
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 10, OCTOBER 2009 2365

Properties of Zero-Free Spectral Matrices
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Abstract—In factor analysis, which is used for example in econo-
metrics, by definition the number of latent variables has to exceed
the number of factor variables. The associated transfer function
matrix has more rows than columns, and when the factor variables
are independent zero mean white noise sequences and the transfer
function matrix is stable, then the output spectrum is singular.
While a related paper focusses on the properties of such a non-
square transfer function matrix, in this paper, we explore a number
of properties of the spectral matrix and associated covariance se-
quence. In particular, a zero free minimum degree spectral factor
can be computed with a finite number of rational calculations from
the spectrum (in contrast to typical spectral factor calculations),
assuming the spectrum fulfills a generic condition. Application of
the result to Kalman filtering is indicated, and presentation of the
results is also achieved using finite block Toeplitz matrices with en-
tries obtained from the covariance of the latent variable vector.

Index Terms—Kalman filtering, spectral factorization, sto-
chastic systems, system identification.

I. INTRODUCTION

A. The Problem of Interest

T HE purpose of this paper is to present a number of new
results concerning spectral matrices, their spectral factor-

ization, and associated Kalman filtering problems, when these
spectral matrices arise as the output spectrum of a finite-dimen-
sional, linear, time-invariant, stable system excited by white
noise with more outputs than inputs. Such spectra arise in
factor analysis, with the number of latent variables exceeding
the number of factor variables. In particular, in recent times, in
econometrics, so-called generalized dynamic factor models [1],
[2] have been developed to deal with such problems and the
system theory of such transfer functions and their spectra may
be useful in this field. In the applications domain, questions
arise both of modelling and prediction; the work reported here
will underpin consideration of both types of question.

The paper does not however focus on the applications
problem, but rather the underlying system theoretic issues; the
authors became aware of these issues when directly addressing
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the applications problem. For an introduction to the application
of these ideas in generalized dynamic factor modelling, see [3].

By way of a one paragraph summary, we note that a general-
ized dynamic factor model envisages a finite number of uncorre-
lated stationary white noise processes (termed the factors), say,
entering a stable linear time-invariant system of state dimension

say, to generate a very large number of scalar outputs, say,
termed the latent variables. The latent variables are corrupted
by zero mean stationary noise; when the scalar noise processes
are independent, the model is termed a linear dynamic factor
model, but when there can be a limited amount of dependence,
it is termed a generalized linear dynamic factor model. Unusu-
ally for signal processing or filtering problems, one now con-
templates tending to infinity (or becoming very large in rela-
tion to ) in the sense that more and more noisy measurements
of the common state are obtained, as is common in econometric
time-series. With several further reasonable structural assump-
tions, e.g. to ensure that no factor affects only a bounded number
of output variables as grows, it is possible to determine the
output covariance or power spectrum uncorrupted by the noise
signals, if not perfectly, at least to a high degree of accuracy. It
is such a spectrum which we take as the starting point for this
paper; its rank evidently will be bounded by , the number of
factors, even though it is .

While this paper is self-contained, we do quote several re-
sults from a closely related paper [4], treating properties of tall
rational transfer function matrices, i.e. transfer function ma-
trices of linear, finite-dimensional systems with more outputs
than inputs.

The most obvious property of a spectral matrix of the output
of a system with fewer inputs than outputs is that it is necessarily
singular. However, a less obvious but certainly useful property is
that for generic values of the parameters in the underlying linear
system, that underlying linear system has no zeros, which can
be shown to imply a zero-free property for the spectral matrix
also.

The zero-free property has been explored in detail in [4] for
transfer function matrices, and key conclusions of that exami-
nation are summarized in this paper, particularly an extension
to a result of Moylan [5] on the invertibility of systems with
no zeros. This invertibility property is exploited in this paper
in studying the problem of spectral factorization [6]–[8]; this
is the task of passing from a spectral matrix to a linear system
which when driven by white noise provides an output process
with spectral matrix equal to the prescribed spectral matrix. Typ-
ically, interest centers around finding a canonical spectral factor,
namely a stable, minimum phase transfer function. We show that
for the class of spectral matrices of interest in this paper, such a
canonical factor can be computed from the spectral matrix using
a finite number of rational calculations. Moreover, among the
spectral factors of least McMillan degree, or equivalently, least
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state dimension, all spectral factors are canonical, differing from
one another in a trivial way. We argue that, as a consequence, a
Kalman filter will provide error-free state estimates after a finite
number of time instants.

The structure of this paper is as follows. Section II is largely
devoted to review: we recall the notion of transfer function zeros
and spectral factorization. In the process however, properties
of zero-free tall rational transfer function matrices are also re-
called, and a characterization of the zero-free property in terms
of the associated spectral matrix is also provided. In Section III,
we show that a Kalman filtering state-estimation problem linked
to the spectral matrix has a solution providing an error-free state
estimate after a finite interval, and in Section IV, we present an
algorithm using a finite number of rational calculations to ob-
tain a zero-free (and minimum phase) stable spectral factor of
a prescribed zero-free spectral matrix. The calculations in Sec-
tions III and IV are all executed using state-variable descrip-
tions of the spectral matrix and the associated spectral factor. In
Sections V and VI, we adopt a different description of the spec-
tral matrix, by working with a finite number of lagged covari-
ances, arranged in a finite block Toeplitz matrix. We exhibit an
algorithm for checking the zero-free property and for obtaining
a zero-free spectral factor through manipulation of this block
Toeplitz matrix. Section VII contains concluding remarks.

II. SPECTRAL FACTORIZATION AND SYSTEM ZEROS

In this section, we first review results from the closely related
paper [4] dealing with zero-free transfer functions. Following
this, we review the standard result on spectral factorization of a
rational spectral matrix, and then we make connections between
the zeros of the spectrum and of the spectral factor, with atten-
tion also being given to the zero-free case.

A. Transfer Function Zeros

Suppose that is a rational transfer function ma-
trix with minimal realization of dimension . The
associated state variable equations are

(1)

Zeros of or equivalently any minimal realization of
are defined as follows.

Definition 1: The finite zeros of the transfer function matrix
with minimal realization are defined to be

the finite values of for which the rank of the following matrix
falls below its normal rank, i.e. the rank of the matrix for generic
values of :

(2)

Further, is said to have an infinite zero precisely when
is less than the normal rank of , or equivalently

when rank .
The above definition of zeros is consistent with treatments in

the literature, see e.g. [9], [10]. In particular, for finite zeros,
with expressed as a coprime polynomial matrix fraction,

or say, the zeros are those values of
causing the numerator matrix to have rank less than its

normal rank, and in a Smith-McMillan decomposition of ,
the zeros of are given by the zeros of the numerator poly-
nomials of the diagonal matrix of the decomposition. To study
infinite zeros, one can define for
some real , , such that is not a pole of . Then
has an infinite zero if and only if has a zero at .

B. Zero-Free Transfer Function Matrices

Rational transfer function matrices which are zero-free are of
interest in this paper. They can occur frequently; the following
result is from [4].

Proposition 1: Consider a rational transfer function matrix
with minimal realization of dimension

in which have columns and rows, respectively, with
. Let be as in (2). If the entries of

assume generic values, then has no finite or infinite zeros.
By contrast, a nonconstant square transfer function matrix

necessarily has zeros; they may all be at of course, or
indeed all at . Zero-free discrete-time transfer function
matrices, and indeed those that are almost zero-free as indicated
below, have an important invertibility property, summed up in
the theorem below, which amalgamates results from [4]. These
results represent minor extensions of the key result of [5]. First
we require:

Definition 2: For all let and be any two inputs
at time to the system (1) with initial conditions and and
let and be the corresponding outputs at time . Then the
system is said to be left invertible with unknown initial state
if for all implies that for all and that

.
The key result now follows.
Theorem 1: (a) Consider the system (1) with input, state and

output dimensions , and , with , and with
of full column rank. Then it is left invertible with unknown ini-
tial state if and only if rank for all finite ,
i.e., has no finite zeros. In particular, under this condi-
tion, there exists an integer such that the state and input
at an arbitrary time are computable from the measurements

. (b) Assume the same hypothesis as for
part (a), save that now . Then there exists an integer

such that the state at time is computable for
and the input at time is computable for from
the measurements if and only if
has no finite or infinite zeros. (c) Assume the same hypothesis
as for part (a). If has no finite zero except at , there
exists a positive integer such that for some integer with

and arbitrary the state at time is com-
putable from . Moreover, if has no
finite zero except at and further has no infinite zero, the
state at time is computable for , and the
input at time is computable for from
the same data.

Whether or not there is a zero at 0 affects whether or not the
state at the start of the measurement interval is computable, and
whether or not there is a zero at affects whether or not the
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state at the finish of the measurement interval is computable.
In all cases, the measurement interval needs to be of adequate
length. The issue of how to determine this length, and more
generally how to execute the system inversion, is set out in [4].
The results hold for except if the system has no finite or
infinite zeros, one must have .

The zero-free property can also be characterized using the
language of coprime matrix fraction descriptions.

Proposition 2: Let be a rational transfer function
of rank which has no finite zeros. Then there exists a
polynomial left inverse for , call it . If has
no zeros in , except possibly at , then there exists
a rational left inverse for , call it , all of
whose poles are at the origin, which guarantees that is
proper, i.e. is finite at .

Proof: Let be a polynomial left co-
prime fractional representation of . Because
has no finite zeros, there exists a polynomial such that

. Then it is immediately seen that a
is given by the polynomial matrix . For the second
part, define . If has no zeros except
possibly at , then , which is necessarily rational, has
no finite zeros. There will then exist a polynomial left inverse,
call it , for . Let . Observe that

will be rational in with all poles at and there
will hold .

Both the left inverses identified in the above proposition
define systems which when driven by the output sequence
of (1) produce the input sequence. A polynomial left inverse
produces using for some . A proper
left inverse with all poles at the origin produces using

for some . This is consistent with The-
orem 1.

C. Spectral Factorization

A real rational spectral matrix is a square real rational matrix
function where with bounded
and nonnegative definite for . Based on a factor-
ization of such matrices in which the unit circle is replaced by
the imaginary axis (via a simple bilinear transformation), the
following result is well known, see [6] for an expression of the
result in continuous-time, i.e. with a Laplace transform variable
, instead of . The substitution allows

one result to be obtained from the other. A theorem equivalent
to the following and expressed in the -domain can be found
in [11], with amendment in [12].

Theorem 2: Let be a real rational spectral matrix of size
and with normal rank . Then there exists a real

rational spectral factor, call it , such that

(3)

and has no poles in , including , and rank
in including . Further, such a is unique

up to multiplication on the right by a constant orthogonal
matrix. If has rank on then has constant
rank in .

The transfer function matrix is sometimes known as the
stable minimum phase spectral factor, or sometimes just min-
imum phase spectral factor, in the light of the pole and rank
restriction. (Stability of a transfer function matrix corresponds
to all poles of all entries being confined to ). Two other
properties are worth noting. First, the McMillan degree of
is one half that of [The McMillan degree of when

has no pole at infinity is defined in the standard way, re-
garding simply as a rational function of . When
has a pole at infinity, its McMillan degree is the same as that of

where are such that is not a
pole of .] Second, all stable rational spectral factors
of , i.e. all stable satisfying ,
can be written as for some stable rational

, not necessarily square, obeying .
Conversely, any such defines a stable rational spectral
factor.

Further, if is expressed as

(4)

for some quadruple with reachable and
observable, then and indeed all spectral factors

with the same McMillan degree as have a minimal state-
variable realization of the form , i.e., with the same
matrices as . See e.g. [7], [8]. Calculation of the stable
minimum phase spectral factor is not necessarily trivial, as set
out in the references. In particular, typically either polynomial
factorization is required, or the steady state solution of a dis-
crete-time Riccati difference equation with constant coefficients
must be computed, or operations equivalent to these must be ex-
ecuted.

To further understand the essence of the spectral factoriza-
tion problem from a state-variable point of view, consider first
how expressed in the form of (4) might be determined,
given a transfer function description of the form (1). Let us as-
sume that the input sequence is zero mean white noise, with

, and that the input has been applied from time
. Further, suppose that all eigenvalues of lie in the inte-

rior of the unit circle. Then the state covariance of the system
(1) achieves a steady state value satisfying

(5)

Now make the definitions

(6)

Then straightforward calculation shows that the spectrum of the
output of (1) is precisely the spectral matrix defined
in (4). One way to think about the spectral factorization is to
regard it as the task of solving (5) and (6) for with
nonnegative, given .

D. Spectral Factor Zeros, Spectral Matrix Zeros and the
Zero-Free Property

The minimum phase property described in Theorem 2 as
being one requiring constant rank of in or in its
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strengthened form is equivalent to requiring to
be zero-free in this region (including ).

Our interest however is with the situation where there is a
completely zero-free spectral factor. The following result con-
nects zero-free spectral factors and minimum phase spectral
factors.

Theorem 3: Let be a real rational spectral matrix of size
and with normal rank . If it has a stable spectral factor

of size with no zeros in , this spectral factor, call it
, is necessarily minimum phase. If it has a stable spectral

factor of size with no zeros in but with a zero at infinity,
then this spectral factor is necessarily of the form
where has no zeros in , is square with

, and is not constant but has all poles
at .

Proof: Any stable spectral factor of size with
no zeros in meets the conditions set out in the hypoth-
esis of Theorem 2, and accordingly is minimum phase. Suppose
now is a stable spectral factor of size with no zero
except at . Then with as in Theorem 2, it fol-
lows that for some square stable with

. Suppose to obtain a contradiction that
has a finite zero. Since has no finite zeros, this zero must
cancel a pole of , and thus be stable. But then it follows
easily that would have an unstable pole at the reciprocal
point, which contradicts the fact that it is stable. Hence
has no finite zeros, and consequently is not infinite
for any finite value of , i.e. is not infinite for any value
of except possibly . Equivalently, has no poles
apart possibly from . Since has a zero at infinity, it
is not minimum phase and so cannot be constant; hence

must have a pole or poles, but only at . Since
has no finite zeros, any finite zero of must be cancelled by
a pole of . Since the only pole of can be at , the
only finite zero of is at . Since is minimum
phase, it has no infinite zero.

Apparently, to check whether there is a zero-free spectral
factor associated with a spectral matrix, given only the spec-
tral matrix initially, one would have to perform a spectral fac-
torizaton and then check the minimum phase spectral factor’s
zeros. Actually, it is possible to test the spectrum itself.

We need a concept of zeros for the spectral matrix, and yet
we have no expression for it in the standard state-variable form
and it may be improper, i.e. have a pole at . Intro-
duce temporarily a continuous-time power spectrum

for which there will hold .
Evidently, is rational, and is proper. Accordingly, it has a
state-variable equation, and our earlier definition of zeros can be
applied. When this is translated back to the -domain for ,
the following characterizations of finite zeros and zeros at
result.

The finite zeros of , other than possibly at zero, are given
by the values of at which the following matrix has rank less
than its normal rank of :

(7)

Further, has a zero at infinity and at zero (all zeros oc-
curring in reciprocal pairs) if and only if the matrix

(8)

has rank less than .
Now we can relate the occurrence of zeros in a spectral factor

to zeros in the spectral matrix, and conversely.
Theorem 4: Consider a transfer function

of normal rank defined by (1) with minimal realization
. Suppose further that all eigenvalues of lie in

the interior of the unit circle, and that is a zero mean, white,
unit covariance process applied from time . Let be
the associated power spectrum, given by (4) using (5) and (6).
Then (a) the system (1) has no zeros in if and only if
as given by (4) has no zeros in ; (b) the system (1) has no
zeros at or if and only if as given by (4) has
no zeros at or .

Proof: Observe first that the rank constraint on im-
plies that the matrix has full row rank . Now observe
the following identity

(9)

which follows by direct verification. Observe that all the ma-
trices in this equation are well-defined for . The first
and last matrix on the right side of the equation are obviously
nonsingular. The second and third matrices on the right lose rank
just at the zeros of (if there are any zeros) or of ,
and then have less than full column and full row rank respec-
tively. Accordingly, their product will lose rank. Hence any zero
of in will be a zero of . Conversely, sup-
pose that has a finite zero other than at . Then either
the second matrix on the right loses full column rank or the third
matrix loses full row rank, and this corresponds to either
having a zero or having a zero. This establishes part
(a) of the theorem. To establish part (b), consider the identity

(10)

Observe that the matrix appears on the left of this equation
and this has rank less than if and only if has a zero
at and thus also . The matrix appearing as
the first matrix on the right side has rank less than if and
only if has a zero at . The second matrix on the
right side has rank less than if and only if has rank less
than , i.e. has a zero at infinity. Clearly, on the left
has rank less than if and only if one or both of the two
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matrices on the right has rank less than . Therefore,
has no zero at 0 or if and only if has no zero at 0 or

.
By way of example, observe that both

and obey
. The

spectrum has a zero at and thus ; one of the
spectral factors has a zero at but not at , and the
other has no zero at but a zero at .

III. KALMAN FILTER RESULT FOR A SYSTEM WITH NO ZEROS

In this section, we shall consider the linear time-invariant
system defined by

(11)

We shall suppose throughout this and the next section unless
otherwise indicated that and the system is minimal and
has no zeros, finite or infinite. Equivalently, with as given
in (2), there holds rank for all finite , and the
matrix has full column rank. We also assume that all eigen-
values of lie in the interior of the unit circle.

We shall further suppose that is a zero mean white se-
quence, such that , and that the input has
been applied from time . This will result in a steady state
covariance satisfying (5).

Suppose that the measurements are collected starting only
at time 0, and suppose a Kalman filter to estimate in

is constructed using these measurements. Let us denote the
associated error covariance by

(12)

where of course .
As is well known [13], the error covariance satisfies the fol-

lowing discrete time Riccati equation:

(13)

The initialization is , and the symbol denotes
pseudo inverse.

In the previous section, we saw in Theorem 1 that it is possible
to uniquely determine and , and therefore ,
from for some with . Since this
estimation problem can be performed with zero error, the error
covariance resulting from the Kalman filter equations, which is
optimal, must also evaluate as zero when we take , and
thereafter it stays at zero. Actually, Theorem 1 indicates it is
possible to mildly relax the assumption that and that
there are no zeros anywhere, permitting and zeros to
occur at .

Accordingly, we have proved the following result.
Theorem 5: Consider the system (1) with input, state and

output dimensions , and , with , and with
of full column rank. Assume the system is minimal and has no

finite or infinite zeros (which implies in fact that has full
column rank), that all eigenvalues of lie in the interior of
the unit circle, and that is a zero mean, white, unit covari-
ance process applied from time . Suppose that a Kalman
filter is applied commencing at time zero. Then after at most
time steps, the Kalman filter error covariance (13) will be zero,
and remain at that value thereafter. Further, the same conclusion
holds if the condition is relaxed to and the system
is permitted to have a zero at but nowhere else.

This result is evidently straightforward to obtain. Further, it is
hardly surprising and is rooted in earlier examinations of tran-
sients in solving Riccati equations with constant coefficients.
Beginning in the 1970’s, a concept termed ‘invariant’ or ‘con-
stant’ directions of Riccati equations was formulated, see e.g.
[14] and [15] for two important early contributions. In a Kalman
filtering problem, an invariant direction, say, is a vector with
the property that is invariant with and with nonnega-
tive for all exceeding some finite integer. The intuition
behind the notion was that for some systems, differentiation in
continuous time or differencing in discrete time of output mea-
surements could result in more accurate, even perfect, informa-
tion about part of the state vector; indeed, [15] notes that a con-
stant direction is equivalent to a filter direction in which the best
one-step predictor is a fixed linear combination of the last ob-
servations for . More sophisticated investigations again
of these concepts, and their relation to spectral zeros and split-
ting subspaces, were undertaken by Lindquist and colleagues,
[16] and [17]. It is possible to demonstrate that the result above,
which says effectively that all directions are constant directions
if and only if a certain zero property holds, is indeed a special
case of these more general results. From a pedagogical point of
view and for the purposes of this paper, the argument presented
here leading to the theorem appears to us more attractive. The
distinction between and in the theorem is also
helpful, and not easy to draw out from the other work.

Purely autoregressive models will lead to a finite time conver-
gence of the Riccati equation. That is not exactly what we have
here, due to the nonsquareness of the transfer function. Nev-
ertheless, a zero free transfer function is analagous to a stan-
dard autoregressive model, and indeed one can represent such a
system using a variant on a standard autoregressive model.

IV. SPECTRAL FACTORIZATION RESULT

In this section, we switch focus onto the key problem of com-
puting a spectral factor from the spectral matrix, using a finite
number of rational calculations. In econometric applications,
the transfer function in question is that linking the factors to the
latent variables.

The set-up we contemplate is the following. Suppose we
know there is a system of the form of (1) giving rise to a
stationary covariance through excitation of the system by a
zero mean white noise process of unit covariance. We do not
assume we know the matrices defining the system, though we
must assume that the matrix has all eigenvalues inside the
unit circle; we do assume that the system has no zeros. We
suppose that the output power spectrum is known, in minimal
state-variable form (see below), and we wish to recover the
system.
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In the light of the material to this point, we can understand that
this is a problem of spectral factorization [6]–[8]. Of particular
interest to us is the obtaining of the (minimum phase) spectral
factor by a finite number of rational calculations through some
exploitation of the zero-free property. This section will present
one method, based on a Riccati equation. Other approaches will
come later.

A. Going From the System to the Power Spectrum

Consider the system (1); suppose that the matrix has all
eigenvalues inside the unit circle, and under the assumption of
zero mean white unit covariance noise sequence applied from
time , let the state covariance be . Then is given by (5),
repeated as

(14)

The spectrum of the process is given by (4), repeated as

(15)

where, repeating (6)

(16)

B. Essence of the Spectral Factorization Problem

We now suppose our data is the quadruple . We
regard the key task of spectral factorization as one of finding the
state covariance matrix ; for once it is found, the matrices
and are determinable up to multiplication on the right by a
constant orthogonal matrix using the following consequence of
(14) and (16)

(17)

Determination of is evidently a task of finding a symmetric
nonnegative matrix which makes the left side of (17) nonnega-
tive. If the spectral factor is to have rank , we further want the
matrix on the left of (17) to be of rank . Generally too, we
will be interested in finding the which defines the minimum
phase spectral factor. With no special properties of the under-
lying system, obtaining the minimum phase spectral factor can
be achieved by a number of methods, one [8] of which is now
set out.

Consider the following discrete Riccati equation:

(18)
initialized by . Then

(19)

Of course, use of this equation apparently requires an infinite
number of calculations (although one would hope that conver-
gence in practical terms could occur after a finite number).

C. Finite Time Convergence of the Discrete Riccati Equation

Recall from the previous section that the discrete Riccati
equation associated with a Kalman filtering equation converged
in a finite number of steps. We will demonstrate the same
property for the spectral factorization Riccati equation (18). In
fact, we have the following easy result; for all , there holds

(20)

We indicate how to prove this equation immediately below.
Observe though that it yields the finite convergence property of

precisely because of the finite time convergence property of
.

To establish (20) for all , observe first that the equation holds
at by virtue of the initializations of the two Riccati equa-
tions. Suppose equality holds for . Then it is
straightforward to verify using (16) that

(21)

Using these equations and the two Riccati equations for
and , equality in (20) is established for . In
more detail, setting in (18), we obtain

(22)

where the second equality follows on using (13). By the induc-
tive hypothesis, we have and so there results

(23)

from which the inductive step is established. To sum up, we have
proved the following result:

Theorem 6: Suppose that the power spectrum (15) is gen-
erated by the system (1) under the hypotheses that the system
is minimal, has no finite or infinite zeros and has more outputs
than inputs, that all eigenvalues of lie in the interior of the
unit circle, and that is a zero mean, white, unit covariance
process applied from time . Then there is a unique matrix

computable in a finite number of rational calculations from
, so that the system (1) can be determined, save

that and are only determined to within multiplication on
the right by a constant orthogonal matrix. The result extends to
the case when and the system is permitted to have a zero
at , but nowhere else.

The following corollary is immediate.
Corollary 1: Let be a rational spectrum given by (15),

with minimal, and with no finite or infinite zeros.
Then there exists a spectral factor with of full
column rank that is unique up to right multiplication by an or-
thogonal matrix. This spectral factor has no zeros in and
is computable in a finite number of rational calculations. If the
zero-free property of is relaxed to permit a zero at ,
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then a stable minimum phase spectral factor free of zeros ex-
cept at can be computed by a finite number of rational
calculations.

V. WORKING DIRECTLY WITH COVARIANCE DATA

In this section, we consider the question of how we can work
with a finite number of lagged covariances to determine a state
estimate from an output, and, if desired, also to find a state vari-
able description of the spectral factor knowing a state variable
description of the spectrum matrix. This material makes contact
with the earlier section providing an alternative approach to the
proof of the important result concerning absence of zeros.

So our underlying assumptions are that the signal model with
transfer function is defined by a quadruple
which is unknown, and that the spectrum matrix is defined by
the known minimal quadruple , as per (4).

From the minimality of the quadruple , it is
easy to argue the minimality of the quadruple .
Of course, as before, it is assumed that all eigenvalues of

lie in . As we know, from Theorem 1, if the ma-
trix of (2) defined using the transfer function has no
finite zeros, then can be uniquely determined from

. If the matrix has no finite or in-
finite zero, we can (uniquely) reconstruct
and .

The derivation of the key result of this section uses the fol-
lowing equation, which is an easy consequence of (1), and is
independent of the dimension of

...
...

...

...

(24)

Let denote the matrix appearing on the right side of (24).
We are first going to prove a result concerning and its con-
nection to the zero-free property of the associated transfer func-
tion. Then we shall carry over this result to one involving a
Toeplitz matrix of covariance data with connection to the zero-
free property of the associated power spectrum.

Lemma 1: Consider the system (1) with input, state and
output dimensions , and , with , and with

of full column rank. Let be as defined in (2)
and let be the matrix appearing on the right side of (24).
Then the following conditions are equivalent.

1) The matrix has rank for all finite .
2) The vector is uniquely determinable from

for some .
3) For some , the row echelon form [18] of the matrix

has its first rows as .

4) For some , there exists a nonsingular matrix satisfying

(25)

with of the form

(26)

for some .
Moreover, if an exists satisfying any of conditions 2, 3 or 4,
it is necessarily as large as the observability index of , a
satisfying value exists overbounded by , and all larger values
of also satisfy the conditions.

Proof: The equivalence of the first two conditions was es-
tablished in Theorem 1, with indeed the restriction that .
Obviously, if condition 2 holds for any , it holds for all greater
values. Now we argue the equivalence of conditions 2 and 3.
Let be a nonsingular matrix such that has row echelon
form. (Thus all zero rows are at the bottom of the matrix, the
first nonzero entry of each nonzero row after the first occurs
to the right of the first nonzero entry of the previous row, the
first nonzero entry in any nonzero row is 1, and all entries in the
column above and below a first nonzero entry of a row are zero.)
In order that be uniquely determinable from the output data,
it is necessary and sufficient that the kernel of and equiva-
lently contain no vector with other than zeros in the first

entries. The only way this can occur is if the echelon form
has the structure in the Lemma statement--else a contradiction
is immediate. Note also that it is immediate that if is less than
the observability index of , such a vector with other than
zeros in its first entries will exist in the kernel of . This es-
tablishes the lower bound on . The matrix actually encodes
the procedure for computing : to see this, suppose there holds
for some of full row rank whose entries are immaterial

(27)

(with the bottom zero blocks possibly not being present), then
it is trivial to see using this equation and (24) that

It now remains to prove that condition 4 on implies and
is implied by the echelon form condition 3. Assume the ech-
elon form condition. Then it is trivial that the of the echelon
form condition works as the matrix . Conversely, assume
is available with the stated property of condition 4. Let be
a nonsingular matrix such that is in echelon form.
Then it is immediate that

is itself in echelon form. Hence an exists converting to
the echelon form of condition 3.

Finally, suppose, to obtain a contradiction, that while some
exists satisfying any of conditions 2, 3 or 4, no exists with

. Then could not have rank for all finite , by
Theorem 1. Suppose that has rank less than . Let

be in the kernel of . Because
has full column rank, it is easily seen that . It is trivial
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to check that the input sequence for will
lead to for all . Accordingly, will be in-
distinguishable on the basis of output measurements from the
zero state, contradicting condition 2. If exists satisfying con-
dition 2, all larger values obviously also ensure satisfaction of
the condition.

In the main result of this section, we will need a Toeplitz
matrix formulated from the the covariance data. The data are of
course available from the power spectrum . Indeed, in the
light of (4), there holds under white noise input conditions and in
steady state , ,

, etc. Let us define for the Toeplitz matrix

...
...

(28)

It is easy to verify the following connection between and
. This relation is crucial for establishing the connection be-

tween and the zero-free property.
Lemma 2: Consider the system (1) with realization

, with input, state and output dimensions ,
and , and where all eigenvalues of lie in the interior of the

unit circle. Let be the associated power spectrum, given
by (15) and (16), that would result if is taken as a zero mean
unit covariance white noise process from . Let be
as defined in (24) and as in (28). Then with
as the state covariance, there holds

(29)

Proof: Multiply each side of (24) by its transpose and take
the expectation. Equation (29) is immediate.

Theorem 7: Adopt the same hypothesis as Lemma 2, suppose
additionally that and that has full column rank , and
let be defined as in Lemma 1. Suppose that the state-variable
quadruple is minimal. Then the following condi-
tions involving the matrices are equivalent:

1) the spectral matrix has no zeros in ;
2) There exists a value of such that has rank ;
3) Let be as defined in (25). Then there holds for some

nonnegative symmetric of rank

(30)

4) There exists a nonsingular matrix satisfying (25) with
replaced by and such that for some nonsingular matrix

and some nonnegative symmetric of rank

(31)

If an exists satisfying any of conditions 2, 3 or 4, it is neces-
sarily as large as the observability index of , a satisfying
value exists overbounded by , and all larger values of also

satisfy the conditions. The only value of for which (31) holds
is with the state covariance of the underlying min-
imum phase, zero-free spectral factor.

Proof: Observe first that because the state-variable
quadruple is minimal, a straightforward argu-
ment will show that the pair is completely controllable
and accordingly the state covariance matrix is nonsingular.

Assume condition 1. Since the spectral matrix is zero free, the
associated minimum phase spectral factor is zero free. Further,
because the spectral factor has no zero in , by Theorem 1,
(24) is uniquely solvable for some minimum value of at least
as large as the observability index of and overbounded by

, and indeed all larger values of . Thus has full column
rank, viz. . By (29), it follows that has rank ,
i.e., condition 2 holds. Conversely, if has rank , then

must have full column rank. Then (24) is uniquely solvable
and by Theorem 1, the underlying system has no zeros. Accord-
ingly, condition 1 holds.

If condition 1 holds, the underlying system is zero-free and
condition 1 of Lemma 1 holds. Accordingly, by condition 4 of
Lemma 1 there exists defined as in (25) with also sat-
isfying (26). Condition 3 is then an immediate consequence of
(29). Since condition 3 presupposes that exists satisfying con-
dition 4 of Lemma 1, it is trivial that condition 1 of the Lemma
holds, and then, because also has full column rank, is
zero free in , i.e. condition 1 holds.

Condition 3 trivially implies condition 4, by taking .
For the converse, suppose, to obtain a contradiction, that for
some nonzero with columns there holds

(The fact that the first columns are as shown is a consequence
of the definition of ). Now by using (29), we have

(32)

Evidently from (31), we have , while the rank
constraint on ensures that has full column rank. There-
fore and it is evident that meets the conditions on
of Lemma 1. Further, since and , there
holds .

We make several summarizing remarks. If one has a real-
ization of a spectral factor, , the absence of zeros
can be tested for by working with a matrix computed from
the observability matrix of (condition 3 of Lemma 1). If
one has a realization instead of the associated spectrum, call it

then by working with the matrix one can test for
the absence of zeros (condition 4 of the theorem). In the latter
case, there is a cheap way to perform spectral factorization, due
to the state covariance matrix being delivered via the calcula-
tion of condition 4. Note that the calculation of , if it exists, is
straightforward. One finds a congruency transformation taking

to a diagonal matrix, and then adjusts the transformation to
ensure satisfaction of (25) with replacing .
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A further insight is that if the zero-free property is known to
hold, and if covariance data is available but values are not known
a priori for and , these values can in principle be obtained
by examining the ranks of ; from some point on,
there will hold rank and then will be available
from two successive rank values.

VI. DIRECTLY FACTORING THE TOEPLITZ MATRIX

In this section, our main focus is to work to the greatest extent
possible with the Toeplitz matrix. First, we shall make a con-
nection between the standard Cholesky factorization of a non-
negative definite matrix, and the matrix sequence introduced
earlier.

The following is a standard extension of the Cholesky factor-
ization for an arbitrary nonnegative definite symmetric matrix.
Such connections go back a long way, see [19], the contents of
which are also connected to ideas of the previous section. In the
scalar case, Bauer [20] may have been the first to apply the idea
to spectral factorization, while [21] recognizes the possibility of
doing the same thing in the matrix case.

Proposition 3: Let be a symmetric nonnegative definite
matrix written in block form as

...
...

(33)

with square and symmetric for each . Then there exists a
decomposition where

...
...

(34)

and for all , has full column rank. Moreover, the subma-
trices can be determined recursively. One possible order is

; all
for are determinable by linear operations, and for
each is determined by

(35)

The matrices are unique up to right multiplication by an
orthogonal matrix, and the block matrix factor is unique to
within right multiplication by a diagonal block matrix of orthog-
onal matrices.

Notice that the existence of the Cholesky factor in the pre-
vious proposition is a simple consequence of the nonnegative
symmetric nature of . In particular, this ensures that the diag-
onal blocks are well defined, or that the right side of (35) is
nonnegative definite.

There is a straightforward interpretation of the as co-
efficient matrices of the impulse response of a time-varying
linear system which when excited by unit variance white noise
(albeit at different times possibly of different vector dimen-
sion) produces an output sequence for which the covariance

matches the . More precisely, let denote an in-
finite sequence of independent zero mean gaussian random vec-
tors with unit covariance, and with the dimension of equal
to the number of columns of . Define a second sequence

by

(36)

Then it is a trivial exercise to verify that for , there
holds

(37)

In fact, there is a second calculation that we will shortly
make use of. Observe that because the have full column
rank, knowledge of the sequence allows recursive
reconstruction of the sequence , with the conse-
quence that for any

(38)
Consequently, the associated estimation error is given by

(39)

and the covariance of the error follows easily as

(40)

We shall now apply the block Cholesky decomposition to a
Toeplitz matrix associated with a rational power spectrum, and
use it to characterize the error covariance associated with pre-
diction. Initially, the power spectrum may have zeros.

Theorem 8: Consider a power spectrum defined by (4),
in which is minimal, and all eigenvalues of lie
inside the unit circle. Let for all be the as-
sociated set of nonnegative definite matrices as defined in (28).
Let the sequence be defined by (18) with initial condition

. Then for all , the matrix is nonnegative
definite. Define further the matrices , by

(41)

with having a minimum number of columns, and

(42)

Then with the definition

...
...

(43)

there holds

(44)
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Proof: Apply direct verification, using the various defining
equations; the construction procedure is precisely that of the
block Cholesky decomposition, and assures the nonnegativity of

. To this end, it is helpful to recognize the following
three equalities:

(45)

(46)

(47)

To this point, no assumption has been made about zeros.
We have simply shown that the block Cholesky factorization
is related to the construction, for an arbitrary stationary co-
variance sequence corresponding to a rational spectrum, of
a time-varying system impulse response with the property
that when the associated system is driven by white noise
commencing at time , as opposed to commencing in the
infinite past, the output process has the prescribed covariance.

We are now going to introduce the zero-free property, in con-
sidering the prediction of future values of the given values
from time 1 up to a certain time, say. For convenience of nota-
tion, let denote the column vector whose block entries are
in order and let denote the error
in estimating using the measurements . We
have described above how to obtain the covariance of this error
(or submatrices of the whole covariance). We have the following
evaluation for :

(48)

where is a submatrix of given by

...
...

(49)

The key result is as follows:
Theorem 9: Assume the same hypothesis as for Theorem 8.

Assume further that has no zeros. Then for some ,
there holds . Further, with block
orthogonal multiplication on the right if required,

, implying that for all
, the matrices with first block rows and columns deleted

are Toeplitz.
Proof: Beginning with the top left corner, it is not hard

utilizing the equations (45), (46) and (47) to obtain, with

(50)

Now in light of the zero-free property, we know for some
finite and all nonnegative , the estimation of values of the

-process time steps in the future requires at most succes-
sive past values, in the sense that if values
were available, no improvement in the error covariance would
result. [We have of course earlier argued that the no-zero prop-
erty guarantees that Kalman filtering can occur with zero error
using a finite number of past values of the output, and no knowl-
edge of the initial state. This is equivalent to saying that in esti-
mating present and future outputs, apart from uncertainty asso-
ciated with the present and future inputs, all uncertainty associ-
ated with all past inputs can be eliminated with knowledge of a
finite interval of past inputs.]

The property can be expressed as

(51)
Then it is clear that this implies

(52)

Since the pair is observable, this implies that
. It is straightforward then to

see using the defining equations for that
for can be chosen to be independent of , and then the
remaining claim of the theorem follows.

Actually, if there holds or equivalently only the
first equality of (51) is known to hold, or equivalently again,

(which is an equality involving dif-
ferent block submatrices of ), it is straightforward to see
using the defining equations for that

.
In summary, starting with an infinite block Toeplitz matrix
corresponding to a covariance sequence for which a bound

on the McMillan degree of the associated power spectral matrix
is known, one performs a block Cholesky decomposition de-
scribed, and if one finds that certain submatrices of the Cholesky
factor become identical before the number of block rows fac-
tored has attained the McMillan degree bound, one knows that
one has the no-zero property, along with an ability to estimate
the current state perfectly and forecast the future state using a
finite interval of past data.

VII. CONCLUSION

In this paper, we have considered the properties of the output
spectral matrix obtained from a stable finite-dimensional linear
system excited by white noise, under the assumption that the
input dimension is less than the output dimension. A number of
interesting properties flow from the fact that generically, the un-
derlying systems has no finite zeros, and may have no zeros at
infinity either. This property can be checked with spectral data,
i.e., without knowing the system generating the spectrum, and
the paper views this property using Kalman filtering ideas. Such
systems have the property that the input and state at a given in-
stant of time can be constructed from a finite interval of outputs.
We have shown how the problem of spectral factorization can be
solved in a finite number of rational calculations, using different
viewpoints, including use of a Riccati difference equation, and
with a Toeplitz matrix of covariance data.
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