PHYSICAL MODEL TEST AND CFD-SIMULATION OF AN ASYMMETRICAL THROTTLE IN A T-SHAPED JUNCTION OF A HIGH-HEAD POWER PLANT

Boris Huber
Institute of Hydraulic Engineering, Vienna University of Technology, Karlsplatz 13/222, 1040 Vienna, Austria
phone: +43 158801 22211, e-mail: boris.huber@kw.tuwien.ac.at

Abstract

Hydraulic model tests were conducted to evaluate the head-losses and flow conditions of an asymmetrical throttle in a surge chamber system of an Austrian high-head power plant. The asymmetrical throttle is situated at the beginning of the rising shaft of the surge tank in one of the three branches of a T-shaped junction. Due to the asymmetrical shape of the throttle it causes different head-losses between up- and downsurging water levels.

Several hydraulic model tests with a scale of 1:21 were carried out under different flow conditions to evaluate the head-losses. Due to the complex shape of the T-junction the model was milled out of a plastic cube with the help of CNC.

Then, several CFD-simulations were conducted in order to evaluate under which circumstances the CFD-simulation is able to give reasonable results.

Keywords: Physical model test; T-Junction; Hydraulic experiments; Throttle; CFDsimulation;

1 INTRODUCTION

The hydraulic properties of an asymmetrical throttle are investigated in this paper. The throttle is situated in one branch of a T-shaped junction in the surge tank system of a projected high-head power plant. Physical model test were conducted to evaluate the head-losses and CFD-simulations were carried out and compared with the experiments in order to find out under which circumstances the CFD-simulation can give reasonable results.

The main branch of the T-junction is bended: one branch leads down to the pressure shaft inclined by 42° and has a circular shape with a diameter of 3.60 m (branch 'a'), the second branch has a horse-shoe like shape, is horizontal and has a diameter of 7.20 m (branch ' c '). Between these cross-sections the junction is bended and expands from 3.60 m up to 7.20 m . Adjacent to the horizontal branch the cross-section changes from a circular to a horseshoe-like shape. Some metres from there the branching leg of the T-junction diverts perpendicular to the bends' axis (branch 'b'). Here, the asymmetrical throttle is situated (see Fig. 1).

Fig. 1 - Vertical section of the bended T-junction (dimensions of prototype; in cm)
Fig. 2 shows a 3d-illustration of the throttle and the bended T-junction.

Fig. $2-3 \mathrm{~d}$-illustration of the throttle

1.1 Operating conditions

Seven different operating conditions had been examined (see Fig. 2 and Table 1)

case	description	branch $\mathbf{'} \mathbf{a}$	branch 'b'	branch ' \mathbf{c}
1	100% inflow from reservoir 100% to surge chamber	0	--	++
2	100% inflow from reservoir 50% to surge chamber, 50% to pressure shaft	-	-	++
3	100% inflow from pressure shaft 100% to surge chamber	++	--	0
4	100% inflow from pressure shaft 50% to surge chamber, 50% to reservoir	++	-	-
5	100% inflow from surge chamber 100% to reservoir.	0	++	--
6	100% inflow from surge chamber 100% to pressure shaft.	--	++	0
7	100% inflow from surge chamber 50% to reservoir, 50% to pressure shaft	-	++	-

Table 1 - definition of operating conditions

$$
\text { (++ inflow } 100 \% \text {, -- outflow } 100 \% \text {, - outflow } 50 \%, 0 \text { no flow) }
$$

2 Physical model tests

The scale of 1:21 was selected for the model tests. Due to the complex shape of the bended T-junction the model was milled out of 2 blocks of rigid foam plastic with the help of CNC. Between the two semi-shells, which were firmly fastened together, the throttle made of aluminum was placed to its position in the branching leg. The whole system was laid out horizontally (thus turned around 90°). This is a common method with this kind of model, as the influence of gravity is insignificant and the model is easier to handle.

Fig. 3 - milling of the junction (left); throttle (right)

The pipes adjacent to the T-junction were made of plexiglass and had a diameter of 172 mm and 348 mm respectively. To achieve a uniform inflow, honeycombs had been situated in the inlet pipes and the lengths of the pipes were greater than $10 x \mathrm{D}$: the smaller pipes were 2 m long and the horseshoe-shaped branch 4 m long (see Fig. 4). Discharge and pressure conditions according to the particular load-case were adjusted with slide valves.

Fig. 4 - sketch of the experimental set-up (dimensions in mm)
Flow was measured with magnetic-inductive flow meters. Fig. 5 shows a photo of the experimental setup.

Fig. 5 - Photo of the experimental set-up
To measure pressure, 2 measuring-sections were situated at every branch, one near the T -junction and the other one at the end of the pipe, so that the distance between the junction and the downstream pressure gauge was more than $10 x \mathrm{D}$ and thus the pressure-field was almost constant.

Fig. 6 - arrangement of pressure measuring sections

4 small bore holes (diameter 1.5 mm), which were connected by flexible hose-pipes, were placed in every measuring section, so that the measured pressure had an average value of the cross section. The hosepipes were connected to a difference-pressure meter and the pressure differences were recorded with a sample rate of 50 Hz .

2.1 Experimental results

The head-loss coefficient is determined by:
$K_{i j}=\frac{\text { total pressure in leg } i-\text { total pressure in leg } j \text { - pipe friction from } i \text { to } j}{v_{D r}^{2} / 2 g}$
with $v_{D r} \ldots$ mean velocity in smallest throttle-cross section (i.e. $\mathrm{D}_{\mathrm{Dr}}=2.47 \mathrm{~m}$ in Nature / 0.117 m in Model). Friction loss was calculated with a wall roughness of $\mathrm{k}=0.0015 \mathrm{~mm}$ and a kinematic viscosity of $v=1.1 \mathrm{e}-6 \mathrm{~m}^{2} / \mathrm{s}$. Total pressure was gained by adding the velocity head $\left(\mathrm{v}^{2} / 2 \mathrm{~g}\right)$ to the measured pressure difference (Miller, 1978).

Depending on the specific load case, discharge was between $20 \mathrm{l} / \mathrm{s}$ and $90 \mathrm{l} / \mathrm{s}$ in the Model - corresponding Reynolds numbers were between $5 \cdot 10^{5}$ and $2 \cdot 10^{6}$ related to $\mathrm{v}_{\text {Dr }}$. In all cases the loss coefficient either was almost constant or approached to a constant value with increasing discharge. The loss-coefficients were extrapolated to the prototype values (see Klasinc et al. 1992) and are summarized in Table 2.

case	$\mathrm{Q}_{\mathrm{Dr}} /$ $\mathrm{Q}_{\text {total }}$	K_{2-6} resp. K_{5-1} (not going through throttle)	K_{2-4} resp. K_{3-1} (going through throttle)
case 1	1.0	$\zeta_{5-1}=0.03$	$\zeta_{5-4}=1.60$
case 2	0.5	$\zeta_{5-1}=0.05$	$\zeta_{5-4}=1.63$
case 3	1.0	$\zeta_{2-6}=0.07$	$\zeta_{2-4}=1.72$
case 4	0.5	$\zeta_{2-6}=0.23$	$\zeta_{2-4}=2.20$
case 5	1.0		$\zeta_{3-6}=1.00, \zeta_{3-1}=0.97$
case 6	1.0		$\zeta_{3-6}=0.95, \zeta_{3-1}=1.04$
case 7	0.5		$\zeta_{3-6}=1.04, \zeta_{3-1}=1.06$

Table 2 - summary of extrapolated loss-coefficients from experiments

The loss-coefficients gained from the experiments are depicted later in Fig. 8 to Fig. 11, together with the results of the CFD-simulations.

[^0]
3 CFD-Simulation

3.1 Mesh and simulation parameters

The CFD-simulations were carried out with fluent 6.3.26. Most of the simulations were done in the scale of the physical model ($1: 21.05$). The Realizable k- ε model was mainly used with standard pressure-discretization and first-order upwind scheme for momentum, k and ε equations (see fluent 6.3 .26 manual for details).

In general, the near-wall zone was modelled with the standard wall function. The size of the near-wall cells with about 2 mm was chosen so that the height was sufficiently small to fulfill the required constraints ($\mathrm{y}+$ between 50 and ca .800).

Several simulations with different meshes were carried out in order to check the mesh independence. Fig. 7 shows details of one of the used meshes as an example.

Fig. 7 - mesh details

3.2 Results of the CFD-simulations

For all cases mentioned above, several CFD-simulations had been carried out with different fluxes. In cases 1-4 the loss-coefficients in the CFD-simulations agreed well with the experimental results (see
Fig. 8 to Fig. 9).

Fig. 8 - loss-coefficients K 5-4 case 1 and 2

Fig. 9 - loss-coefficients case 3 and 4

In case 5 to 7 the results of the CFD simulations differed from the experiments: in the CFD simulations the loss coefficients were about 20% higher than in the experiments. As an example, the results for case 7 are depicted in Fig. 10 and Fig. 11.

In case 5-7, when flow is directly impinging on the wall opposite the throttle, it may be necessary to resolve the boundary layer in order to achieve exact results - but this can hardly be done in this case, dealing with a very complex geometry, pipe dimensions of some metres and high Reynolds numbers. However, some simulations had been carried out with y^{+}-values between 2 and 10 and usage of turbulence models able to resolve the boundary layer ($\mathrm{k}-\omega$-model) - but the loss coefficients did not change. It seems that the CFD-simulation comes upon the limits in this case.

Fig. 10 - loss-coefficients K3-1 case 7

Fig. 11 - loss-coefficients K3-6 case 7

4 References

Kobus H., „Wasserbauliches Versuchswesen", Dt. Verband für Wasserwirtschaft, Mitteilungsheft 4 (1978), 1978

Miller D:S:, "Internal Flow Systems", BHRA Fluid Engineering, Vol.5, 1978
Klasinc R., Knoblauch H., Dum T., „Power Losses in Distribution Pipes", 4th International Conference Hydrosoft 92, Valencia, 1992

Fluent 6.3 manual

[^0]: ${ }^{1}$ Loss-coefficients are based on the velocity in the throttle - with the same throttle discharge, the flow through branch ' a ' (and the velocity) in case 4 is twice as much as in case 3 . Thus, velocity-head and total pressure in branch ' a ' in case 4 are much higher than in case 3 , and therefore the loss-coefficient is higher.

