial endowment inherited 61 (95.31%) 38 (59.38%)
Random birth age 3 (4.69%) 54 (84.39%)
Asynchronous updating 64 (100.00%) 64 (100.00%)
CERN random 7 (10.94%) 4 (6.25%)
Repast list-shuffle 14 (21.88%) 32 (50.00%)

We present only a number of insights gained from this series of tests which are
summarized in Table 5. For instance, the parameter random birth age confirms
what could have been expected a priori. It has no influence at all on the outcomes
of Run 1 (rejecting only 3 of 64 tests) since this run assumes no maximum age and
therefore the birth age doesn’t matter at all. For Run 2, however, the results vary
significantly and produce different outcomes for 54 of the 64 cases. This serves
as an interesting example of model validation by means of statistical testing.

A similarly clear picture emerges from the tests on the influence of the up-
dating mechanism. In this instance, the equality of means-null hypotheses is
rejected in all cases of Run 1 and Run 2 giving additional weight to the impor-
tance of choosing the right updating mechanism for the modeling problem at
hand. The case is similar with respect to the parameter remove dead immedi-
ately. For the vast majority of parameter combinations (57 of 64 for Run 1, 60
of 64 for Run 2) the samples show a significant difference. The effect is a little
bit less pronounced in the case of the parameter die immediately. Still, 45 of 64
parameter combinations show a significant difference for Run 1 and even 51 of
64 parameter combinations do so for Run 2. What these three parameters have
in common is that they all deal with the timing of events within the model. All
of these three assumptions concern only the exact point in time during the same
global time step when a given procedure should be executed and yet the results
vary dramatically. This points out the high importance of explicitly stating the
course of events in an agent-based model – for instance by means of a detailed
pseudo code4 or flow charts – in order to be replicable.

4 While writing this paper we realized that pseudo code is as prone to ambiguities as
plain verbal description, if it is not used with great care for details. However, pseudo
code forces the modeler to state the order of events in a strictly sequential way. As
one anonymous referee correctly suggested, plain verbal description of the model can



For the assumption about the origin of an offspring’s initial endowment the
picture is not as clear as in the above cases. For Run 2, 26 out of 64 cases show
no significant differences in the results, depending on the origin of the initial
endowment and therefore it is hard to draw some decisive conclusions. For Run
1, however, the vast majority (61 of 64 cases) varies significantly when changing
the parameter.

As also might have been expected, the choice of random library bears no
influence on the results. While this might seem common sense, it is nevertheless
reassuring that extensive statistical testing confirms this assumption. The case is
a little bit different with the choice of a shuffling-algorithm. While for Run 1, this
choice has a significant influence on the results in only a minority of cases (14
of 64 cases), Run 2 is affected 32 out of 64 times by the choice of the algorithm
showing that the choice of the shuffling algorithm may be consequential to the
outcomes of the model and should therefore be well documented.

5 Conclusion

While we haven’t achieved our goal of distributional equivalence for Runs 1 and
2 at once, we were able to replicate the DPD reasonably well regarding Run
2. This outcome hints to unstated assumptions regarding the description of the
original setting of Run 1, without which it is not possible to realize a successful
replication of the original model.

By systematic testing of various parameter settings we confirmed that the
original model employs asynchronous updating. On the other hand it turned out
that it is highly likely, that in the original implementation not only the initial 100
agents start with a random age between one and the given maximum age but also
new born agents are initialized with a random age. We doubt the meaningfulness
of this assumption within the context of the model and furthermore showed that
setting the birth age to one for all new born agents produces significantly different
results for Run 2.

Another problematic insight is that in the original model dead agents proba-
bly were removed from the torus collectively at the end of each period and not at
the immediate moment of their death. Not only have we shown that the timing of
removal has significant influence on the results, removing the dead agents at the
end of the period is also a breach of the assumption of asynchronous updating.
Nevertheless, we have been able to verify the qualitative results of the original
model that cooperation prevails under a wide variety of circumstances.

Further testing of our results revealed the importance of the timing of events
in an agent-based model, highlighting the usefulness of explicitly stating the
course of events, for instance by means of pseudo code documenting all critical
aspects of the model. Furthermore, we confirmed the assumption that the choice
of random library has no influences whatsoever on the average results of our

do the trick as well if it is complete, but contrary to the other two methods proposed
it does not force you to be as explicit, thereby usually not arriving at the same level
of clarity and often needing more space.



replication. The choice of shuffling algorithm, however, does have significant
influence in a non-negligible number of cases.

We think that our approach of modeling ambiguous assumptions as binary
parameters and systematically testing them is a valuable method for the replica-
tion of agent-based models which makes extensive use of the verbal description
of the model to be replicated as well as the available data. In combination with
statistical testing this procedure allows for some kind of reverse engineering when
detailed information on the original model is not readily available.

Nevertheless, we are aware that this method is not free of shortcomings.
First, turning ambiguous features into a binary parameter may not always be
possible. Second, and even more important, the number of cases to be tested
increases exponentially with the binary parameters and therefore our method can
only be applied with respect to a selected number of model features, before the
evaluation of the generated data turns into an arduous task. Objections might
also be raised against our reliance on t-tests refraining from a more detailed
comparison between the results of the model and of the replication. But for the
goal at hand and for the process of elimination of candidate solutions, a test
on the equality of means is by all means adequate. Despite these objections we
believe this approach to be a helpful guide in the course of model replication.

References

1. Axtell, R., Axelrod, R., Epstein, J., Cohen, M.: Aligning Simulation Models: A
Case Study and Results. Computational and Mathematical Organization Theory 1,
315–333 (1996)

2. Edmonds, B., Hales, D.: Replication, Replication and Replication: Some Hard
Lessons from Model Alignment. Journal of Artificial Societies and Social Simulation
6(4)11 (http://jasss.soc.surrey.ac.uk/6/4/11.html) (2003)

3. Epstein, J.: Zones of Cooperation in Demographic Prisoner’s Dilemma. Complexity
4, 36–48 (1998)

4. Epstein, J.: Generative Social Science: Studies in Agent-Based Computational Mod-
eling (Princeton Studies of Complexity). Princeton University Press, Princeton, NJ.
(2007)

5. Huberman, B., Glance, N.: Evolutionary games and computer simulations. Proceed-
ings of the National Academy of Sciences USA 90, 7716–7718 (1993)

6. Nowak, M., May, R.: Evolutionary games and spatial chaos. Nature 359, 826–829
(1992)

7. Wilensky, U., Rand, W.: Making Models Match: Replicating an Agent-
Based Model. Journal of Artificial Societies and Social Simulation 10(4)2
(http://jasss.soc.surrey.ac.uk/10/4/2.html) (2007)

8. Will, O., Hegselmann, R.: A Replication That Failed - on the Computational
Model in ’Michael W. Macy and Yoshimichi Saito: Trust, Cooperation and Mar-
ket Formation in the U.S. and Japan. Proceedings of the National Academy of
Sciences, May 2002’. Journal of Artificial Societies and Social Simulation 11(3)3
(http://jasss.soc.surrey.ac.uk/11/3/3.html) (2008)



Appendix: Pseudo Codes

The presented pseudo codes assume the parameter remove dead agents immedi-
ately to be false. For the case of this parameter being true, the removal of agents
occurs as soon as an agent dies, whether of age or from the result of playing the
prisoner’s dilemma.

Table A-1. Pseudo code in the case of asynchronous updating

Initialize model

DO t times

FOR EACH agent DO

Move

Play against all Von Neumann-neighbors in random order

IF resources < 0 THEN

Die

END IF

FOR EACH neighbor of agent DO

IF resources < 0 THEN

Die

END IF

END FOR EACH

Give birth to offspring if possible

IF age >= maximum age THEN

Die

END IF

END FOR EACH

Remove dead agents from the space

FOR EACH agent DO

Age increases by 1

END FOR EACH

Shuffle activation order of agents

END DO



Table A-2. Pseudo code in the case of synchronous updating

Initialize model

DO t times

FOR EACH agent DO

Move

END FOR EACH

FOR EACH agent DO

Play against all Von Neumann-neighbors in random order

IF resources < 0 THEN

Die

END IF

FOR EACH neighbor of agent DO

IF resources < 0 THEN

Die

END IF

END FOR EACH

END FOR EACH

FOR EACH agent DO

Give birth to offspring if possible

END FOR EACH

FOR EACH agent DO

If age >= maximum age THEN

DIE

END IF

END FOR EACH

Remove dead agents from the space

FOR EACH agent DO

Age increases by 1

END FOR EACH

Shuffle activation order of agents

END DO


