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a b s t r a c t

A heated debate in drug policy concerns the relative merits of ‘‘harm reduction” (e.g., reducing drug-
related HIV/AIDS transmission) vs. ‘‘use reduction” (controlling drug use per se). This paper models
whether shifting emphasis between these goals over the course of a drug epidemic might reduce social
costs relative to pursuing one or the other exclusively. Results suggest different answers for different
drugs and/or countries. In particular, harm reduction may have always been effective for Australia’s injec-
tion drug use problem, but for US cocaine it may not have been in the past even if it could be so today. In
certain circumstances harm reduction may ‘‘tip” an epidemic toward a high- rather than low-use equi-
librium. The location in state space of regions where this occurs can be sensitive to parameter changes,
suggesting caution may be in order when advocating harm reduction, unless there is confidence the epi-
demic has been modeled and parameterized accurately.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

A vigorous debate rankles within drug policy between those
advocating ‘‘harm reduction” and those placing primacy on reduc-
ing drug use, referred to here as ‘‘use reduction” (cf., Caulkins and
Reuter, 1997). Previous work (Behrens et al., 1999, 2000; Tragler
et al., 2001; Winkler et al., 2004) suggested a peaceful resolution
to the equally contentious debate between proponents of ‘‘demand
reduction” and ‘‘supply control”, namely, that each had a crucial
role to play, but their relative effectiveness could vary over an ‘‘epi-
demic cycle” of drug abuse. This paper explores the possibility of a
similar resolution to the harm vs. use reduction debate.

The term ‘‘harm reduction” is politically charged. While ‘‘harm
reduction” is official policy in several countries (notably, Australia,
the Netherlands, and the United Kingdom), it is denounced by na-
tional drug policy makers in the United States as a deceitful ploy
used by covert advocates of legalization (e.g., McCaffrey, 1998).
To complicate matters, the term is used to mean different things
by different people.

One definition is essentially synonymous with minimizing so-
cial costs. MacCoun (1998) describes this as ‘‘macro harm reduc-
ll rights reserved.
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tion” to distinguish it from ‘‘micro harm reduction” meaning
minimizing how harmful drugs are, particularly to users. The dis-
tinction is captured in the simple equation:

Total harm ¼ Total use � average harm per unit of use: ð1Þ

Macro harm reduction means reducing total harm, which is the left
side of Eq. (1) and will be our objective function below. Micro harm
reduction stands for reducing the far right hand term of Eq. (1). This
reduction of the average harm attributable to a unit of consumption
is what we mean when using the term ‘‘harm reduction” here.

Advocates of ‘‘use reduction” try to reduce total harm by reduc-
ing use, either viewing harmfulness as immutable or worrying that
efforts to reduce harmfulness will spur greater use. Critics of use
reduction argue it is hard to suppress drug use in a free society
and/or that efforts to suppress use displace it into more harmful
forms. The classic example offered is that prohibiting syringes
leads injection drug users to share and reuse syringes, exacerbating
the spread of blood-borne diseases, notably HIV/AIDS and Hepatitis
C. They suggest it is more productive to make use safer, e.g., by pro-
viding supervised injection facilities (SIFs) where overdoses can be
quickly detected and treated. They downplay fears that such mea-
sures ‘‘send the wrong message” or induce more youth to try drugs
(Reuter and Caulkins, 1995).

What the equation does not fully specify is whose harms get
counted. Many harm reduction advocates focus on harms suffered
by users, notably the risk of overdose and HIV/AIDS. Many
advocates of use reduction focus on harms to non-users, notably
drug-related crime and violence. Here, we parameterize the
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objective function in terms of social costs reflected in so-called
‘‘Cost of Illness” (COI) studies (Harwood et al., 1998; Collins and
Lapsley, 2002), which include crime costs. COI studies have limita-
tions (Reuter, 1999; Kleiman, 1999; Moore and Caulkins, 2006),
but they remain the de facto standard. If and when better social
cost estimates are produced, the model could just as easily be
parameterized with them.

It is not surprising that Australia and some European countries
differ from the US with respect to harm vs. use reduction objec-
tives. In the US, crime and violence dominate social costs and pub-
lic concern about illicit drugs, and two-thirds of those costs stem
from a drug (cocaine, including crack) that is not usually injected
in the US (Caulkins et al., 2002). In most other developed countries,
violence is much less of a concern and the dominant drug is heroin
(UNODC, 2005), which is usually injected and which has a particu-
larly high risk of overdose because of its low ‘‘safety ratio” – the
ratio of the usual lethal dose to the usual recreational dose (Gable,
2004).

We explore the possibility that both policy regimes may be
preferred, but in different places and/or times. In particular, we
parameterize a dynamical systems model of drug use for both Aus-
tralian injection drug use (IDU) and US cocaine use, to see whether
the drugs and/or national contexts influence the potential benefits
of harm reduction.

We run the model as a policy simulation to see whether the
policy that is best also depends on the stage of the epidemic. This
concept of ‘‘stage of the epidemic” merits explanation because it
also is controversial. There is of course no pathogen that infects
users with drug use, the way that pathogens spread malaria, the
flu, or HIV. However, drug use is ‘‘contagious” in the same way that
fashions, laughter, and even rumors can be (Noymer, 2001). Almost
everyone who starts using illicit drugs is introduced to them by a
friend, sibling, or acquaintance. The myth of a ‘‘drug pusher”
seducing unsuspecting naifs is just that, a myth (Coomber, 2006).
Just as the marketing literature has built new product adoption
models in which first time use of a consumer electronics gadget
is driven by how many people are already using that gadget (e.g.,
Bass, 1969), so too can one model the spread of drug use with such
models (Caulkins, 2005).

Some people hate the term ‘‘epidemic” even in this metaphori-
cal sense because they fear it will stigmatize users and/or justify
draconian and inhumane measures along the lines of quarantines.
We recognize that risk, but nevertheless prefer to use the term
because what happens with drug use is not just some general
spread (‘‘diffusion”) but specifically a process of social interaction
between users and non-users that can lead the non-user to begin
using (cf., Ferrence, 2001).

This contagious spread can lead to explosive growth in drug
use followed by a peak and decline. Many models of drug use
and drug markets have a ‘‘tipping point” (Baveja et al., 1993;
Caulkins, 1993; Tragler et al., 2001). When few people are using
or selling the drug, it is relatively easy to keep the drug from
spreading for several reasons. In a ‘‘thin” market, sellers and buy-
ers have a hard time locating each other; behaviors that are
uncommon are more likely to be socially stigmatized; and/or a
modest level of enforcement effort can create high risks for each
of the relatively small number of people over whom that effort is
distributed (Kleiman, 1993). At the other extreme, when the drug
is very widely used, having one more or one fewer person use
might have very little effect on the likelihood of others trying
the drug because potential users will be offered the drug multiple
times even without that additional user and, if they chose to use,
will be able to locate multiple suppliers (Riley, 1997). In between,
however, there may be a tipping point where the market is still of
modest size, but close to reaching a critical mass that will enable
it to spread widely. For markets near that tipping point, small
changes can have large and lasting effects on the long-run trajec-
tory of the prevalence of use.

Given this overview of epidemic concepts, let us return to the
question of whether harm reduction is good policy or not. If harm
reduction truly has no adverse effect on how many people use
drugs, then the question is trivial; reducing harmfulness would
clearly reduce total harm (cf., Nordt and Stohler, 2006). However,
one does not have to believe people have perfect rationality to
worry that more people might participate in an activity if that
activity is made safer. MacCoun (1998) reviews psychological
and empirical evidence concerning this possibility in a variety of
domains. He concludes that there can be ‘‘risk compensation”, so
making an activity safer generally increases participation in that
activity. As examples, he cites literature finding that ‘‘drivers have
responded to seat belts and other improvements in the safety of
automobiles by driving faster and more recklessly” and ‘‘filters
and low-tar tobacco each reduce the harmfulness per unit of tobac-
co, yet numerous studies have demonstrated that smokers com-
pensate by smoking more cigarettes, inhaling more deeply, or
blocking the filter vents” (p. 1203). A more recent concern is the
possibility that HIV vaccines and/or effective AIDS treatment could
reverse some of the risk reducing behaviors adopted in response to
the HIV/AIDS epidemic (Blower et al., 2002).

Risk compensation means that reducing harmfulness has
ambiguous effects on total harm. If participation went up enough,
total harm could go up even if harm per unit of activity went down.
However, MacCoun argues there is little evidence of compensatory
responses producing greater than proportionate changes in indi-
vidual behavior. Consistent with this, we employ a model of risk
compensation in which the percentage change in initiation into
drug use is always less than the percentage change in risk to the
user. Furthermore, we assume harm reduction has no adverse ef-
fect on exit from drug use.

However, as mentioned, drug use is characterized by feedback
effects, specifically feedback from current use to initiation. Hence,
a possibility that remains to be explored is whether such nonlin-
earity means micro harm reduction could increase macro harm
even when that could not happen if there were no feedback.

In particular, if harm reduction does have some perverse effect
on initiation and drug epidemics have tipping points, then it seems
plausible that a harm reduction policy could be a bad idea at some
points (specifically when the epidemic is near its tipping point)
even if it is a good idea at other times (after the drug is already
in pervasive use and perhaps when it is so rare that there is little
risk of use exploding).

Testing this conjecture empirically is difficult. There are very
few jurisdictions (none?) for which there are good long-term data
on drug use and drug-related social costs and which have switched
from a use reduction to a harm reduction policy or vice versa. In
the absence of empirical data, it can be useful to construct a model
to lend precision to an idea and expose inconsistencies that may
lurk beneath the imprecision inherent in arguments couched in
natural language. The next section introduces such a model. It is
an extremely simple model to reduce the risk that the results
emerge only from certain atypical structures and/or that the re-
sults cannot be interpreted intuitively.
2. Conceptual model

We take as our point of departure the classic Bass model (Bass,
1969). It posits that the rate of adoption by non-users who are sus-
ceptible to use is linearly increasing in the number of current users,
expressed here as a proportion of the total population and denoted
by A(t). In the original Bass model, product adoption spreads
quickly relative to life spans, so the number of people susceptible
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to initiation is just the total number who were originally suscepti-
ble minus the number who have already adopted. Hence, the term
modeling adoption is

new adoptions per unit time ¼ ði1 þ i2AðtÞÞð1� AðtÞÞ: ð2Þ

In the present context a more sophisticated tracking of susceptibles
is warranted, so we capture their numbers with a second state var-
iable, denoted S(t) and interpret A(t) as the actual number, not the
proportion who have adopted. Given this modification, the number
of new adoptions per unit time is:

# of new adoptions per unit time ¼ ði1 þ i2AðtÞÞSðtÞ: ð3Þ

The coefficient i1 is referred to as the coefficient of innovation be-
cause it reflects adoption that is independent of the current level
of use. Coefficient i2 is referred to as the coefficient of imitation be-
cause it reflects adoption stemming from contact with a current
user. Note: drug use prevalence and drug-related rates are low en-
ough that the drug epidemic is not a major driver of the country’s
total population. That means that the proportion of people who
are drug users is essentially A(t) divided by a constant, and so is pro-
portional to A(t). Hence, if one imagines the user and susceptible
populations mix randomly, then the number of contacts between
users and non-users is proportional to the product, A(t)S(t). That
means i2 can be seen as being proportional to the ‘‘infectivity” or
probability that such an interaction leads to a new ‘‘infection”.

Assuming i2 is constant makes sense in many contexts. When a
person with the flu sneezes on someone who is not yet sick, the
probability of infection may depend on a lot of factors (e.g., age,
health-status, whether the person got a flu vaccine), but not on
how many other people do or do not have the flu.

However, when becoming ‘‘infected” is the result of a conscious
choice, the virulence of the contagion can depend on the preva-
lence of the epidemic. So when someone who is infected (a current
user) interacts with a ‘‘susceptible” (a current non-user) the prob-
ability that the ‘‘susceptible” becomes infected need not be a con-
stant. Rather, that probability of infection per interaction may be a
function of the prevalence.

Consider, for example, the application of such models to fashion
goods. When a consumer good is widely used, that can make the
good either more or less appealing to others. The appeal of certain
high-end fashion goods stems from their exclusivity or snob effect.
Fashion-conscious consumers pay high prices for designer brand
items in part because they know, and others watching them know,
that the masses cannot afford to purchase such exclusive goods. So,
high prevalence would reduce infectivity. On the other hand, there
are popular fashions that become more not less appealing when
they have already been adopted by others, particularly for teen-
agers. Furthermore, Bundgaard-Neilsen (1976) has argued that late
adopters may adopt faster than earlier ones because they are in a
better position to assess the new technology. So adoption rates
might be either concave or convex in the number of users. Indeed,
the Non-Uniform Influence Diffusion Model by Easingwood et al.
(1983) extends the original Bass model based on such ideas. In a
one-state framework, they assess the form

# of adoptions per unit time ¼ ði1 þ i2AðtÞdÞð1� AðtÞÞ: ð4Þ

The authors illustrate the generality of the model for five goods. The
empirical study leads to d < 1 in four of the cases, whereas in one
case the authors find d > 1. In our two state framework, the Bass
model is generalized by using a function g(A(t)) modeling depen-
dence of adoption on the current number of users. We allow users
to exit the population (by death or ceasing use) at a constant per ca-
pita rate, l. (Since most drug users are young and only a subset are
dependent users with substantially elevated death risk, most exit
from the drug using population is through quitting, not death.) This
leads to
# of new adoptions per unit time ¼ ði1 þ i2gðAðtÞÞÞSðtÞ; ð5Þ
# of quitters ¼ lAðtÞ; ð6Þ

where we presume g(0) = 0 since there should not be any imitation
if there is no one to imitate. For notational simplicity we will let
f(A(t)) stand for the entire term (i1 + i2g(A(t))). We will pay particu-
lar attention to the case when g(A(t)) is a simple power function of
the form A(t)a, including the special case when i1 is negligible.

We expect that g() is an increasing function of A(t), the current
prevalence of use, but it may be either concave or convex, as in the
high- and low-fashion examples mentioned above, respectively.

In many respects illicit drugs are a popular fashion. When
someone is offered the chance to use an illicit substance for the
first time, they might be less likely to accept if little is known about
the drug and/or its use is highly deviant in the sense of being con-
fined to small, highly atypical populations, but more likely to ac-
cept the offer if many of their peers are already using it. (Most
drug initiation occurs among teens and young adults for whom
the desire for conforming with peers’ lifestyles can be a powerful
motivator.) Hence, we might expect g() to be convex for at least
some illicit drugs. Indeed, parameterization of the current model
for cocaine use in the U.S. involves a > 1.

On the other hand, some of the most severe adverse conse-
quences of drug use manifest only later, when use is relatively
widespread and some people have been using for an extended per-
iod (Musto, 1987). In such cases, virulence may decline as use
spreads. An entirely separate argument with the same bottom line
is that when use is common, non-users might receive multiple of-
fers, and people who have rejected earlier offers may be less likely
to accept subsequent ones. Hence, as use grows, non-users might
become ‘‘saturated” with opportunities to use, and expansions in
numbers of users bring less than proportionate increases in initia-
tion. Indeed, below we will use a concave g() for Australian IDU.

Finally, return to the question of modeling non-users who are
susceptible to use. Very few people who are not teen-agers or
young adults ever start using drugs, so we can think of the pool
of susceptibles as turning over every ten to twenty years. The in-
flow is people, or a subset of people, who are just coming of age
(perhaps turning age 12 if one wants to be concrete). There are
two outflows: (1) initiating drug use, which moves individuals into
the A(t) population and (2) other exit, which includes death, out
migration, etc., but primarily reflects ‘‘maturing out” of the pool
of susceptibles (again to be concrete, one might think of this as
turning 30).

Hence, we let the inflow to S(t) be a simple constant, k, (repre-
senting each successive birth cohort as it reaches the age when
vulnerability to drug use begins) with a constant per capita outflow
rate, d, that is roughly equal to one over the duration of time during
which people are likely to consider starting to use drugs (roughly
ten to twenty years).

This discussion motivates the next section’s model. Before pro-
ceeding, note that there are broadly two kinds of fashions: good (or
at least innocuous) fashions, such as particular clothing or music
styles, and ‘‘bad” fashions, such as drug use, that are socially harm-
ful. Below we consider the case of controlling harms associated
with a bad fashion, but one could imagine adapting the basic
framework to explore how a firm might promote adoption of its
‘‘good” fashion product.

3. Mathematical model

3.1. Formulation

The objective is to minimize total discounted drug-related
social costs over some planning horizon by adjusting the extent
to which harm reduction is pursued, while drug use evolves
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according to epidemic dynamics that may be influenced by harm
reduction interventions. The control variable v(t) is the percentage
reduction in the harmfulness of drug use, and at any given time, so-
cial costs are the product of (1) the number of drug users, A(t), (2) a
baseline social cost per user per unit time when there is no harm
reduction, which is normalized to 1 without loss of generality,
and (3) one minus v(t), the proportion of harm that is not averted
via harm reduction policies.

One could penalize control spending, by adding a term c(v) to
the objective function, but harm reduction programs receive very
modest levels of funding even in countries such as Australia and
the Netherlands that make harm reduction the centerpiece of their
national policies (Moore, 2005; Rigter, 2006). It is better to think of
harm reduction not as a program with a budget but rather as a pol-
icy. For example, when a jurisdiction pursues the harm reduction
policy of telling police not to arrest people for possessing a syringe,
implementing that policy costs essentially nothing more than the
paper on which the new policy memos are printed. Consequently
and for the sake of simplicity, we omit this c(v).

There are, however, limits on the extent to which a drug’s harm-
fulness can be reduced. Hence, we imposed an upper bound
v(t) 6 vmax, whose specific value will vary by drug and country
and is discussed further below.

The benefit of control v is obvious; it directly reduces the
instantaneous objective function cost. The downside is that it
might increase initiation. No one knows for sure that harm reduc-
tion has this downside, but it is plausible. Precisely because no one
has empirical data on the extent (if any) of this effect, initially we
denote it by a general non-decreasing function h(v) with h(0) = 1
that multiplies the initiation term. Hence, the general formulation
we consider is:

J ¼
Z 1

0
e�rtðAð1� vÞÞdt

_S ¼ k� dS� f ðAÞShðvÞ
s:t:

_A ¼ f ðAÞShðvÞ � lA:

ð7Þ

Solving the optimal dynamic control version of this problem with v
allowed to vary over time (i.e., v = v(t) with 0 6 v(t) 6 vmax) would
be of interest. However, we consider the simple case of static optimi-
zation. That is, we assume implementation of harm reduction is a
one-time, irrevocable decision. We focus not on choosing the best va-
lue of v for a particular set of initiation conditions, S(0) and A(0), but
rather on comparing the performance of pure use reduction (v(t) = 0
for all t) vs. pure harm reduction (v(t) = vmax for all t) for initial condi-
tions corresponding to various points in a drug epidemic.

3.2. Analysis for general f(A) and h(v)

Some analysis can be done without specifying how the drug’s
virulence depends on the current prevalence (f(A)) or how harm
reduction affects initiation (h(v)). In particular, when adding the
two state equations, the f(A) and h(v) terms cancel, leaving

_Sþ _A ¼ k� dS� lA ð8Þ

so the steady state values (denoted by the superscript ^) satisfy

bS ¼ k� lbA
d

: ð9Þ

The isocline _A ¼ 0 is given by lbA ¼ f ðbAÞbShðvÞ, which yields the
equation

bS ¼ lbA
f ðbAÞhðvÞ : ð10Þ
In the case without innovators (i1 = 0) and for the power function
g(A) = Aa, for which g(0) = 0, it is easy to see that there is a steady
state with no use ðbA ¼ 0Þ, the maximum possible number of suscep-
tibles ðbS ¼ k=dÞ, and no control needed, v = 0.

More generally, we have two Eqs. (9) and (10) relating the stea-
dy-states that are of the form bSðbAÞ. The first one, Eq. (9), is a down-
ward sloping line that is independent of the control v. Since h(v) is
increasing in v, exerting the control v pulls down the curve given
by (10), shifting steady states to the lower right along the first line.
That is, harm reduction leads to more users and fewer susceptibles
in steady state – exactly as one would expect.

If g(A) is concave for A > 0, then Eq. (10) is strictly increasing in
A, so there is exactly one interior steady state (in addition to the
steady state ðbS; bAÞ ¼ ðk=d;0Þ), and it is easy to show that interior
steady state is stable.

If g(A) is convex, then Eq. (10) is decreasing and convex in A,
asymptotically approaching the horizontal A-axis. Furthermore,
at A = 0, Eq. (10) starts above Eq. (9). Hence, there are three possi-
bilities. Eq. (10) could remain always above Eq. (9) (no interior
steady states), be just tangent to Eq. (9) yielding a single interior
steady state, or cross it twice, yielding two interior steady states.
Appendix B shows that when there are two interior steady states,
then from left to right the three steady states (including the one
at the origin) are stable, saddle, and stable, respectively.

Since for both the US and Australian parameterizations, i1 was
estimated to be zero, we do not pursue the analysis of i1 > 0 further.

3.3. Specifying functional forms for f(A) and h(v)

To proceed further, we specify functional forms for f(A) and h(v).
The parameterizations exhibit i1 = 0. Following Tragler et al.
(2001), we assume g() is a power function in A, so f(A) = i2Aa. This
simple form has the flexibility to accommodate both concave and
convex functions.

To the best of our knowledge no one has attempted to model
explicitly how harm reduction affects use. In all likelihood, the an-
swer is quite complicated, and a psychologically realistic model
would consider users’ imperfect knowledge, foresight or lack there
of, discount rates and form (hypberbolic vs. exponential discount-
ing), over confidence, loss aversion, etc. We take the much simpler
approach of imagining that changes in the non-monetary costs of
using drugs (e.g., the health risks) affect use the same way as do
changes in the monetary costs of using drugs. This is consistent
with the so-called ‘‘search time” theory of local drug markets (Klei-
man, 1988), and it is convenient because there is a growing empir-
ical literature that estimates how responsive drug use is to changes
in drug prices (Grossman, 2004).

The personal, non-monetary costs of drug use are conceptually
distinct from the social costs of drug use in two ways. First, some
social costs are externalities from the users’ perspective. Notable
among those are the costs drug-related crimes impose on third
parties. There is no reason why the government should not pursue
policies to reduce the magnitude of these externalities, e.g., by
pushing drug markets away from brazen street corner dealing with
all its attendant violence and into more covert forms that are less
destructive to the community. However, as important as those
strategies may be, they are orthogonal to the current model be-
cause they do not risk eliciting an adverse behavioral response.
Here we focus only on programs that reduce harms felt by users.
As a result, the control’s upper bound, vmax, is the proportion of so-
cial costs that are borne by the user. As a proxy, we presume that
health-related costs are borne by the user whereas other cost-of-
illness (COI) study cost components are externalities. Hence, we
set vmax to equal the proportion of COI costs that are health-related.

The second distinction is that users may not even factor health-
related costs into their consumption decisions as fully as would a
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social planner for two reasons. First even some health-related costs
may be externalities. For example, when a drug user overdoses,
some of the resulting costs are borne by the user (e.g., reduced in-
come because of lost work time due to morbidity or premature
mortality), but others are not (e.g., medical treatment covered by
Medicaid or emergency care provided at no charge). Second, drug
users may be more present-oriented than is a social planner (Kirby
and Petry, 2004), so deferred costs of use may not be weighted as
heavily as a social planner would like. We let parameter x denote
the proportion of all drug-related health costs that are borne and
recognized by the user and in the absence of empirical evidence
set it equal to 0.5. Then if cm and cs denote the monetary cost
and the social cost per unit of consumption, respectively, the cost
of use felt by the user without harm reduction is cm + xvmaxcs,
whereas harm reduction reduces that to cm + x(vmax � v)cs. So a
constant elasticity demand model suggests that

hðvÞ ¼ cm þ ðvmax � vÞxcs

cm þxvmaxcs

� �c

: ð11Þ

Note, we only need to synchronize the units of cs with cm with each
other, and not with the objective function coefficient (which is nor-
malized to 1), because their units cancel in the h(v) expression.

The exponent c is the elasticity of participation with respect to
the full cost of using. What has been estimated empirically by Dave
(2004) and others is the elasticity of participation with respect to
the monetary price cm.. Interpreting h() to be a function of cm, we
get

hðcmÞ ¼
cm þ ðvmax � vÞxcs

c0

� �c

; ð12Þ

where c0 is a constant equal to the baseline cost without harm
reduction. Per definition, g is

g ¼ dhðcmÞ
dcm

cm

hðcmÞ
¼ ccm

cm þ ðvmax � vÞxcs
: ð13Þ

This expression links our parameter c to the empirically measured
price elasticity of participation by the relation

c ¼ ðcm þ ðvmax � vÞxcsÞ
cm

g: ð14Þ

Note, with the model parameters estimated below, this function
h(v) is only modestly convex, almost linear. If a linear approxima-
tion were used, the solution to an optimal control formulation that
allowed intermediate values of v would nonetheless use bang–bang
controls. This suggests that when our analysis below restricts the
control to boundary solutions in which harm reduction is pursued
aggressively or not at all, that restriction might not matter as much
as it would have if the h(v) function were not so nearly linear.
Table 1
Parameter values.

Parameter Symbol

Inflow into S state k
Exit rate from S state d
Coefficient of innovation i1
Coefficient of imitation i2
Exponent of A(t) a
Exit rate from A state l
Social cost of use cs

Proportion of social cost HR can avert vmax

Proportion of health costs internalized x
Monetary cost of use cm

Price elasticity of participation g
Cost elasticity of participation c
Annual discount rate r
3.4. Parameterization

Table 1 summarizes the parameter values derived in Appendix
A for the Australian IDU and US cocaine epidemics.

Structurally the most important parameter is the exponent, a, of
the power function g(). Since a > 1 for US cocaine, f() is convex for
A > 0 and it is possible to have multiple stable equilibriums sepa-
rated by a tipping point. In contrast, since a < 1 for Australian
IDU, there can be only one steady state with a positive amount
of drug use, and it is stable. The absence of a tipping point for Aus-
tralian IDU implies that harm reduction has greater potential to
trigger catastrophic increases in use for US cocaine.

The potential benefit of harm reduction is greater for Australian
IDU because its upper bound, vmax, is much larger (0.53 vs. 0.174
for US cocaine). That reflects the fact that much of the harm asso-
ciated with Australian IDU comes from outcomes for which effec-
tive harm reduction tactics exist (primarily preventing overdose
and the spread of blood-borne infectious diseases), whereas more
social costs associated with US cocaine pertain to crime, violence,
and reduced labor productivity.

4. Results

4.1. Base case results for Australian IDU and US cocaine epidemic
models

With both the US cocaine and Australian IDU parameteriza-
tions, we computed the net present value of use (A(t)) and harm
(A(t)(1 � v(t))) for various initial numbers of users (A(0)), setting
the initial number of susceptibles to be the corresponding steady
state value (S(0) = k � lA(0)/d). Inasmuch as A(t) tends to be
increasing in the early stages of a drug epidemic, this essentially
models different points in time at which harm reduction could be-
gin. Fig. 1 shows the results, with A(0) expressed as a proportion of
its positive steady state value when there is no harm reduction.
This x-axis normalization allows results for both models to be
shown on the same graph. (Otherwise numbers of US cocaine users
are much larger than are numbers of Australian IDUs.)

For the Australian IDU parameterization, regardless of A(0),
harm reduction increases the (present values of) numbers of users
but reduces aggregate harm. Unless A(0) is quite small, implement-
ing harm reduction increases drug use by 8–20% and reduces harm
by 44–49%.

Results for US cocaine are qualitatively similar for A(0) greater
than about 30% of the steady state value, with full harm reduction
increasing the present value of future use by 7–12% and reducing
corresponding harm by 8–12%. Likewise, at the other extreme,
for A(0) less than about 10.8% of the steady state number of cocaine
Australian IDU US cocaine

0.0526 1.3417
0.0952 0.0605
0 0
0.5112 0.0090
0.8622 1.5604
0.1136 0.1661
$39,225/yr $223.56/gm
53% 17.408%
0.5 0.5
$13,537/yr $106.54/gm
�0.21 �0.45
�0.371 �0.532
0.04 0.04
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Fig. 1. Comparison of effects of implementing harm reduction with different initial
numbers of users for US cocaine and Australian IDU epidemics.
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users, harm is reduced even though use goes up. However, for A(0)
between 10.9% and 22% of the positive steady state value (roughly
600,000–1,200,000 users), the choice v(t) = vmax for all t increases
not only drug use but also total harm, dramatically so for certain
A(0). For A(0) around 15% of the steady state value, the present va-
lue of total future harm can be increased by more than a factor of
4.5.

The reason for these divergent results is that the US cocaine
parameters generate a tipping point separating a high-level equi-
librium (with A = 5.49 million users in the case v(t) = 0 for all t
and with A = 5.78 million when v(t) = vmax for all t) from a low-level
equilibrium (with A = 0 in both cases). With S(0) set as described
and no harm reduction, for any A(0) up to about 16% of the high-
level steady state (i.e., about 890,000 users), use will ebb back to-
ward the equilibrium with no use. However, with harm reduction,
that tipping point is only about 730,000 users. So if
730,000 < A(0) < 890,000, applying full harm reduction can tip the
model to a high-level equilibrium with 5.78 million users, rather
than having use decay back down toward zero.
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Fig. 2. Epidemic trajectories in the A � S plane with and without harm reduction,
starting at the same initial point (near vertical curves show tipping points
separating regions of convergence to low- vs. high-levels of use, with and without
harm reduction), numbers in million.
Note: the region where harm reduction increases total harm is
broader than the region where it tips the epidemic toward the
high-level steady state. For A(0) in the two shoulder regions
(600,000–730,000 & 890,000–1,200,000), implementing harm
reduction does not ‘‘tip” the epidemic, but it does adversely affect
the transient so severely that it increases total harm.

Fig. 2 illustrates the tipping point for the U.S. cocaine epidemic
more clearly by contrasting the two trajectories emanating from a
single initial condition (A(0) = 850,000, S(0) = 19,843,000) with
harm reduction (the curl down to the lower right) and without
harm reduction (the short segment moving up and to the left to-
ward the vertical axis). Annotating the trajectories with time
stamps makes the graph cluttered. Roughly speaking, however,
the doubling time for the number of users on the increasing trajec-
tory to the right of the tipping point is about 4–5 years. The ‘‘half
life” of the number of the users when moving to the left of the tip-
ping point is more sensitive to when one starts counting, but as an
example the left-hand trajectory takes 15 years to decay from 0.6
to 0.3 million users.

That harm reduction – even the relatively modest sort available
for US cocaine where vmax is only 17.4% – could so dramatically af-
fect the trajectory of a drug epidemic might seem to be a sobering
caution against using harm reduction. On the other hand, for this
model implementing a harm reduction policy could adversely tip
the epidemic only if done within a quite small region in A � S
space. Fig. 2 identifies that region by the two almost vertical
curves, which are the stable paths leading to the saddle point equi-
libriums. The right hand of those two curves is the set of tipping
points for the current model when there is no harm reduction.
The left-hand curve shows how far that set of tipping points gets
moved over when harm reduction is implemented as aggressively
as possible (v = vmax = 17.4%).

Fig. 2 has something for both sides of the harm reduction de-
bate. Opponents of harm reduction can look at the two trajectories
diverging from the common starting point and see the potential for
substantial adverse effects on levels of use if harm reduction is
fully applied starting from certain initial conditions. Proponents
can look at how close the two sets of tipping points are and counter
that the set of initial conditions for which that worst case scenario
might come to pass is a quite narrow sliver in A � S space.

Various sensitivity analyses can be performed, but dependence
on vmax may be of particular interest. Results are more dramatic for
the US case because it has two equilibria. Briefly, reducing vmax

does not change much because vmax is already small. However,
increasing vmax: (1) Moves the high-use steady state to the lower
right (more users and fewer susceptible) because the decision ma-
ker can tolerate more users when they are less harmful; (2) Shifts
the tipping point curve to the left because drug use is less harmful,
so the current number of users has to be smaller in order for erad-
ication to be optimal; and (3) Broadens the region where imple-
menting harm reduction can tip the epidemic to the high steady
state. The last effect is not so much because the system has become
more sensitive, but rather because the ‘‘shove” of moving from use
reduction to harm reduction now gives a bigger ‘‘push” to initiation
and so can more easily ‘‘tip” the system over into the other basin of
attraction.

4.2. Results for a hypothetical epidemic for which harm reduction is
riskier

The previous subsection represented our best attempt to
parameterize two real epidemics. However, as Appendix A makes
clear, these parameter estimates are anything but precise. Here
we pursue a sensitivity excursion by exploring whether changes
to just a few parameters can make harm reduction a poor choice
for a broader range of initial conditions. The parameter changes
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are selected to make the sensitivity analysis dramatic, not by refer-
ence to any actual epidemic data.

In brief, the answer is yes. Relative to the base case US cocaine
parameters in Table 1, all that would be required is for users to rec-
ognize fully the reductions in harm (x is doubled from 0.5 to 1)
and for the epidemic to be less virulent (i2 declines from 0.009 to
0.00725). The latter change is of particular interest because of evi-
dence that cocaine’s ‘‘infectivity” has dropped in these latter parts
of the US epidemic relative to its earlier value (Tragler et al., 2001;
Caulkins et al., 2004).

With those changes full harm reduction v = vmax increases total
harm for any A(0) > 550,000 (about 12.5% of the new, lower no-HR
steady state of 4.47M). So instead of being a suboptimal choice
only within a certain, narrow range of initial conditions relatively
early in the epidemic trajectory, harm reduction becomes counter-
productive at any point much beyond those early stages. Even if
the epidemic had stabilized at the no-HR high-level steady state,
with these revised parameters implementing harm reduction still
increases harm, albeit only slightly (use up by 24%, harm up by
3%). So it is not necessarily the case that harm reduction is always
a good strategy once the epidemic has stabilized at endemic levels.
Whether it is or is not depends on the particulars of the harm
reduction policy, and is more likely to be appealing if users do
not recognize fully all of the benefits that harm reduction brings
them in terms of reduced cost of using drugs.

4.3. Implications of uncertainty in parameter values

The model greatly simplifies the epidemic dynamics, and in
reality policy makers would never have perfect knowledge of mod-
el parameters. Hence, the policy makers’ problem is actually quite
a bit more complicated than is Formulation (7), involving stochas-
tic optimization over parameter space. Fig. 3 hints at how such
uncertainty could change the policy prescription, particularly for
a risk-averse decision maker.

Fig. 3a contrasts the original tipping point curves with and
without harm reduction (dashed and solid light lines) with the tip-
ping point curves for a revised parameterization (i2 = 0.007) with
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and without harm reduction, drawn as dashed and solid heavy
lines. Two things emerge.

First, the region in A � S space where harm reduction could tip
an epidemic toward the high-use equilibrium is still narrow, but is
no longer just a sliver. Second and more importantly, that region
has shifted substantially to the right in the A � S plane. Naturally,
for intermediate parameter values, the region where harm reduc-
tion could tip the epidemic is between the two regions shown in
Fig. 3a. Hence, if one did not know the value of i2 precisely and only
knew that 0.007 < i2 < 0.009, then it would be possible for imple-
menting harm reduction to tip the epidemic if the initial conditions
were anywhere between the far left and far right curves.

Nor is the far right hand curve of Fig. 3a a firm bound on the re-
gion where harm reduction could potentially tip the epidemic.
Fig. 3b contrasts the two pairs of tipping point curves already dis-
cussed (light lines) with two new ones obtained by decreasing i2
just a bit further, from 0.007 down to 0.0065. That change pushes
the tipping point curve with harm reduction only slightly to the
right (dashed bold line), but it dramatically alters the tipping point
curve when there is no harm reduction (solid bold line). No longer
does the curve divide the relevant region of A � S space in half,
with initial conditions to the lower left approaching the no use
equilibrium and those to the upper right approaching the high-
use equilibrium. Rather, without harm reduction, the epidemic
would approach the no use equilibrium unless the initial condi-
tions happened to fall within a thin pocket surrounding the high-
use equilibrium. Furthermore, decreasing i2 a bit more makes even
that thin pocket disappear.

The implications of Fig. 3 are clear, even without formally solv-
ing a stochastic optimization problem. There are regions in state
space where harm reduction can dramatically increase future
use. Since the harm reduction modeled in this subsection had
vmax = 17.41%, those dramatic increases in use also bring dramatic
increases in total social cost. Furthermore, the location of those re-
gions can be highly sensitive to certain parameter values. Hence, a
risk-averse decision maker who wants absolute guarantees that a
policy action will ‘‘do no harm” has some reason to shy away from
an irrevocable implementation of harm reduction.

This cautionary tale by no means rules out harm reduction for all
epidemics and all decision makers. If a decision maker is confident
that a policy intervention will not tip the epidemic toward a much
higher level of use, then harm reduction is less risky. Inasmuch as



J.P. Caulkins et al. / European Journal of Operational Research 201 (2010) 308–318 315
use of many of the major drugs in many countries has more or less
stabilized around endemic levels, decision makers might have con-
fidence that the epidemic is not near a tipping point even if they
do not have a fully parameterized model of the epidemic.

Likewise, if harm reduction could quickly be reversed when and
if use increases more than expected, then there is less danger. That
suggests that studying the optimal dynamic control version of For-
mulation (7) would be of interest.

Fig. 3b offers one more insight: implementing harm reduction
can still tip an epidemic even when use is rapidly increasing before
harm reduction is adopted. In a one-dimensional, continuous-time
tipping point model, if use is increasing then the system must al-
ready be ‘‘to the right” of the tipping point and on a trajectory lead-
ing to the high-level equilibrium. That logic does not apply,
however, to higher dimensional models. Consider, for example,
what happens when one starts with 10 million susceptibles and
3 to 4 million users in Fig. 3b, with no harm reduction and
i2 = 0.0065. Those initial conditions are outside the ‘‘pocket” (solid
bold line) delimiting initial conditions that lead to the high-level
equilibrium, so we know the epidemic will eventually approach
the lower equilibrium with no use. It does so by initially moving
to the lower right (increasing use and decreasing numbers of sus-
ceptibles) and can go quite far to the right before curling back.
Hence, it is not safe to presume that increasing use implies conver-
gence to a high-level equilibrium and, hence, that there is no great
risk from implementing harm reduction. It is possible that in such
circumstances harm reduction could convert a ‘‘flash epidemic”
with only transitory widespread use into one that stabilizes at high
endemic levels.
5. Discussion

Drug abuse can do enormous damage to users and to society
more generally, so it is natural to ask whether drug use can be
made safer. To varying degrees the answer is, ‘‘Yes, drugs can be
made safer, although by no means safe”. Some countries (e.g., Aus-
tralia) have embraced such ‘‘harm reduction” interventions. Others
(e.g., the US) eschew harm reduction, in no small part because
opponents worry that making drugs safer might encourage greater
use.

Sensitive to this possibility, MacCoun (1998) reviews evidence
concerning ‘‘behavioral compensation” in a variety of domains
and suggests that people do often decide to participate in an activ-
ity more frequently when it is safer, but the increases are smaller,
proportionately, than the reductions in harm, so total harm is gen-
erally reduced when an activity is made less harmful.

That the direct behavioral response is less than proportionate
need not, however, imply that the total long-run change in use is
less than proportionate if there is feedback in the system governing
the dynamic evolution of use. It is generally accepted that social-
interactions and/or market effects can generate such feedback in
trajectories of drug prevalence. Hence, it is worth moving beyond
a simple, static conceptualization that total harm = use * average
harmfulness, to embed harm reduction interventions within a dy-
namic model of the evolution of drug use, as we have done here.
Furthermore, as future research one may wish to explore a dynam-
ically controlled version of this optimization model and/or richer
versions of the model with more states and parameters to capture
better the subtleties of population mixing and other refinements.

Nevertheless, the results here are a proof by example that in a
system with feedback, reductions in harm that have a less than
proportionate direct effect on initiation can still have a much more
than proportionate effect on the present value of future use. It is
noteworthy that the epidemic model employed was an exceed-
ingly simple one. It has just two states (users and non-users who
are susceptible to initiation) and only one non-linearity – namely
that initiation arises from the mixing of users and susceptible
non-users, with the probability that such interactions generate a
new initiation possibly depending on whether the drug is widely
or not so widely used. Hence, one does not have to concoct a par-
ticularly exotic set of non-linear feedbacks for dynamics to matter.

A particular mechanism that emerged from this simple model of
drug use dynamics was a tipping point separating two stable equi-
libria, one with low-levels of use and the other with a much higher
level of use. If the system is initially close to the tipping point but
on the side leading to low-levels of use, implementing harm reduc-
tion might shift the tipping point, so that the current level of use is
then on the side of the tipping point leading use to grow toward
the high-level equilibrium.

This mechanism emerged in the model parameterized for US
cocaine principally because the parameters suggest that random
interactions between users and susceptible non-users were more
likely to lead to initiation when cocaine use was common. In con-
trast, the parameterization for Australian IDU suggests that the
likelihood such interactions lead to an initiation is decreasing in
the current prevalence of use. This difference accounts in no small
measure for the model result that harm reduction is always a good
idea for Australian IDU, but there is a (relatively narrow) range of
initial conditions for which harm reduction increases not just fu-
ture use but also total harm for the model parameterized for US co-
caine use. Those initial conditions involved levels of use far below
current levels, so if the model were to be interpreted literally, it
would suggest that implementing harm reduction for US cocaine
today would reduce the present value of total future harm.

The models are highly stylized and parameterizations tenuous,
so it is important not to put too much stock in those specific rec-
ommendations. However, many models of drug epidemics have
tipping points and for various reasons (e.g., ‘‘enforcement swamp-
ing”), not just because of the specific mechanism in play here. So
the caution about harm reduction is a more general one.

The model explored above also serves as a proof by example of
the idea that the location of these tipping points can be highly sen-
sitive to certain parameter values. Since in practice parameter val-
ues are not known with great precision or certainty, this suggests
an additional source of caution.

Hence, the appropriate policy prescription becomes, ‘‘One
should be more cautious about implementing harm reduction
when the drug problem may be near a point where modest pertur-
bations favoring greater use can be multiplied into large changes in
use”.

That is subtly but importantly different than what we expected.
We expected the bottom line recommendation to be, ‘‘Harm reduc-
tion can safely be implemented late in an epidemic, when use has
stabilized near endemic levels”. However, we found – without
great effort – examples where feedback can make harm reduction
counter-productive even when use had already stabilized at ende-
mic levels.

A more general implication is that the bitterly opposing sides of
the harm reduction debate may both have valid points. Common
ground – or at least a more productive characterization of differ-
ences – might come from both sides articulating more carefully
their presumptions concerning the dynamics of drug use. Then
both sides could couch their recommendations in conditional lan-
guage, conditional on those presumptions. For example, a harm
reduction advocate might say, ‘‘Harm reduction is worth consider-
ing for this drug in this country because of the following evidence
concerning its dynamics” rather than saying ‘‘Harm reduction is
unequivocally and universally the best policy”.

A final point concerns the modeling strategy. Many product dif-
fusion models have been explored. Notable among them are the
models by Easingwood et al. (1983), who extend the original Bass
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model allowing for non-uniform influence between buyers, A, and
the remainder of the population, 1 � A, that have not yet adopted.
It is clear this perspective can generate interesting dynamics. These
dynamics were explored here for controlling the spread of a ‘‘bad”
consumption good, whose use is penalized in the objective func-
tion. One could easily imagine applying the same principle to mar-
keting models where the objective is to encourage the spread of a
good whose consumption is beneficial to the decision maker.

An analog of harm reduction in marketing would be raising
prices, which improves the per person objective function value
but over time can have an adverse effect on the population of users
(customers). One could also explore the inverse problem of issuing
coupons or price discounts that promote use, but diminish the
instantaneous impact of that use on the objective function (by
reducing net revenues on sales at the discounted price). The anal-
ogous managerial recommendations could include that price dis-
counts might be most useful if the adoption dynamics are near
some tipping point separating decay to a low-level of use from
an equilibrium in which the product is in widespread use.

Hence, avenues for future work include not only constructing
similar models for other drugs or more elaborate state spaces rep-
resenting different intensities of use and exploring dynamic con-
trol formulations. They also include ‘‘inverse” applications in
marketing where high levels of use are good, not bad, for the deci-
sion maker.
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Appendix A. Derivation of parameter values

A.1. Drug use trajectory parameters

US cocaine parameters were derived from Caulkins et al.’s
(2004) epidemic data. Specifically, the number of cocaine users
was taken as the sum of the number of ‘‘light” and ‘‘heavy” users
(A(t) = L(t) + H(t)) in Caulkins et al.’s Figs. 3 and 4, and Initiation
Series 3B was used for the initiation series, I(t). (Analysis was rep-
licated with A(t) defined to be a weighted average of light and hea-
vy users weighting by relatively proclivities to consume, but the
results were similar.)

The exit rate l = 0.16607216769 gives the smallest sum of
squared errors (SSE) between the A(t) data and a modeled A(t), call
it Am(t), obtained from Am(t) = I(t � 1) + (1 � l)Am(t � 1) started
with Am(1972) = A(1972).

A series S(t) was created with S(1972) = k/d and
S(t) = k + (1 � d)S(t � 1) � I(t � 1) for t > 1972. The k, d, and initia-
tion function parameters were found by minimizing the SSE be-
tween the Caulkins et al. I(t) series and the series (i1 + i2A(t)a)S(t),
subject to the constraint that all parameters be non-negative, with
that constraint binding only for i1, which was estimated to be 0.
The parameters in Table 1 are for A(t) being the Caulkins et al.
(2004) A(t). Similar results were achieved using Am(t).

Australian data were based on Caulkins et al. (2007). That anal-
ysis focused on occasional and frequent injection drug users, not
heroin users per se, but there is considerable overlap, so A(t) and
I(t) were taken to be the estimated prevalence and inflow to that
population, respectively. Almost no one starts drug use by inject-
ing, so susceptibles are those already using drugs by means other
than injection (i.e., the sum of Caulkins et al.’s cannabis only users
(C(t)) and those using more than cannabis but not by injection,
(M(t)).

Inflow into the pool of susceptibles is taken to be the product of
average initiation into drug use times the proportion who would at
some point consider injecting (estimated to be 0.2232 million and
23.5%, respectively). Their outflow rate d is the inverse of the
weighted average of dwell times for all people who initiate any
drug use. Caulkins et al. estimated 8.8% initiate directly into the
M-state, which has a dwell time of 8.6 years. The other 91.2% ini-
tiate into the C state, which has an average dwell time of 7.5 years,
with 37.2% of them then escalating into the M state. So the overall
average dwell time is (8.8% * 8.6 + 91.2% * (7.5 + 37.2% * 8.6)) = 10.5
years, yielding a d = 0.0952.

These parameters were used to create two time series of sus-
ceptibles starting with initial values in 1960 at the possible ex-
treme values of bS ¼ k=d and 0. To fit the parameters for
(i1 + i2A(t)a)S(t), to the I(t) series, we regressed log(I(t)/S(t) � i1)
on log(A(t)) for various values of i1. It turned out that i1 = 0 gave
the best fit, and the values of i2 and a were similar whether S(t)
was produced with Sð1960Þ ¼ bS and 0, so Table 1 contains the mid-
point of those two estimates. Of all the parameters estimated,
those for initiation into Australian IDU are the most suspect be-
cause of data limitations and the limited extant literature that
models that population quantitatively.

The exit rate from A(t) is the weighted average of Caulkins et al.
(2007) estimated exit rate for occasional (0.15) and frequent (0.05)
injectors, weighting by their relative proportions (175,000 and
100,000, respectively, according to Law et al. (2003)), or l = 0.1136.

A.2. Parameterizing the effect of harm reduction on initiation

Caulkins et al. (2002) estimate the social cost per gram of co-
caine consumed to be $215.18 in 2001 dollars, which is $223.56
per pure gram in 2003 dollars. That estimate was worked up from
Harwood et al. (1998), with some adaptations, and Harwood et al.
suggest that 17.408% of cocaine related social costs in the US are
attributable to medical consequences and premature death, so that
is taken as the value of vmax. Also, from Caulkins et al. (2004) we
have that the average price per pure gram of cocaine (powder) pur-
chased in <2 gram units in 2003 was $106.54.

The parallel estimates for Australia are much harder to come by
because less has been published about social costs of drugs in Aus-
tralia, because the only break out of social costs by type of user is
done by drug use and state of dependence, not by injection, and be-
cause Australia already has been implementing some harm
reduction.

The starting point is Moore and Caulkins’s (2006) estimates of
the health-, crime-, and road accident related social costs of drug
use for Australia broken down by substance and by whether or
not the user is dependent. The A users represent injection drug
users. In Moore’s terms, that might be construed as including both
dependent and non-dependent heroin users and a subset of depen-
dent amphetamine and cocaine users. McKetin et al. (2005) sug-
gest that proportion might be about 76% for amphetamine users.
We found no similar estimate for cocaine users, but cocaine use
is relatively rare in Australia and accounts for a quite modest share
of all social costs, so in the absence of any better figure, we apply
the 76% to cocaine as well.

Table A1 summarizes the relevant information in Moore and
Caulkins (2006, Tables 16 and 17) (e.g., including 76% of Moore’s
estimate of total health-related costs associated with dependent
amphetamine users and 76% of his estimate of the number of
dependent amphetamine users). Many who inject amphetamine
or cocaine also inject heroin, so to adjust for double counting we
presume the total number of injectors is the number of heroin
users plus half of the dependent amphetamine and cocaine



Table A1
Social costs associated with those presumed to be Australian IDUs (Millions of Australian Dollars).

Opiates (dependent use) Opiates (Non-dependent use) Amphetamine (dependent use) Cocaine (dependent use) Total

Health-related costs $2,976 $55 $358 $87 $3,389
Crime-related costs $1,242 $18 $1,588 $77 $2,848
Road accident costs $261 $46 $154 $461
Total costs – dependence $4,479 $119 $2,101 $164 $6,699
# of users 41,401 107,898 55,480 5,320 179,699
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injectors. McKetin et al. (2005, p. 11) report that 72% of dependent
(meth)amphetamine users in their sample ‘‘had a history” of her-
oin use. ‘‘Had a history of” is not precisely defined but seems to
be use at some point in the past, not just in the past-year, so the
overlap in past-year use must be less. So we used a proportion of
50% for this overlap. Hence we estimate the total number of IDUs
contributing to Moore’s social cost estimate to be
41,401 + 107,898 + (1 � 50%)*(55,480 + 5,320) = 179,699. This is
considerably less than the Law et al. (2003) estimate of 275,000
IDUs in Australia, but the Law et al. figure came from before the
dramatic reduction in heroin availability (the so-called ‘‘heroin
drought”, cf., Weatherburn et al., 2003), so the 176,699 figure is
sensible. It suggests a total current social cost per IDU of
$6699M/179,699 = $37,277 with health-related social costs per
IDU per year of $3389M/179,699 = $18,859. Moore excludes both
the costs of control and labor productivity effects, so this gives a
somewhat optimistic view of the proportion of social costs that
harm reduction can address, but one that is consistent with the
US cocaine estimates above.

Complicating matters is that Australia already does some harm
reduction. As a first-order approximation, it might be fair to say
that Australia has essentially eliminated HIV/AIDS costs (cf., Moore
and Caulkins, 2006). Drummond (2004) credits those programs
with having averted 25,000 HIV infections which would carry an
average annual post-diagnosis cost of $14,000 per year, so recent
Australian efforts might already have been saving about $350 mil-
lion per year, or about $1950 per IDU. Note: The long-run savings
from these averted HIV infections will be much larger, but these re-
flect more closely savings in the year of Moore’s analysis.

Adding this additional $1950 per IDU in health-related costs
raises the total health-specific and all-social costs per IDU per year
in the absence of any harm reduction from $18,859 and $37,277 to
$20,809 and $39,227, respectively. This suggests setting
vmax = $20,809/$39,227 = 0.53 for Australian IDU.

To estimate cm, the monetary cost of injection drug use to the
user, we start with Moore (2005, p. 22) observation that the con-
sensus in the literature was that ‘‘regular” heroin users spend
$600 per week on heroin and that they consumed 17.5 times as
much as did occasional users, suggesting average annual spending
on drugs by IDU of about (41,401 + 50% * (55,480 + 5320) +
107,898/17.5) * $600 * 52/179,699 = $13,537.

Finally, concerning the elasticity of participation, Dave (2004, p.
26) reports that the ‘‘long-run price elasticity of the probability of
participating in each drug [are] about �0.45 for cocaine and �0.21
for heroin” based on US data. There are no comparable studies of
heroin elasticity in Australia, let alone for all Australian IDU, so
we use the �0.21 figure for the Australian model as well.

Appendix B. Analysis of the stability of the equilibria

The Jacobian matrix for the systems dynamics is

B ¼
�ðdþ f ðAÞhðvÞÞ �f 0ðAÞhðvÞS

f ðAÞhðvÞ f 0ðAÞhðvÞS� l

� �
so

sI � B ¼
sþ ðdþ f ðAÞhðvÞÞ f 0ðAÞhðvÞS
�f ðAÞhðvÞ sþ l� f 0ðAÞhðvÞS

� �
:

Setting the detjsI � Bj to zero gives the discriminant equation

s2 þ ðdþ lþ f ðAÞhðvÞ � f 0ðAÞhðvÞSÞsþ lðdþ f ðAÞhðvÞÞ
� df 0ðAÞhðvÞS ¼ 0:
B.1. Case A: steady state with bA ¼ 0 and bS ¼ k=d

If g() is a power function, then f
0
(A)jA=0 is infinite (zero) if

a < 1(a > 1), implying that the coefficients of s1, and s0 are both
negative (positive), respectively, implying that the steady state
with bA ¼ 0 is either semi-stable or stable, respectively.

B.2. Case B: interior steady state with concave f()

From Eq. (7), in any steady state, lbA ¼ f ðbAÞbShðvÞ, so as long as
f ðbAÞ > 0, we can rewrite the discriminant equation as

s2 þ dþ f ðAÞhðvÞ þ l 1� f 0ðAÞA
f ðAÞ

� �� �
s

þ lf ðAÞhðvÞ þ ld 1� f 0ðAÞA
f ðAÞ

� �
¼ 0:

Since f(A) > 0, if f() is concave so 1� f 0 ðAÞA
f ðAÞ

� �
> 0, then all three coef-

ficients (of s2, s1, and s0) are positive, implying that the roots are
negative or are complex conjugate with negative real parts, so
any interior steady state with f() concave is stable.

B.3. Case C: 2 interior steady states with convex f()

This is the case where Eq. (10) crosses Eq. (9) 2 times. As Eq. (10)

is monotonically increasing in bA, there is a steady state bAL with a

lower A value and one with a higher A value bAH compared to the

critical value bAC ¼ ð1�aÞd
hðvÞi2

� �1=a
, where (9) hits (10) in a tangent point.

Further, we see that f 0 ðAÞA
f ðAÞ ¼ a and f ðbALÞ < f ðbACÞ ¼ ða�1Þd

hðvÞ , so the coef-

ficient of s0 is lf ðbAHÞhðvÞ þ ldð1� aÞ < lf ðbACÞhðvÞ þ ldð1� aÞ ¼
ldða� 1Þ þ ldð1� aÞ ¼ 0. So, the third coefficient of the discrimi-
nant equation is negative, and the first is positive. The sequence of
coefficients changes sign once, so there is one positive Eigenvalue.

The other eigenvalue is negative, so the low steady state bAL is a
saddle point.

For the high steady state, f ðbAHÞ > f ðbACÞ holds, so the coefficient
of s0 > 0. The coefficient of s1 is dþ f ðbAHÞhðvÞ þ lð1� aÞ >
dþ f ðbACÞhðvÞ þ lð1� aÞ ¼ dþ dða� 1Þ þ lð1� aÞ ¼ daþ lð1� aÞ.
The sign of this expression depends on the actual parameter val-
ues, but for the sets of parameter values analyzed it is positive.
So all coefficients are positive and the high steady state bAH is
stable.
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