ke] —

8-4 Game-Engine-Friendly
Occlusion Culling

INTRODUCTION

Occlusion culling is an important technique to reduce the time for rendering complex
scenes [1]. It saves CPU time, geometry processing time, and fragment processing
time for objects that are occluded by other parts of scenes. The availability of so
called hardware occlusion queries has made occlusion culling easily available on
commodity PCs [2,3,5]. Such a query returns the number of fragments that would
be rasterized if an object (usually a bounding volume of a complex object) were
rendered. Occlusion queries lead to significant speedups of rendering if many
primitives are occluded, but they also come at a cost. Issuing an occlusion query
takes some time, and it usually requires a change of rendering state. If we perform
too many queries or there isn’t a lot of occlusion in the scene, the overall rendering
performance might even drop compared to pure view frustum culling. Another
problem preventing the widespread usage of occlusion queries is the difficulty of
integrating them into already optimized rendering loops of game engines.

This article presents a method that minimizes the overhead associated with
occlusion queries. The method reduces the number of required state changes and
should integrate easily with most game engines. The key ideas are batching of the
queries and interfacing with the game engine using a dedicated render queue. We
also present some additional optimizations that reduce the number of queries
issued as well as the number of rendered primitives. The algorithm is based on the
well-known coherent hierarchical culling algorithm, which we will briefly recap next.

‘ 637

638 ShaderX’: Advanced Rendering Techniques

CoHERENT HIERARCHICAL CULLING

The coherent hierarchical culling (CHC) algorithm proposed by Wimmer and
Bittner [5] aims at good utilization of the GPU by clever interleaving of occlusion
queries and rendering. Note that CHC works on a spatial hierarchy such as bound-
ing volume hierarchies (BVHs), kD-trees, or octrees. Using a spatial hierarchy has
been shown to be a key for achieving reasonable gain of occlusion culling on com-
plex scenes. CHC works well in many cases, but it also has several problems that we
shall address in this article. First, let’s recap how the CHC algorithm works.

THe CHC ALGORITHM

The CHC algorithm traverses a given hierarchy in a front-to-back order and issues
queries only for previously visible leaf nodes of the hierarchy and nodes of the pre-
viously invisible boundary. Previously visible leaves are assumed to stay visible in
the current frame, and hence they are rendered immediately. The result of the
query for these nodes only updates their classification for the next frame. The invis-
ible nodes are assumed to stay invisible, but the algorithm retrieves the query result
in the current frame in order to discover visibility changes.

[n more detail the algorithm works as follows: For previously invisible nodes it
issues an occlusion query, which is then also stored in the query quete. For previ-
ously visible interior nodes it immediately recurses to its children. For previously
visible leaves it issues an occlusion query and renders the associated geometry with-
out waiting for the query result.

After each visited node the algorithm checks the front of the query queue. Ifthe
result of a query is available, the algorithm proceeds as follows: I If the query result

does not indicate a change in visibility, no additional work is required. Ot herwise,
pIOLm»t’d l“r

ydes). “ﬂ

Ll‘r_'d

if a previously invisible interior node becomes visible, its children are
putting them into the traversal queue (marked as previously invisible nc
previously invisible leaf hunm;\ visible, the associated geometry is rend

(this change

are PT“PJ
). The

previously visible leaf is found invisible, it is only marked as | invisible
in visibility will be reflected in the next frame). The changes in visibility
gated in the hierarchy by pushing visibility status up or down (see Figure 8. 4.1
pseudo code of the CHC algorithm is shown in Listing 8.4.1.

Article 8.4 Game-Engine-Friendly Occlusion Culling 639

Frame i Frame i+1
=

T and
lusion
ound-
1y has Pull Up
com-

Pull Down
1at we Queried Nodes

Qvisible () Invisible

issues FIGURE 8.4.1 Visibility of hierarchy nodes determined by the
CHC algorithm in two consecutive frames.

e }_‘1]'&\.
ible in
of the Listing 8.4.1 Pseudo code of the CHC algorithm
Invis- - o
result CHC begin
DistanceQueue.push(Root);

rdes it while !DistanceQueue.Empty() || !QueryQueue.Empty() do

\.".
Pre] while !QueryQueue.Empty() &&
iously
with- (DistanceQueue.Empty () FirstQueryFinished) do

while !FirstQueryFinished then wait;

Ifthe N = QueryQueue.Dequeue();
result HandleReturnedQuery(N);
TWISE,
sed by _ _
). Ifa if !DistanceQueue.Empty() then
¥ o
d. Ifa N = DistanceQueue.DeQueue();
hange N.IsVisible = false; // set invisible by default
'ropa- if InsideViewFrustum(N) then
). The

if IWasVisible(N) then
QueryNode(N); // query previously invisible node
else
if N.IsLeaf then
QueryNode(N); // query only prev. visible leaves

TraverseNode(N); [/ traverse previously visible node

End

640 ShaderX’: Advanced Rendering Techniques

HandleReturnedQuery(Q) begin {
|
i ers
if Q.visiblePixels > threshold then | !
_ eas)
if [WasVisible(N) then // traverse previously : tior
invisible node :
| gamn
TraverseNode(N); {/ which turned visible i
PullUpVisibility(N); // mark the node as visible
End REDUCING
; | In t
TraverseNode (N) begin |
stat
if IsLeaf(N) then &
Render(N) ; ren:
else
DistanceQueue.PushChildren(N); tur
End itsel
ver
nur
1 isipilitv(N] begin
PullUpVisibility(N) begin | abo
while IN.IsVisible do /{ mark node as visible and propagate i Ous
N.IsVisible = true; /] this to its parents { stat
N = N.Parent;
- BatcHING Q
: A si
| que
ProsLems witH CHC | ik
The reduction of the number of queries (queries are not issued on previously vist- | S
ble interior nodes) and clever interleaving work very well for scenarios that have 2 .
lot of occlusion. However, for view points where much of the scene is visible, the _' bilit
1 > S = i 4 e Y = 4 hic 1s '
method can become even slower than conventional view frustum culling, w hich s for
a result of numerous state changes and wasted queries. This problem is more pro- | que
nounced on newer hardware, where rendering geometry becomes quite cheap conl- sect
pared to querying.
. . TR . . . o P tho
Another problem with CHC lies in the complicated integration of the method BarcHinG Pr
F g
into the rendering loop of highly optimized game engines. CHC interleaves 1'cndr:t}- "
; \ . ' . i ’ % : oy T e
ing and querying of nuh\ddua]nodcsulLhespanalhlchwchv,“ﬁuch]gddstoslhb' .
P i o r ass 18 i-qu
number of engine API calls. Additionally, unless a dedicated depth-only pass 1
i N , : reac
used, the method does not allow the engine to perform material sorting. :
: issu

Article 8.4 Game-Engine-Friendly Occlusion Culling 641

These two problems make the CHC algorithm less attractive for game develop-
ers, who call for an algorithm that is reliably faster than view frustum culling and is
easy to integrate into the game engine. This article will provide several modifica-
tions to the CHC algorithm with the aim of solving its problems and delivering a
game-engine-friendly occlusion culling method.

REDUCING STATE CHANGES

In the CHC algorithm a state change is required for every occlusion query. This
state change involves disabling writing to color and depth buffers, which is then re-
enabled after the query. Also, complex shaders should be disabled for the geometry
rendered during the query.

On current GPU architectures state changes are still rather costly operations. It
turns out that the state changes can cause an even larger overhead than the query
itself. The overhead may be on the hardware side (e.g., flushing caches), on the dri-
ver side, or even on the application side. Thus, it is highly desirable to reduce the
number of state changes to an acceptable amount. Game developers shoot for
about 200 state changes per frame as an acceptable value on current hardware [6].

yagate Our first step toward a game-engine-friendly algorithm is thus the reduction of
state changes.

BATCHING QUERIES

A simple solution to avoid state changes for every occlusion query is to batch the
queries instead of issuing them immediately. The rendering state is changed only
once per batch, and thus the reduction of state changes directly corresponds to the
size of the query batches we issue.

sly visi-

have a How do we batch the queries so that the batching does not harm the final visi-
ble, the bility classification of hierarchy nodes? Our proposal is to use two additional queues
vhich is for scheduling occlusion queries. These queues will be used to accumulate the
ire pro- queries for nodes of different visibility classifications, as we discuss in the next two
p com- sections.

nethod BATCHING PREVIOUSLY INVISIBLE NODES

render- . o . . .

- - The previously invisible nodes to be queried are inserted into a queue that we call
) a high . . . A : ,

S i-queue (i stands for previously invisible). When the number of nodes in the i-queue
pass 1 -

reaches a user-defined batch size b, we change the rendering state for querying and
issue a query for each node in the i-queue.

642

ShaderX”: Advanced Rendering Techniques

As a result, for the batch of size b we perform approximately b times less state
changes than the CHC algorithm. On the other hand, increasing the batch size
delays the availability of the query results. This means that visibility changes could
be detected later, and possible follow-up queries might introduce further latency, if
there is not enough alternative work left (e.g., rendering visible nodes). :

The optimal value of b depends on the scene geometry, the material shaders,
and the capabilities of the rendering engine with respect to material sorting.
Fortunately, we observed that precise tuning of this parameter is not necessary and
that values between 20 and 80 give a largely sufficient reduction of state changes
while not introducing additional latency to the method.

BATCHING PrReviousLy VisiBLE NODES

Recall that the CHC algorithm issues a query for a previously visible node and ren-
ders the geometry of the node without waiting for the result of the query. However,
the result of the query is not critical for the current frame since it will only be used
in the next frame. Therefore, we will not issue the queries immediately, but instead
the corresponding nodes will be stored in a queue that we call v-queue. The nodes
from the v-queue will then be used to fill up idle time: Whenever the traversal
queue is empty and no outstanding query result is available, we process nodes from
the v-queue.

As a result, we perform adaptive batching of queries for previously visible
nodes driven by the latency of the outstanding queries. At the end of the frame,
when all queries for previously invisible nodes have been processed, the method
just applies a single large batch for all unprocessed nodes from the v-queue.

Note that before processing a node from the v-queue, we also check whether a
render state change is required. It turns out that in the vast majority of cases there
is no need to change the render state at all, as it was already changed by a previously
issued query batch for invisible nodes. Therefore, we have practically eliminated
state changes for previously visible nodes.

As a beneficial side effect, the v-queue reduces the effect of violations of the
front-to-back ordering made by the original CHC algorithm. In particular, if a pre-
viously hidden node occludes a previously visible node in the current frame, FhiS
effect would have been captured only in the next frame, as the previously ViSlbl,e
node would often be queried before the previously invisible node is rendered. This
issue becomes apparent in situations where many visibility changes happen at the
same time. Delaying the queries using the v-queue will make it more likely for such
visibility changes to be detected. A visualization of state changes required by the
described method is depicted in Figure 8.4.2.

i

GamE E

tf
0
d
W
f

W

Article 8.4 Game-Engine-Friendly Occlusion Culling 643

less state
Jatch size
iges could
latenc_\,-‘, if

| shaders,
| sorting,
28sary and
e changes

FIGURE 8.4.2 Visualization of state changes. (Left) View of a city scene.
(Right) The culling algorithm introduces only two additional state changes
(state change Is depicted by changing the color of hierarchy nodes).

¢ and ren-

However,

ly be used GAME ENGINE INTEGRATION

ut instead

[he nodes Integrating occlusion culling into game engines has received very little attention in

> traversal the literature. Hence, we will have a look at how the described method can be inte-

odes from grated into the engine so that we can efficiently reuse the existing highly optimized
rendering loops.

sly visible

the frame, DepTH-ONLY PAss

1e method - . : . _ o o ;

i One possibility of integrating occlusion culling into a game engine is by using a

dedicated depth-only pass for determining visibility, followed by shading passes for

whether a completing the picture. In the depth-only pass the content of the z-buffer is initial-

-ases there ized, using occlusion culling, without writing to the color buffer. For subsequent

previously shading passes we already know the visibility classification of all nodes in the hier-

:liminated archy. We collect visible nodes and render them in an order that can be optimized
by the engine (e.g., sorting by materials). For the shading passes we skip all invisible

ons of the geometry at no cost. Additionally, invisible fragments of the geometry contained in

ir, if a pre- visible nodes are culled early in the pipeline.

Tame, this

Using a depth-only pass we eliminate the problem of enforced front-to-back
ordering due to occlusion culling for the shading passes, as we only have to maintain
the front-to-back order for the depth-only pass. Since we do not use any materials

1sly visible
lered. This

'pen at the or shaders in the depth-only pass, the enforced front-to-back order of geometry
ly for su;h does not introduce any additional state changes. However, there might be a problem
red by the

with engine API overhead if many rendering calls are issued. Additionally, the code
for the depth-only pass and the shading passes might be shared in some engines,
which might complicate the integration of occlusion culling into one of the passes.

ShaderX’: Advanced Rendering Techniques

Fortunately, there is a very simple workaround of this problem, which we describe
next.

BATCHING THROUGH A RENDER QUEUE

We use the following idea to allow the game engine to perform its internal sorting
optimizations: When our culling algorithm is going to render some geometry, we
will not render it immediately. [nstead we store the nodes to be rendered in a render
queue. The render queue will accumulate all nodes scheduled for rendering. Note
that many engines already contain a render queue that can be used for this purpose.
If the engine API does not allow manipulating the render queue, we just add
another queue to the method.

The contents of the render queue will be processed by the engine in a single API
call just before a batch of occlusion queries is about to be issued. The engine can
then apply its internal material and shader sorting and render the objects stored in
the queue in the new order.

Note that the number of objects in the queue passed to the engine depends on
the batch size of the i-queue, but it will also change during the frame. Typically, we
will have large batches in the beginning of the frame and smaller batches later on.
This follows from the fact that in the beginning of the frame we schedule rendering
of many nearby visible nodes, while not processing many invisible nodes, which are
being accumulated in the i-queue.

As an alternative, we can set a minimal number of primitives for issuing a ren-
der call. In this case the rendering API can be controlled independently from the
query batch size. However, this approach can increase the number of rendered tri-
angles, as some occlusion can be missed due to delayed rendering.

The overview of the different queues discussed so far is shown in Figure 8.4.0.

FIGURE 8.4.3 Different queues used by the algorithm. Darker gray nodes

correspond to previously invisible nodes, and lighter gray nodes represent

previously visible nodes. The overlapping previously invisible nodes In the,
query queue correspond to a multiquery that will be discussed later in the article.

SKIPF

'* .

Article 8.4 Game-Engine-Friendly Occlusion Culling 645

SKIPPING TESTS FOR ViSIBLE NODES

The CHC algorithm introduced an important optimization that reduces the num

ber of queries on previously visible leaves. With this optimization a visible leaf is
assumed to stay visible for n,, frames, and it will only be tested in the frame n,, + 1.
As a result, the average number of queries for previously visible leaves is reduced by
afactor of n,, + 1.

This simple method, however, has a problem that the queries get temporally
aligned. The query alignment becomes problematic in situations when many nodes
become visible in the same frame. For example, consider the case when the view
point moves from the ground level above the roof level in a typical city scene. Many
nodes become visible at once, and the queries of those nodes will be issued and then
scheduled for the n,, + 1th frame. Thus, most of the queries will be aligned again.
The average number of queries per frame will be reduced, but the alignment can
cause observable frame rate drops.

The first solution that comes to mind is a randomization of n,, by a small ran-
dom value. However, this does not solve the problem in a satistying manner. If the
randomization is small, the queries might still be very much aligned. On the other
hand, if the randomization is large, some of the queries will be processed too late,
and thus the change from visible to invisible state will be captured too late.

We propose a different solution. We will randomize only the first invocation of
the occlusion query and then use regular sampling. After a node has turned visible,
we use a random value 0 < r < n,, for determining the next frame when a query will
be issued. Subsequently, if the node was already visible in the previous test, we
would use a regular sampling interval given by n,, (see Figure 8.4.4).

The optimal value of n,, depends on the scene itself, visibility coherence, and
hardware parameters as well as the rendering engine parameters. Fortunately, our
results indicate that these dependencies are quite weak, and a value of 5-10 is a safe
and robust choice in practice.

o
00—
&—© >@
& @ < 4 >®
© ~® -© -0
Time

FIGURE 8.4.4 Scheduling of queries of visible nodes using
randomization of the first invocation of the query.

ShaderX’: Advanced Rendering Techniques

FurRTHER OPTIMIZATIONS

The previous sections described the core ideas of a game-engine-friendly occlusion
culling algorithm. Here we present additional optimizations that further reduce the
number of issued queries and the number of rendered primitives. Note that these
optimizations are not critical for the game engine integration, but they further
boost the performance by an additional 5-20%. '

BounpING VOLUMES

Apart from the overhead introduced by occlusion queries, the success of a culling
algorithm depends strongly on how tightly the bounding volumes of the spatial
hierarchy approximate the contained geometry. If the fit is not tight enough, many
nodes will be classified as visible even though the contained geometry is not. There
are several techniques for obtaining tight bounding volumes, mostly by replacing
axis-aligned bounding boxes by more complex shapes. These methods constitute
an overhead of calculating and maintaining the bounding volumes, which can
become costly, especially for dynamic scenes. Is there a solution that could provide
tighter bounding volumes without the need for calculating more complex bound-
ing shapes? The answer is yes, and it follows from the properties of current render-
ing architectures.

It turns out that when using up-to-date APIs for rendering the bounding vol-
ume geometry (e.g., OpenGL vertex buffer objects), a slightly more complex geom-
etry for the occlusion query practically does not increase its overhead. A simple
solution to our problem is thus to replace a single large bounding volume by sev-
eral smaller ones. In the case of an internal node of the hierarchy, the tighter
bounding volume can be obtained by collecting bounding volumes of its children
at a particular depth (see Figure 8.4.5). For leaf nodes the tighter bounding volumes
have to be constructed explicitly. Alternatively, we can construct a slightly deeper
hierarchy and then mark interior nodes of the hierarchy containing less than a
specified number of triangles as virtual leaves, that is, nodes that are considered as
leaves during traversal. In this case the method of gathering child nodes can be used
to establish a collection of tight bounding volumes also for the virtual leaves.

: : _ , _ . ==
Increasing the number of bounding volumes provides a tighter fit to the geor

; : . . o roductive due
etry, but using too many small bounding volumes might be counterproductive

: . i ; o : e aachild
to either increased fill rate or transform rate. Therefore, when collecting the 7=

,ximal
1m of
times

h " ¢ 0ave
lowing values &

nodes for the tight bounding volume, we limit the search to a specified m:
depth d,,,, from the node (transform rate constraint). Also, we test if the st
surface areas of the bounding volumes of the children is not larger than Spax
the surface area of the parent node (fill rate constraint). The fol

good results in our tests: d;, = 3, Spax = 1.4

!

—_———

rocclusion
reduce the
* that these
ey further

>f a culling
the spatial
ugh, many
not. There
y replacing
i constitute
which can
1ld provide
lex bound-
ent render-

inding vol-
plex geom-
1. A simple
ime by sev-
the tighter
its children
ng volumes
‘htly deeper
less than a
ynsidered as
can be used

|eaves.

o the geom-
ductive due
ng the child
ed maximal
“the sum of
1 Smax times
“values gave

Article 8.4 Game-Engine-Friendly Occlusion Culling 647
r—//]—‘:‘\
—z1 il

FIGURE 8.4.5 For a given node (in black) the tighter bounding volumes
(in gray) are obtained by gathering several child nodes in the hierarchy.

Tight bounding volumes provide several benefits at almost no cost: (1) culling
of leaves that would otherwise be classified as visible, which reduces the number of
rendered primitives, (2) earlier culling of interior nodes of the hierarchy, which
reduces the number of queries, (3) increased coherence of visibility classification of
interior nodes, which avoids changes in visibility classification for interior nodes
caused by repeated pull-up and pull-down of visibility.

MULTIQUERIES

Common occlusion culling techniques use one occlusion query per invisible prim-
itive. However, if some invisible nodes remain invisible, a single occlusion query for
all these nodes would be sufficient to verify their visibility status. Such a query would
render all bounding boxes of the nodes, and return zero if all nodes remain occluded.

Assuming a certain coherence of visibility, we can group invisible nodes that
are equally likely to remain invisible. A single occlusion query is issued for each
such group, which we call a multiquery. If the multiquery returns zero, all nodes in
the group remain invisible, and their status has been updated by the single query.
Otherwise, the coherence was broken for this group and we issue individual queries
for all nodes by reinserting them in the i-queue. Note that in the first case the num-
ber of queries is reduced by the number of nodes in the group minus 1. However,
in the second case the multiquery for the batch was wasted, and we proceed by indi-
vidual queries on the nodes.

To find suitable node groupings that minimize the effect of wasted batches, we
use an adaptive mechanism based on a cost-benefit heuristics. Before we describe
the actual heuristics, we first quantize the coherence of visibility in the scene, which
will then be used as a major factor driving the cost model.

648

ShaderX”: Advanced Rendering Techniques

EsTIMATING VisiBILITY COHERENCE

In the vast majority of cases there is a strong coherence in visibility for most nodes
in the hierarchy. Our aim is to quantify this coherence. In particular, knowing the
visibility classification of a given node, we aim to estimate the probability that this
node will keep its visibility classification in the next frame. There is a strong corre-
lation of this value with the “history” of the node, that is, with the number of
frames the node already kept the same visibility classification (we call this value vis-
ibility persistence).

Nodes that have been invisible for a very long time are likely to stay invisible.
Such nodes could be the engine block of a car, for example, that will never be visible
unless the camera moves inside the car engine. On the contrary, even in slow-moving
scenarios, there are always some nodes on the visible border that frequently change
their classification. Hence, there is a quite high chance for nodes that recently became
invisible to become visible soon. We define the desired probability as a function of the
visibility persistence i, and approximate it based on the history of previous queries:

n<een

Proooli) =

xeepll) prr
where n/<? is the number of already tested nodes that have been in the same state
for i frames and keep their state in the [+ 1th frame, and n*' is the total number of
already tested nodes that have been in the same state for i frames.

The values n,*? and n'are tabulated and constantly updated during the walk-
through. In the first few frames there are not enough measurements for an accurate
computation of py..,(i), especially for higher values of i. We solve this problem by
piecewise constant propagation of the already computed values to the higher values
of i.

As an alternative to the measured function, we suggest using an analytic for-
mula that fits reasonably well with the measurements we did on several test scenes
using typical navigation sequences:

Pieeoll) = 0.99 - 0.7e"

Cost-BeNerIT HEURISTICS FOR MULTIQUERIES

o . . : . . . ~ fAt-cost
[0 compile multiqueries we use a greedy algorithm that maximizes a benefit-co
ratio.
¢ _ . 5 v o hich 18
I'he cost is the expected number of queries issued per one multiquery, whicl

expressed as:

C(M) = 1 + pyy(M) = IMI,

10st nodes
owing the
7y that this
ong corre-
wumber of
s value vis-

y invisible.
r be visible
Yw-moving
itly change
tly became
ction of the
s queries:

same state
number of

g the walk-
in accurate
sroblem by

gher values

nalytic for-
test scenes

venefit-cost

ry, which is

Article 8.4 Game-Engine-Friendly Occlusion Culling

649

where p;, (M) is the probability that the multiquery
case all nodes have to be tested individually), and [M| is the number of nodes in the
multiquery. Note that the constant 1 represents the cost of the mu]
whereas pg,;(M)*|M| expresses the expected number of
for individual nodes. The probability p,; is calculated f
values iy of nodes in the multiquery as:

p.‘a](M) =1- I—l pkena(il\l}'

YNeEM

fails (returns visible, in which

tiquery itself,
additionally issued queries
rom the visibility persistence

The benefit of the multiquery is simply the number of nodes in the multiquery,
that is, B(M) = [M|.

Given the nodes in the i-queue, the greedy optimization

algorithm maximizes
the benefit at the given cost. We

first sort the nodes in descending order based on
their probability of staying invisible, that is, Precp(in). Then, starting with the first
node in the queue, we add the nodes to the multiquery, and at each step we evalu-
ate the value V of the multiquery as a benefit-cost ratio V(M)) = B(Mj)/C(M;j). It
turns out that V reaches a maximum for a particular M, and thus j corre

sponds to
the optimal size of the multiquery for the nodes in the front of the 1-queue.

Once we find this maximum, we issue the mul
nodes and repeat the process until the I-queue is us
larger multiqueries for nodes with a high probabilit
multiqueries for nodes that are likely to turn v
queries is depicted in Figure 8.4.6.

tiquery for the corresponding
ed up. As a result, we compile
y of staying invisible and small
isible. An example of compiled multi-

FIGURE 8.4.6 Visualization of multi

queries. (Left) A view of the city scene. (Right)
(In)visibility of previously invisible node

s is successfully verified by only two multiqueries.

650

ShaderX”: Advanced Rendering Techniques

PUTTING IT ALL TOGETHER

When we combine all modifications to the CHC algorithm described in this article,
we end up with a method that we call CHC++ [3]. CHC++ keeps the simplicity of
the previous technique, but has several properties that make it more interesting for
use in a game engine.

Let us summarize once more the main ideas of CHC++. The algorithm uses
two new queues for scheduling queries (v-queue and 1-queue). These two queues
are the key for reduction of state changes. The 1-queue accumulates processed
nodes that have been invisible in the previous frames. When there are a sufficient
number of nodes in the queue, we apply a batch of occlusion queries for nodes in
the i-queue. Visible nodes scheduled for testing in the current frame are placed in
the v-queue. The queries for nodes stored in the v-queue are used to fill up the idle
time if it should occur. At the end of the frame the remaining nodes in the v-queue
form a single batch of queries.

Visible geometry that is about to be rendered is accumulated in the render
queue. The render queue is then processed by the rendering engine just before a batch
of queries from the i-queue is about to be issued. The algorithm for scheduling the
queries on previously visible nodes uses a temporally jittered sampling pattern to
reduce the number of queries and to distribute them evenly over frames (Listing
8.4.2).

Listing 8.4.2 The pseudo code of the CHC++ algorithm

CHC++ begin

Collect

DistanceQueue.push(Root);
while !DistanceQueue.Empty() || !QueryQueue.Empty() do
while !QueryQueue.Empty() &&
(DistanceQueue.Empty() || FirstQueryFinished) do
while !FirstQueryFinished 8&& !v-queue.Empty() then
IssueQuery (v-queue.Dequeue()); // fill-up wait time
N = QueryQueue.Dequeue();

HandleReturnedQuery(N);

else

wh
V-

whi

End

Article 8.4 Game-Engine-Friendly Occlusion Culling 651

if IDistanceQueue.Empty() then
e ——

. . . N = DistanceQueue.DeQueue();

in this article, ' I :
; o i N.IsVisible = false; f/ invisible by default

e sullpﬂ1C1ly of

intcr@ﬂingihr if InsideViewFrustum(N) then

if !WasVisible(N) then

leorithm uses QueryPreviouslyInvisibleNode(N)
se two queues else
ites pro‘c;c:'tacd if N.IsLeaf
ire a sufficient

S if QueryReasonable(N) then
:s for nodes in
2 are placed in v-queue.Push(N):
fill up the idle else
n the v-queue PullUpVisibility(N);

TraverseNode (N) ;
in the render _ ; . .
if DistanceQueue.Empty() then // no nodes to traverse

before a batch

scheduling the IssueMultiQueries(); /[issue multiqueries if any
y (=)
ing pattern to

rames (Listing while !v-queue.empty() do // issue batch of remaining
v-gueries

IssueQuery(v-queue.Dequeue());
/| possible to do some other work

while !QueryQueue.Empty() /! handle remaining v-queries
N = QueryQueue.Dequeue();

HandleReturnedQuery(N);

End CHC++

then

) wait time TraverseNode (N) begin

if IsLeaf(N) then

Render(N);

else

652

ShaderX”: Advanced Rendering Techniques

DistanceQueue.PushChildren(N);

CONCLU:
N.IsVisible = false;
End TraverseNode | T
d
PullUpVisibility(N) begin ct
while !N.IsVisible do iﬁ
N.IsVisible = true; N = N.Parent; al
End PullUpVisibility cl
HandleReturnedQuery(Q) begin th
if Q.visiblePixels > threshold then Ej
if Q.size(} = 1 then th
QueryInvididualNodes(Q); failed multiquery ua
else lo
if !WasVisible(N) then | ?#
TraverseNode(N); =
PullUpVisibility(N);
End HandleReturnedQuery AcKNoOw
QueryPreviouslyInvisibleNode(N) begin Tt
i-queue.Push(N) ; | tP‘
| (€3
if i-queue.Size() >= b then | 01
IssueMultiQueries(); |
End QueryPreviouslyInvisibleNode
REFEREN(C
[1]
apy
IssueMultiQueries() begin [2]
while !i-queue.Empty() do f:;
M@ = i-queue.GetNextMultiQuery(); f{&
IssueQuery(MQ); i-queue.PopNodes(MQ); 14]
End IssueMultiQueries iu.

Article 8.4 Game-Engine-Friendly Occlusion Culling 653

CONCLUSION

This article addressed issues of integrating occlusion culling into a game engine. We
described several extensions to the previously published coherent hierarchical
culling method in order to improve its efficiency and make its integration into
optimized rendering loops of game engines easier. The core of the proposed algo-
rithm remains simple and should be easy to implement in various frameworks. We
also proposed several additional optimizations that provide a further increase of
culling efficiency with reasonable implementation effort.

The described method provides more than an order of magnitude reduction of
the number of state changes as well as the number of engine API calls. The number
of queries is also significantly reduced. These savings should provide significant
increases of frame rate; the actual speedup is largely dependent on the type of scene,
the engine architecture, and the hardware used. The method copes well with the sit-
uation when the view point moves from a highly occluded region into a region with
low occlusion when much of the scene becomes visible. In the scenes we tested, the
new algorithm is typically between 1.5 and 3 times faster than CHC, while frame
rates never dropped below standard view frustum culling.

ACKNOWLEDGMENTS

This work has been supported by the Ministry of Education, Youth and Sports of
the Czech Republic under the research program LC-06008 (Center for Computer
Graphics), the Aktion grant no. 48p11, and the EU under the FP6 project no. IST-
014891-2 (Crossmod).

REFERENCES

[1] COHEN-OR D., CHRYSANTHOU Y., SILVA C,, DURAND F.: A survey of visibility for walkthrough
applications. IEEE Transactions on Visualization and Computer Graphics, (2002)
[2] GUTHE M., BALAZS A., KLEIN R.: Near optimal hierarchical culling: Performance driven use of
hardware occlusion queries. In Eurographics Symposium on Rendering 2006, (June 2006).

[3] MATTAUSCH O., BITTNER J., WIMMER M.: CHC++: Coherent Hierarchical Culling Revisited.

Computer Graphics Forum, Proceedings of EUROGRAPHICS 2008.
[4] SEKULIC, D.: Efficient Occlusion Culling. GPU Gems, pp. 487-503. Addison-Wesley (2004).
[5] WIMMER M., BITTNER].: Hardware occlusion queries made useful, GPU Gems 2, pp. 91-108.

Addison-Wesley (2005).

[6] WLOKA, M.: Batch, Batch, Batch: What Does It Really Mean? Presentation at Game Developers
Conference 2003.

