
A registry model for
UN/CEFACT’s Core Components

Christian Huemer, Philipp Liegl
Institute of Software Technology and Interactive Systems

Vienna University of Technology
Vienna, Austria

{huemer, liegl}@big.tuwien.ac.at

Christian Pichler
Research Studios Austria

Vienna, Austria
christian.pichler@researchstudio.at

Abstract—Business documents exchanged in a service-oriented
context play a crucial role in the definition of service interfaces.
Only if both partners have a common agreement on the data
exchanged, automated business interactions are possible. The
United Nations Center for Trade Facilitation and Electronic
Business (UN/CEFACT) provides a reliable and interoperable so-
lution for conceptual business document definitions with UN/CE-
FACT’s Core Components Technical Specification. However,
document definitions aren’t available in a centralized manner
to all interested business partners. In order to allow for an
easy search and retrieval of core component business document
definitions, a registry is needed. Business partners may retrieve
service interface definitions from the registry and adapt their
software accordingly in order to engage in automated business
interactions. We specify a registry meta model on top of ebRIM,
registering core component artifacts and defining their inter-
dependencies.

I. INTRODUCTION AND MOTIVATION

Today business processes must be designed to support the
value exchanges between companies, and IT applications must
quickly adapt to changing business processes. This paradigm
is also known as business/IT alignment. With their potential
to provide a new level of flexibility in regard to the adaptation
of the affected IT systems, service oriented architectures are
a promising solution for the business/IT alignment problem.
In former days change requests to the IT resulted in rigorous
reengineering tasks of existing IT implementations. Nowadays
service oriented IT departments face the challenge of aligning
their service interfaces. This term is also known as service
alignment and refers to the reconcilement between business
partners in order to provide complementary services.

Before two business partners can engage in an automated
business interaction an agreement on the exchanged data i.e.
business document structure has to be found. In most SOA
based scenarios XML schemas are used to define the interface
of each business partner. Thus, it are the business document
definitions, which essentially define what type of XML in-
stances a service interface accepts. If both business partners
support the same XML schema, XML instances may be
exchanged between the different systems via service interfaces.
However, even if predefined business document standards [1]
are used, it is not guaranteed that all participating business
partners share a common understanding of a particular busi-
ness document. Most business document standards are over-

loaded with optional elements, since they try to meet as many
different user requirements as possible. As a result, costly and
error prone mappers have to be implemented. We argue that
a single approach for the definition of service interfaces is
needed, where every business partner may easily retrieve the
necessary definitions from a repository. Additionally, business
partners may store their existing business document definitions
for a service interface in the repository in order to share them
with other potential business partners.

Figure 1 gives an overview of our motivating business
scenario.

A

Conceptual UML
Business Document

define Business

Core Component

B

transform

Business
Partner A

define Business
Partner B

store/
retrieve

use1

2

3

4

5
p

Registry

<XML/>
Business
Partner CService Interface

Definition

C
BA

Core Components DefinitionCore Components

Fig. 1: Motivating Business Scenario

Business partner A uses predefined building blocks (1) in
order to assemble a conceptual business document definition
(2). These so called core components are standardized by the
United Nations Center for Trade Facilitation and Electronic
Business (UN/CEFACT) and follow the Core Components
Technical Specification (CCTS) [2]. Using the core component
concept business documents are built in a semantically unam-
biguous manner, following a globally defined standard. How-
ever, core components are standardized in an implementation
neutral manner, making integration into modeling tools and
machine processing difficult. In order to overcome this limita-
tion we have introduced the UML Profile for Core Components
(UPCC) [3] and consequently submitted it to UN/CEFACT
for standardization. One may now use the UML Profile and
assemble business document definitions on a conceptual, UML
based level (2). A UML based business document definition
is easy to communicate between different developers and IT
architects. In particular in a service oriented context, where
several negotiation steps between the participating partners are

necessary, a UML based approach is superior compared to a
sole XML based document definition.

However, service interfaces are defined using XML Schema
artifacts. Using the UN/CEFACT’s Naming and Design Rules
(NDR) [4] a conceptual business document model may be
transformed into an equivalent XML syntax (3). Both repre-
sentations serve their specific purpose. Conceptual service in-
terface definitions ease the communication between developers
and IT architects, but cannot be used directly for interface def-
initions in IT systems. XML based service interface definitions
are difficult to communicate between different developers, but
may be directly used in IT systems. Thus, we argue that it is
necessary to store both - the conceptual and the XML based
representation of a service interface in a registry (4). Other
business partners may search the registry for service interface
definitions and retrieve both, the UML based and XML based
business document definitions (5).

We argue, that in order to foster reuse of business document
definitions, which serve as interface definitions in a SOA, a
registry approach is needed. However, such a registry approach
is still missing. In this paper we show how a core components
registry may be built on top of the ebXML Registry Infor-
mation Model (RIM) [5]. We outline how the registry serves
as the storage, search, and retrieval point for both, conceptual
service interface definitions based on UML and XML Schema
artifacts. We also stress the importance of a registry federation
concept in order to allow different levels of interoperability.

We already introduced a registry approach in [6], covering
the business, business process, and deployment artifact per-
spective of an electronic business interaction between business
partners in a service oriented context. For the business process
layer artifacts the used a dedicated business collaboration
registry model [7]. However, our introduced registry model
did not consider the business document information that is
being exchanged in an electronic business interaction. This
paper closes this gap and provides an extension to the concepts
presented by [6] in order to allow for support of business
document information in an e-Business registry as well.

The remainder of this paper is structured as follows: Section
II introduces the basic core component concepts necessary for
further conception of the paper. The registration of service
interface definitions in a registry is discussed in Section III
and different registration federation concepts are introduced
in Section IV. Finally Section V concludes the paper.

II. UN/CEFACT’S CORE COMPONENTS

The Core Components Technical Specification (CCTS) [2]
distinguishes between two elementary concepts: core compo-
nents and business information entities. Core components are
reusable building blocks for assembling business documents in
an implementation neutral manner. Thereby, core component
are context independent, and due to their generic nature
may be used in any given application scenario. A business
document modeler distinguishes between three different types
of core components: (i) basic core components (BCC) are used
to represent simple properties such as name or description

(ii) aggregate core components (ACC) are used to aggregate
different basic core components to a more complex type e.g.
address, consignment etc. (iii) association core components
(ASCC) are used to define relationships between different ACC
e.g. indicate the fact, that a party has a private and a work
address.

If core components are used in a certain application domain,
they become so called business information entities. Business
information entities are derived from core components by re-
striction. Thus, a business information entity must not contain
any attributes or associations, which have not been defined
in the underlying core component. Similar to the concept of
core components a distinction is made between basic business
information entities (BBIE), aggregate business information
entities (ABIE), and association business information entities
(ASBIE). Figure 2 gives an overview of the basic concepts of
the core component standard.

Core Components Business Information Entities
based�on

Aggregate�Core�Component�(ACC) Aggregate�Business�Information�Entity�(ABIE)

Core�Components Business�Information�Entities

DateofBirth :�Date

US_Party

DateofBirth :�English_Date

Basic�Core�
Component�(BCC)Party

FirstName :�Text FirstName :�US_Text

Basic�Business
I f i E i

based�on

Address

Private

US Address

US_Private

Information�Entity�
(BBIE)based�on

Address

Country�:�Text

PostalCode :�Identifier

US_Address

PostalCode :�US_Post_Identifier

Street�:�US_Text

Street�:�Text

Association�Core�
Component�(ASCC)

Association�Business�
Information�Entity�
(ASBIE)p () (ASBIE)

Core�Data�Type�(CDT) Business�Data�Type�(BDT)

Fig. 2: Overview of basic core component concepts

The value domain of basic core components and basic
business information entities is defined using the concept
of data types. A core data type (CDT) is used to set the
value domain of a basic core component and a business
data type (BDT) is used to set the value domain of a ba-
sic business information entity e.g. US_Post_Identifier
defines the value domain for the basic business information
entity PostalCode on the lower right hand side of Figure
2. Similar to the relationship between core components and
business information entities, a business data type is derived
from a core data type by restriction. Both, CDTs and BDTs
are composed of exactly one content component (CON), which
carries the actual value of the data type e.g. 12. Zero or more
supplementary components (SUP) provide additional meta-
information about the content component e.g. unit code =
Fahrenheit of the content component’s value.

A major shortcoming of core components is the fact that
they are defined in an implementation neutral manner. Thus,
integration into modeling tools is difficult. In order to apply
the core component concepts as a means of modeling business
documents, We have developed the UML Profile for Core
Components (UPCC) [3] and consequently submitted it to

Association
ASCC

Attribute
BCC

Class
ACC

Attribute
BBIE

Class
ABIE

Class
CDT

Attribute
CON

Attribute
SUP

Type
PRIM

Enumeration
ENUM

Class
BDT

Assocation
ASBIE

Package
BIELibrary

Package
DOCLibrary

Package
CCLibrary

Package
CDTLibrary

Package
ENUMLibrary

Package
BDTLibrary

Package
PRIMLibrary

bLibrary

Class
IDSCHEME

+source

basedOn

basedOn

basedOn

basedOn

+target

+source

+target

Fig. 3: UML Profile for Core Components Overview

UN/CEFACT for standardization. The UPCC allows using
core components with standard UML modeling tools. Con-
ceptual core component models may be easily exchanged
between different business partners and stakeholders in order
to communicate business document definitions. Figure 3 gives
a brief overview of the structure of the UML Profile for Core
Components. Denoted with a white background are packages
which embrace artifacts of a certain type. Artifacts such as
core components and data types are shown with a black
background.

The central package and embracing container for all other
component related packages is a business library (bLibrary),
shown on top of Figure 3. A particular role plays the package
DOCLibrary, shown on the lower right hand side of Figure 3.
In a DOCLibrary different business information entities are
aggregated to business document definitions. For a detailed
discussion of the UML Profile for Core Components see [8].

For transforming UML based core component models to
XML Schema deployment artifacts, UN/CEFACT developed
a specification named the XML Naming and Design Rules
(NDR) [4]. The specification describes rules and guidelines
for representing conceptual models comprised of core com-
ponents, business information entities, as well as business
document definitions through XML Schema. Figure 4 gives an
overview of the basic transformation mechanisms as mandated
by the Naming and Design Rules.

In particular, the figure describes rules for the business in-
formation entity concepts including business data types (BDT),
basic business information entities (BBIE), aggregate business
information entities (ABIE), as well as association business
information entities (ASBIE). The concept of a BDT is rep-
resented through the XML Schema construct simpleType

Business Information Entity Concept XML Schema Construct

Aggregate Business Information Entity (ABIE)

Association Business Information Entity (ASBIE)

Basic Business Information Entity (BBIE)

Business Data Type (BDT)
xsd:simpleType

xsd:complexType

xsd:element Local Declaration

xsd:complexType

xsd:element Global Declaration

xsd:element Local Declaration

OR

Fig. 4: Transformation of CCTS to XML Schema components.

or complexType. In case a BDT only contains a content
component, it is represented through a simpleType. If a BDT
contains supplementary components as well, it is represented
using a complexType. An ABIE is represented through the
XML Schema construct complexType, which contains local
element declarations representing the BBIEs of the ABIE.
The BBIEs are either typified through a simpleType or a
complexType representing a particular BDT. In addition to
the complex type definition, a global element declaration is
created for each ABIE. For representing ASBIEs, which are
used for defining associations between ABIEs, either local or
global element declarations are used. In case the association
is of type shared, a global element is defined for the ASBIE
which is referenced from within the complex type definition
of the ABIE. The transformation of core components to XML
Schema constructs is similar to the approach described for
business information entities. For a detailed discussion of
the XML Schema derivation mechanism for conceptual core
component models we would like to direct the interest reader

to [8].
Another aspect of generating XML schemas from concep-

tual models is the structure of the resulting XML schemas.
Core component artifacts are, as introduced earlier, organized
in different libraries. The libraries relevant in respect of BDTs,
ABIEs, ASBIEs, as well as business document definitions,
are the packages named BDTLibrary, BIELibrary, and
DOCLibrary. According to the package structure and fol-
lowing the Naming and Design Rules (NDR), the generated
XML Schema representation is organized into three separate
XML Schema files. An overview of the generated deployment
artifacts is provided in Figure 5 showing that a separate XML
Schema file is generated for each library.

Root XML Schema File

Business Document Definitions

includes

includes

BDT XML Schema File

BIE XML Schema File

includes

Association Business Information Entity (ASBIE)Business Data Type (BDT)

Basic Business Information Entity (BBIE)

Aggregate Business Information Entity (ABIE)

Fig. 5: Deployment Artifacts

III. THE CORE COMPONENT REGISTRY MODEL

Having introduced the basic core component concepts we
now discuss how both, conceptual core component artifacts
based on UML and logical level core component artifacts
based on XML Schema are managed in a registry. For this
purpose we provide a registry meta-model based on the
ebXML registry information model [5], which supports the
specifics of the conceptual and logical layer. The registry meta-
model has the purpose to define which artifacts are maintained
in the registry. An ebXML registry stores these artifacts as
extrinsic objects, which are XMI (XML Metadata Interchange)
and XML artifacts in our case, but may in principle be any
format of choice. It is important to notice, that the content
of an extrinsic object is encapsulated - this means a query
to the registry does not access the content of an extrinsic
object directly. It follows, that an extrinsic object must be
annotated with pertinent meta-data in order to allow for an
effective search. Additionally, the different artifacts and their
meta data have dependencies on each other. Our registry meta
model defines the required links between the extrinsic objects
of the different artifacts and also between their meta data if
required.

Figure 6 shows the resulting meta-model of our core com-
ponent registry. Due to space limitations we do not show all
artifacts of the meta model, but limit our discussion to the
business information entity part of the meta model. Extrinsic
objects are denoted with a thick border and classes referring
to logical level artifacts are denoted with a gray background.
Each class of our core component registry is based on an

existing meta class of ebRIM. The meta-class is denoted in
the upper-right corner of each class.

ExtrinsicObject
ABIE

ExtrinsicObject
ASBIE

ExtrinsicObject
BBIE

ExtrinsicObject
BDT

Classification
BDTLibrary

Classification
BIELibrary

ClassificationNode
UPCCLibraries

Slot
UniqueIdentifier

Slot
VersionIdentifier

Classification
LanguageCode

Slot
DEN

Slot
Definition

Slot
BusinessTerm

Slot
UsageRule

ExtrinsicObject
BIESchema

ExtrinsicObject
BDTSchema

ClassificationScheme
UPCC

1..*
1..*

10..*

1

0..*
1..*
1..*

1 0..*

0..* 1

+sourceObject

«Association»

1..*

1

1..*

1
«Association»

+targetObject

1
1..*

Fig. 6: Cut-out: Core Component registry meta model

As shown in Figure 6 our meta model cut-out contains
four extrinsic objects for the conceptual layer, namely ABIE

(aggregate business information entity), BBIE (basic business
information entity), ASBIE (association business information
entity), and BDT (business data type). Each of the four
mentioned extrinsic objects has several associated slots and
classifications. The concepts of slots and classifications is used
to annotate an extrinsic object with the pertinent meta data
information in order to allow for search and retrieval of the
artifact.

Due to space limitations we only show the slots and
classifications for the extrinsic object ABIE in detail, which
however also apply to BBIE, ASBIE, and BDT artifacts. For
the logical level layer we define exactly two extrinsic objects
namely BIESchema and BDTSchema. The extrinsic objects
ABIE and BDT are associated with the classification artifacts
BIELibrary and BDTLibrary, respectively. Classification
scheme and classification node are concepts built into the
ebRIM and are used for defining taxonomies of meta data.

A. Registering conceptual core component models

In our proposed scenario a conceptual core component
model is based on the UML syntax. The graphical UML syntax
may also be represented in XMI (XML Metadata Interchange).
The XMI representation of a core component model is used
to store it as extrinsic object in our registry. Thereby, we
distinguish between two different use cases: storing an entire
core component model and storing a single core component.

Figure 7 gives on overview of how the business information
entity artifacts shown in Figure 2 are stored in the core
component registry. We denote classification and slot artifacts
using a dark background in order to foster distinction from
extrinsic objects. In most use cases a user may want to retrieve
or store a single business information entity artifact from the
registry. In case an aggregate business information entity such
as US_Person is stored in the registry, its XMI representation
is stored in the extrinsic object ABIE. The basic business

information entities DateofBirth and FirstName are stored
in the respective extrinsic objects BBIE. The same applies
for the association business information entity US_Private,
which is stored in the extrinsic object ASBIE. Business data
types, defining the value domain of basic business information
entities are stored in their respective extrinsic object BDT. In
order to indicate to which library a given business information
entity or business data types belongs, we use the classification
BIELibrary and BDTLibrary.

US ︳Person :ABIE

DateofBirth :BBIE

FirstName :BBIE

:UniqueIdentifier

:VersionIdentifier

:LanguageCode

:DEN

:Definition

:BusinessTerm

:UsageRule

English ︳Date :BDT

US ︳Text :BDT

US ︳Address :
ABIE

PostalCode :BBIE

Street :BBIE
US ︳PostalCode :

BDT

US ︳Private :
ASBIE

Example1 :
BIESchema

Example1 :
BDTSchema

MyBIELibrary :
BIELibrary

MyBDTLibrary :
BDTLibrary

Fig. 7: Core Component registry example

In case an entire business information entity model is stored
in the registry the same steps as for storing a single business
information entity are applied. However, the registry has to
check whether a given business information entity already
exists in the registry, before inserting a new definition. For
this purpose the unique identifier slot is used.

If core components are stored in the registry the same
principles as shown for business information entities in Figure
7 are applied. Of particular importance is the establishment
of the correct dependencies between core components and
business information entities in the registry. For example a
business information entity must not be inserted into the
registry if no connection to an underlying core component
definition can be provided, since that would violate one of the
main principles of the core component approach.

B. Registering logical level core component artifacts

In the previous paragraph we showed how conceptual core
component artifacts are stored in the registry. Consequently we
show how to map deployment XML Schema artifacts to the
core component registry model and link them to the business
information entity artifacts. As outlined in Section II the UML
based core component model may serve as the basis for the
derivation of XML Schema artifacts, which are used to define
an interface in a SOA scenario. For the derivation of XML
Schema artifacts from core component models transformers
such as our freely available VIENNA Add-In [9] are necessary.

However, in certain cases a user may want to retrieve a
ready to use XML schema file with business information entity

definitions instead of retrieving conceptual business informa-
tion entity definitions. A user may also want to avoid the
creation of XML Schema artifacts from newly created business
information entity models, but use predefined and ready-to-use
XML Schema artifacts instead. In Section II we have shown
how a single library of business information entities results in
exactly one XML Schema file. Consequently, the business data
types used for the business information entities also result in
a single XML Schema file. Therefore, in case a user submits
an entire business information entity library to the registry,
it is recommended to submit the underlying XML schema
files as well. As shown in Figure 7, we use the two extrinsic
objects BIESchema and BDTSchema in order to store business
information entity schema files and business data type schema
files, respectively. Both extrinsic objects are associated with
the business information entity artifacts and business data type
artifacts they belong to.

Since users are able to store XML Schema files together
with conceptual definitions an easy search and retrieval of
XML Schema artifacts using the definitions on the conceptual
level such as the slots UniqueIdentifier, Definition,
etc. is possible. However, users may also search for pertinent
business information entities by retrieving all core components
from a certain business information entity library using the
classification BIELibrary. In either case the user is able to
retrieve the right business information entities from the registry
together with their XML Schema equivalent.

IV. REGISTRY FEDERATION

One of the early and most successful attempts to pro-
vide a single set of business document definitions is the
UN/EDIFACT standard. However, a single central registry
or repository of reusable business document artifacts has a
set of shortcomings. Several hundred interest groups and
stakeholders from different industries actively contribute to
the UN/EDIFACT standard, making the resulting message
definitions quite complex. Furthermore, the standard definition
is rather rigid in nature and change requests usually have to
go through several review cycles by all involved partners.

In order to avoid these shortcomings we propose a federated
registry approach for core components. Figure 8 gives an
overview of our approach. Core components are standard-
ized and harmonized by UN/CEFACT, serving as the single
entity shown on top of Figure 8. Different interest groups
such as SWIFT (Society for Worldwide Interbank Finan-
cial Telecommunication) [10] or CIDX (Chemical Industry
Data Exchange Standard) [11] and entire industry sectors
(Automotive industry) represent the needs of their involved
companies and stakeholders. Each interest group maintains its
own core component library, which is aligned to the UN/CE-
FACT library. Companies such as Shell or BP retrieve their
core component definitions directly from their interest group
registry (CIDX), instead of the generic UN/CEFACT library.
Additionally, industry sector specific libraries such as for the
automotive industry are created. This ensures core component
compatibility for sub-groups of the industry domain such as

AIAG (North American car industry) and ODETTE (European
car industry).

UN/CEFACT

CIDX Automotive SWIFT

Swiss
Bank

Austrian
Bank

ODETTEAIAGShell BP

Assocation Assocation

Fig. 8: Federated registry approach

The advantages of such a federated approach are apparent.
Companies do not need to use generic and overloaded core
component definitions, but may use core component defi-
nitions which are already tailored to their specific industry
domain. If industry groups such as CIDX align their industry
specific registries to the generic UN/CEFACT core component
library, business document definitions may easily be mapped
between different industries e.g. between SWIFT and CIDX
as shown in Figure 8. However, an alignment of industry
specific libraries towards the generic UN/CEFACT library is
not imperative. In certain scenarios industries may choose to
create their own core components. An automotive industry
representation such as AIAG may chose to create its own
core component for the automotive supply chain, because
alignment of these core components to the financial industry
may be considered as unnecessary. However, in such a case
interoperability of core components at a cross-industry level is
not feasible any more. Nevertheless, core components from the
upper level (UN/CEFACT) may still be used if interoperability
to other industries is required.

Finally, each enterprise may choose to implement its own
core component definitions in a dedicated enterprise-wide
registry. As shown at the bottom of Figure 8, Shell may
for instance choose to implement its own core component
definitions, which are valid for the whole enterprise. Such
a step ensures interoperability between different company
departments and sub-groups such as Shell Asia and Shell
Europe.

V. CONCLUSION

As outlined in this paper an efficient service interface
alignment is crucial for the successful implementation of
a SOA. Only if both business partners are able to find a
common agreement on their service interface definitions, an
automated data exchange between the business partners is
possible. Service interfaces are essentially defined by the type
of business document they accept. Thereby, UN/CEFACT’s
Core Components are a powerful and easy to use concept for
the unambiguous definition of business documents. In order

to process implementation neutral core components we have
introduced the UML Profile for Core Components (UPCC).
Using the UPCC it is possible to define service interfaces
on a conceptual, UML based level. The UML based service
interface definitions may be easily communicated between the
different stakeholders in a service oriented environment. With
the use of Naming and Design Rules the conceptual service
interface definitions may be transformed to XML Schema.
These XML artifacts are used for the definition of service
interfaces on a technical level. Thus, both representations of
service interfaces are needed - conceptually for the commu-
nication between stakeholders and in an XML format for the
respective IT systems.

Although the technical prerequisites for service definitions
exists with the UML Profile for Core Components, an efficient
alignment of different service interfaces is still not possible.
With the core component registry, introduced in this paper,
we tackle this problem and provide a central access point
for service interface definitions. Stakeholders may retrieve
interface definitions from the core component registry and rec-
oncile their service interfaces. We built our registry approach
on the well accepted electronic business registry information
model (ebRIM). Thereby, we provide a registry meta model
supporting both - conceptual and XML based service inter-
face definitions. Since we base our approach on the global
core component standard, a maximum of interoperability is
provided.

Currently the versioning of different service interface defini-
tions is not reflected in our proposed solution. As time evolves,
the requirements of business partners most likely change and
thus and adoption of the corresponding business documents
becomes necessary. The aspect of proper versioning as well
as business document evolution strategies remains unresolved
issues and will be subject to future research.

REFERENCES

[1] H. Li, “XML and Industrial Standards for Electronic Commerce,”
Knowledge and Information Systems, vol. 2, no. 4, pp. 487–497, 2000.

[2] UN/CEFACT, Core Components Technical Specification 3.0, 2009, http:
//www.untmg.org/ccts/spec/3 0.

[3] UN/CEFACT, UML Profile for Core Components Technical Specification
3.0, 2009.

[4] UN/CEFACT, UN/CEFACT’s Naming and Design Rules 3.0, 2009.
[5] OASIS, ebXML Registry Information Model (RIM) 3.0, 2005.
[6] C. Huemer, P. Liegl, R. Schuster, and M. Zapletal, “A 3-level e-Business

Registry Meta Model,” in Proceedings of the IEEE International Con-
ference on Services Computing (SCC08), July 8-11, Honolulu, HI, USA,
2008, pp. 441–450.

[7] B. Hofreiter, C. Huemer, and M. Zapletal, “A Business Collaboration
Registry Model on Top of ebRIM,” in IEEE International Conference
on e-Business Engineering (ICEBE06), October 24-26, Shanghai, China,
2006, pp. 392–400.

[8] P. Liegl, “Conceptual Business Document Modeling using UN/CE-
FACT’s Core Components,” in Proceedings Sixth Asia-Pacific Confer-
ence on Conceptual Modelling (APCCM), January 20-23, Wellington,
New Zealand, 2009, pp. 59–69.

[9] VIENNA Add-In development team, “The VIENNA Add-In,” 2009,
http://code.google.com/p/vienna-add-in/.

[10] SWIFT, Society for Worldwide Interbank Financial Telecommunication,
2009, http://www.swift.com/.

[11] CIDX, Chemical Industry Data Exchange Standard, 2007, http://www.
cidx.org.

