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Abstract

In this paper we present dart throwing algorithms to generate maximal Poisson disk point sets directly on 3D

surfaces. We optimize dart throwing by efficiently excluding areas of the domain that are already covered by

existing darts. In the case of triangle meshes, our algorithm shows dramatic speed improvement over comparable

sampling methods. The simplicity of our basic algorithm naturally extends to the sampling of other surface types,

including spheres, NURBS, subdivision surfaces, and implicits. We further extend the method to handle variable

density points, and the placement of arbitrary ellipsoids without overlap. Finally, we demonstrate how to adapt our

algorithm to work with geodesic instead of Euclidean distance. Applications for our method include fur modeling,

the placement of mosaic tiles and polygon remeshing.

1. Introduction

A Poisson disk point set is a uniformly distributed set of
points in which no two points are closer to each other than
some minimum distance 2r. Such point sets are said to be
maximal if no more points can be added to them without vi-
olating the minimum distance constraint. Because of their
good statistical properties, Poisson disk point sets are ideal
candidates for a number of sampling contexts, and are par-
ticularly useful in Monte Carlo integration. Applications of
Poisson disk point sets on surfaces include converting a sur-
face to a point-based representation, surface retriangulation,
the distribution of data points such as irradiance samples
over surfaces and the creation of stipple patterns. Poisson
disk point sets are also particularly well suited to applica-
tions where the locations of points will be visible, and a
number of natural phenomena exhibit Poisson disk-like be-
havior. For example, the dimples on an orange, the arrange-
ment of pores or hairs on skin, and the coloration of certain
kinds of fish and birds, all mimic Poisson disk distributions.

A large body of work exists to generate Poisson disk pat-
terns or similar distributions on the plane. While such a pla-
nar distribution can be transferred to a 3D surface by means
of a parameterization, in general this introduces distortion.
Practically speaking, the distortion causes the point set to
lose some of its good spacing characteristics.

The contribution of this paper is a set of optimized dart
throwing (ODT) algorithms to directly generate Poisson disk
point sets on surfaces. The algorithms are fast, between ten

and twenty times faster than Turk’s method [Tur92]. Our
method is also easier to implement as it does not require
moving points over the surface. It does not require a param-
eterization, nor mesh connectivity in the case of Euclidean
spacing. A second contribution of the paper is to extend
ODT to different surface types, including spheres, Bezier
patches, subdivision surfaces and implicits. We also extend
our method to handle different kinds of spacing not con-
sidered by most point placement algorithms: sphere distri-
butions with randomized density and non-overlapping ellip-
soids. A third contribution of this work is to define a fast
dart throwing method based on geodesic distance. Taken to-
gether, our dart throwing algorithms provide a good solution
for many different point placement problems.

2. Previous Work

Planar Methods. Cook [Coo86] was the first to suggest the
use of Poisson disk sampling patterns in computer graph-
ics. Noting the exorbitant cost of making such patterns by
dart throwing, Cook advocated stratified samples as an al-
ternative. Later, Lloyd [Llo87] described a simple relaxation
procedure that could distribute points evenly, and Mitchell
et al. [Mit91] removed the minimum distance requirement
to produce the best candidate algorithm.

Because of the difficulty of creating very large, well dis-
tributed point sets, tile-based approaches were developed
that reuse smaller point sets within a larger context. Co-
hen et al. [CSHD03] showed how Wang tiles can be used
to tile the plane seamlessly with well spaced points. Kopf et
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al. [KCODL06] take this idea even further, tiling the plane
with point distributions at multiple resolutions. Other work
uses non-rectangular tilings as a scaffolding on which to
build a point set [ODJ04, Ost07].

Recently, a number of optimized dart throwing (ODT) al-
gorithms have been developed that get around the problems
of naive dart throwing. They do this by excluding covered
parts of the sampling domain from dart throwing. Dunbar
and Humphreys [DH06] encode the empty region around a
point set as “scalloped sectors”, which can be sampled ac-
cording to area. Jones [Jon06] uses a Voronoi diagram to
keep track of empty spots in the sampling domain. White et
al. [WCE07] employ a quadtree structure to exclude covered
areas from dart throwing. Bridson [Bri07] describes a sim-
ilar, but less rigorous method. Wei [Wei08] performs dart
throwing in parallel on the GPU, and Feng et al. [FHHJ08]
distribute ellipses in the plane using stratified seed points
that are relaxed using a variant of Lloyd’s algorithm.

Points on Surfaces. Turk [Tur92] uses a variant of Lloyd
relaxation defined for polygon meshes. The method starts
by placing points randomly on the surface. The points then
repel each-other, eventually reaching a uniform distribution.
Alliez et al. [AECdVDI03] generate seed points for a similar
algorithm by error diffusion on a triangle mesh. Surazhsky
et al. [SAG03] produce variable density samples on a mesh
by constructing a weighted centroidal Voronoi tesselation of
the surface. Witkin and Heckbert [WH05] directly sample
implicit surfaces with floater particles that roam freely over
the surface, repelling each-other.

Nehab and Shilane [NS04] create stratified point sets on
triangle meshes by subdividing the space around the mesh
with an octree, placing a single sample in each octree leaf
node. Rovira et al. [RWCS05] define a set of well distributed
“global lines” in space and then intersect those lines with a
surface to produce a point set. Li et al. [LLLF08] generalize
the concept of Wang tiles to surfaces. Once computed, the
tiling can be used to quickly distribute points evenly over the
surface, but non-uniform densities are not demonstrated. To
overcome distortion in the tiling, Lloyd’s method is applied
to the initial point distribution made by the tiling.

Geodesic Distance Methods. Some applications, particu-
larly remeshing, prefer points that are well spaced accord-
ing to geodesic distance (shortest path on the surface) rather
than Euclidean distance. Coming from the level set litera-
ture, Sethian [Set96] cast the geodesic distance problem as
a solution to the Eikonal equation, which he solved by fast
marching. Later work [KS98] [SV01] extended fast march-
ing to compute geodesics on triangle meshes and parameter-
ized surfaces (geometry images). Peyré and Cohen [PC06]
use the fast marching method to sample surfaces, placing
points successively at the surface location that is furthest
away from peviously placed points.

Surazhsky et al. [SSK∗05] and Mitchell et al. [MMP87]
present comparatively fast algorithms to compute exact

and approximate geodesics on triangle meshes. Fu and
Zhou [FZ08] combine this method with boundary sampling
[DH06] to calculate Poisson disk point sets directly on trian-
gle meshes. Weber et al. [WDB∗08] approximate geodesic
distance very quickly on the GPU using a fast sweeping al-
gorithm. However, the method only works on geometry im-
ages, and does not distribute points on the surface.

3. Optimized Dart Throwing on Surfaces

This section describes our algorithm for creating Poisson
disk point sets on surfaces based on Euclidean distance. Our
algorithm draws inspiration from a number of other dart
throwing methods, and it is most similar to [WCE07]. How-
ever, our technique performs dart throwing in 3D and for a
number of different surface types. In order to sample a given
surface, our algorithm requires the following:

1. A definition for small pieces or fragments of the surface.
2. A method to choose a fragment according to area.
3. A method to uniformly sample points on a fragment.
4. A method to determine if a fragment is covered by a dart.
5. A method to split surface fragments into subfragments.

The algorithm itself works directly with the surface defini-
tion, and it does not require moving of points on the surface
or a parameterization.

3.1. Overview

Our optimized dart throwing algorithm begins by dividing
the surface into fragments that meet the above requirements.
For example, the triangles of a triangle mesh serve as the
fragments, and a NURBS surface can be decomposed into
Bezier patch fragments. These initial surface fragments are
placed in an “active” list to prepare for dart throwing.

To throw a dart, the algorithm selects an active fragment
F with probability proportional to its area. It then chooses a
random point p on the fragment and checks to see if it meets
the minimum distance requirement with respect to the cur-
rent point set. If the minimum distance requirement is met,
the algorithm adds p to the point set. In any case, the algo-
rithm then checks to see if F is completely covered by any
point from the point set. If F is covered, it is discarded; oth-
erwise, we split it into a number of child fragments and add
the uncovered fragments back to the active fragment lists.
Dart throwing terminates when there are no more active sur-
face fragments.

4. The Triangle Mesh Case

This section describes optimized dart throwing in the spe-
cific case of triangle meshes and Euclidean distance. In this
case, the triangles themselves are the surface fragments. A
triangle can be split into four children by introducing new
vertices at edge midpoints. It is also a simple matter to test
whether a triangle is covered by a sphere–check to see if all
the vertices are inside the sphere. Furthermore, the area of a
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Figure 1: Logarithmic binning allows the algorithm to

choose a surface fragment in constant time on average.

triangle can easily be computed as one half the length of the
cross product of two of its sides: ‖(V1 −V0)× (V2 −V0)‖/2.
Finally, sampling a triangle uniformly with respect to area
can be done by generating a random barycentric coordinate
and returning the corresponding point on the triangle.

Logarithmic binning of active triangles. To make the for-
mulation complete, we must choose an active triangle ac-
cording to area. A standard way to organize the active trian-
gles would be to place them in a balanced search tree, yield-
ing a logn search to choose a triangle. In this work, however,
we adopt a different strategy based on logarithmic binning

and rejection sampling that allows us to choose a triangle in
constant time on average, given reasonable assumptions on
the distribution of triangle areas (i.e. the ratio fo the maxi-
mum to minimum triangle area is less than 264) [WCE07].
The idea behind logarithmic binning is to place all of the ac-
tive triangles in bins according to area, with each bin span-
ning a small range of areas, as shown in Figure 1. In our im-
plementation, a bin includes triangles from some minimum
area Bmin to a maximum Bmax = 2Bmin. A triangle with area
At would be placed in bin blog2(Amax/At)c, where Amax is
the maximum area of triangles from the original mesh.

To choose a triangle, we select a bin with probability pro-
portional to the total area in the bin using a linear search,
starting at the first non-empty bin. We then choose a triangle
within the bin based on rejection sampling (e.g. pick a tri-
angle at random within the bin and then accept it with prob-
ability At/Bmax, where once again At is the triangle’s area,
and Bmax is the maximum area of triangles assigned to the
bin. Repeat until a triangle is accepted.) Triangles in the bin
will invariably be at least half as large as Bmax, so the accep-
tance rate of the rejection sampling is at least fifty percent,
and triangle selection will run in constant time on average.

Overlap testing. An important part of making dart throwing
efficient is to optimize minimum distance testing–checking
thrown darts and area fragments for overlap against the cur-
rent point set. We employ a spatial grid hash table to limit the
number of overlap tests that must be made. A kd-tree could
also be used for this purpose.

Termination in practice. To ensure that the algorithm will
terminate, we discard triangles fragments that are too small
(< 1/10000th the area of the smallest triangle in the origi-
nal mesh). This takes care of the hypothetical case in which
three dart boundaries meet at one point, as well as small im-
precision issues related to floating point numbers.

Performance on triangle meshes. Figure 2 plots the point
generation speed of our dart throwing algorithm on three dif-
ferent triangle meshes, compared with the relaxation method
described in [Tur92]. Our algorithm is consistently more
than an order of magnitude faster than Turk’s method with
40 iterations. Note also that we must process the triangles
individually, so the algorithm must be at least O(M + N),
where M is the number of triangles in the mesh and N is the
number of points in the point set. In the timings this shows
up as a startup cost related to the mesh size. Our method also
fares well against the stratified method in [NS04], with speed
between about 0.5 and 2 times as fast, depending on the sub-
division settings. This should not be surprising, since similar
triangle subdivisions are the bottleneck in both algorithms.
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Figure 2: Points placed per second for different triangle

meshes and point set sizes using our optimized dart throwing
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5. Other Surface Types

One of the strengths of our algorithm is that its hierarchi-
cal structure naturally extends to sampling different surface
types. In addition to triangles, we have implemented our
dart throwing algorithm on the unit sphere, Bezier patches,
Loop subdivision surfaces and implicits (see Figure 3). With
the exception of the sphere, we are the first to perform dart
throwing directly on these surfaces. Here we describe the
modifications to the basic algorithm needed to handle the
additional surface types.

5.1. The Unit Sphere

The unit sphere is an important special surface, and it is
therefore appropriate that we adapt our ODT algorithm to it.
Possible applications of Poisson disk point sets on the sphere
include positioning virtual lights for ambient occlusion, and
BRDF sampling.

We define the area fragments on a sphere to be spherical

rectangles, regions bounded by angular extent as shown in
Figure 3. The area of a patch can be calculated as an integral
over its angular extents, (θ0, θ1, φ0 and φ1):

∫ φ1

φ0

(θ1 −θ0)sinφdφ = (θ1 −θ0)(cosφ0 − cosφ1). (1)
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Figure 3: In addition to triangle meshes, optimized dart throwing can be done directly on a number of other surface types. The

figure shows examples of the different surface types (top row), and surface fragment definitions (bottom row).

As with triangles, spherical patches can be selected pro-
portional to area by logarithmic binning. Choosing a point
uniformly on the surface of the patch can be performed by
inverting equation 1. We generate two random numbers, r1
and r2, uniformly in [0,1) and transform them to angles on
the sphere (θ ,φ) using the equations θ = (1− r1)θ0 + r1θ1,
and φ = cos−1((1− r2)cosφ0 + r2 cosφ1).

Testing to see if a spherical patch is covered by a sam-
ple point can be done by checking to see if the four corners
of the patch lie within the minimum distance sphere around
the point. This test is always valid except for patches closer
to the poles than the dart radius, where the curvature of the
sides of the patch exceeds the curvature of the minimum dis-
tance sphere surrounding a sample point.

5.2. Bezier Patches

Optimized dart throwing can also directly sample Bezier
patches and NURBS, which can be decomposed into Bezier
patches. A Bezier patch is a tensor product surface defined
by a control mesh that forms the convex hull of the patch,
as shown in Figure 3. A patch can be subdivided into four
children whose union is the parent patch by several applica-
tions of the de Casteljau algorithm. Furthermore, as a patch
is subdivided the control polygons of the subpatches asymp-
totically approach the surface.

No closed form expression exists for the area of a Bezier
patch, but it is still possible to sample its surface according
to area by rejection sampling. In this scheme, instead of stor-
ing the actual area of the patch, we store a upper bound on
the area, s′max t ′max, where s′max and t ′max are bounds on the
magnitudes of the s and t derivatives over patch, Ps and Pt .
The algorithm chooses a patch on which to sample accord-
ing to the area bounds and then selects a point with a ran-

dom parametric coordinate (u,v). Rejection sampling then
thins out the distribution to be uniform with respect to area.
The acceptance rate of the rejection sampling for point (u,v)

in parameter space is ‖Ps(u,v)×Pt (u,v)‖
s′max t ′max

. Note, however, that in
this case the algorithm must choose a new patch on which to
place the next point each time a sample is rejected.

The exact algorithm just described is rather slow due to
the rejection sampling and the need to calculate surface
derivatives. In practice, it is better to approximate the area
of the patch as the area of the two triangles defined by the
patch corners. Darts can then be thrown uniformly in param-
eter space, leaving the minimum distance criteria to even out
the resulting point distribution.

5.3. Subdivision Surfaces

Subdivision surfaces possess a hierarchical structure that fits
nicely into our optimized dart throwing framework. We have
implemented our algorithm for Loop subdivision surfaces,
although Catmull-Clark subdivision surfaces could be han-
dled in essentially the same manner.

The natural area fragment in a Loop subdivision surface is
the 1-ring of a triangle in the control mesh (the triangle plus
all vertices connected to it). This 1-ring contains all of the in-
formation needed to reconstruct the limit surface for the tri-
angle. In order to make optimized dart throwing work with a
subdivision surface, the algorithm must be able to subdivide
all of the triangles in the control mesh individually. Conse-
quently, we store the 1-ring of each triangle separately, repli-
cating vertices as needed.

Like the control mesh of a Bezier patch, the 1-ring of a
triangle forms a convex hull of the limit surface correspond-
ing to the triangle. However, this bound is not particularly
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tight, so in practice we create an approximate bound com-
posed of the three vertices of the triangle along with their
corresponding limit points. [WP04] define an exact bound
that could also be used.

The limit surface area for a mesh triangle can be approx-
imated using the area of the triangle itself, and we can ap-
proximate a unifiorm distribution on the limit surface with a
uniform distribution over the current control mesh. To throw
a dart, we choose a mesh triangle with probability propor-
tional to area, then we select a random point on the triangle
and project it to the limit surface. This dart location can then
be tested against the current point set. Finally, the triangle 1-
ring is tested against the point set for coverage, and is either
discarded or subdivided based on the results of this test.

5.4. Implicit Surfaces

Implicit surfaces do not possess a natural hierarchical struc-
ture, which makes placing points on them challenging. Our
solution is to use a spatial hierarchy instead of a hierarchy
of surface elements. Here the active surface fragments are
replaced by octree cells that surround the level set. To be-
gin with, we subdivide space into a coarse grid and place
those voxels that contain the surface on the active list of frag-
ments. To throw a dart, the algorithm selects a voxel with
probability proportional to its surface area, picks a random
point within the voxel, and projects it to the surface along
the gradient direction, as shown in Figure 3. Voxels are split
by octree subdivision, discarding those children that do not
contain the surface. Testing a voxel for enclosure within a
sphere can be done by either testing the corners of the voxel
against the sphere, or by directly determining the distance
from the center of the sphere to the corner of the voxel that
is farthest away, d f c:

d2
f c = (|xp − xc|+h)2 +(|yp − yc|+h)2 +(|zp − zc|+h)2.

(2)
In the above expression P = (xp,yp,zp) is the center of the
sphere, C = (xc,yc,zc) is the center of the voxel, and h is
half of the voxel width [WCE07]. Note that in order to com-
pletely sample the surface, the algorithm must be able to re-
liably determine if the surface passes through a given voxel,
for example by maintaining min/max isovalues within each
voxel cell.

Poisson Sphere Distributions Although not part of our
main topic, we mention here that ODT using octree cells
can be adapted to create Poisson sphere distributions that fill
space with non-overlapping spheres.

6. Variable Distributions

In order for a point generation routine to be an effective mod-
eling primitive, it must be able to generate non-uniform dis-
tributions. In this section we describe two variations of our
ODT algorithm that handle the placement of (1) spheres of
varying size and (2) arbitary ellipsoids on surfaces.

6.1. Placing Spheres of Variable Size

A useful extension to our algorithm is to place spheres of
variable size without overlap, enabling the algorithm to be
used in a number of additional applications, such as variable
density remeshing.

When a dart is thrown in a variable distribution, the algo-
rithm must choose a dart radius as well as a position. To con-
trol the distribution of dart sizes, we store a minimum and a
maximum dart radius, rmin and rmax at the triangle vertices.
We then throw darts as follows:

1. Choose a triangle and dart location P uniformly.
2. Determine radius rb of the largest sphere that will fit at P.
3. If the maximum sphere radius is greater than the mini-

mum dart radius assign the dart a random radius between
rmin and min{rmax,rb}. Otherwise discard the dart.

4. Discard the triangle if covered, or split it otherwise. To
determine triangle coverage, expand nearby spheres by
the minimum radius over the triangle, and check to see if
they cover the triangle.

Figure 4 gives two examples of variable distributions pro-
duced by our system. In the left example, rmin and rmax vary
over the surface, but take on the same value at any given
point. In the right example, they are both constant over the
surface, but have different values.

6.2. Placing Ellipsoids Without Overlap

This section extends the ideas presented in Section 6.1 to
handle the placement of arbitrary ellipsoids on surfaces
without overlap. To make ellipsoid placement work, we
must define how the parameters of the ellipsoids will be set,
find a suitable overlap test between ellipsoids, and estimate
whether a given triangle can have any more ellipsoids placed
on it without overlapping the current set.

Ellipsoid intersection testing. A number of methods ex-
ist to determine if two ellipsoids intersect (see for instance
[WWK01, WCC∗04]). These tests could be used, but they
are rather slow for our application since we may require
dozens of overlap tests per accepted dart. To handle the high

Figure 4: Spatially varying and random radius Poisson disk

point sets.
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number of overlap tests required by our method, we have
designed an approximate ellipsoid overlap test which in the
worst case is 10 times faster than the algebraic test described
by [WWK01] (2.14 million vs. 196 thousand tests/sec.). In
addition, our test has a number of early outs that make it
even faster for most cases. The test is exact when both el-
lipsoids are spheres, or when they have common orientation
and aspect ratio, and it is fairly accurate otherwise.

Conceptually, the test detects an intersection by expand-
ing each ellipsoid in turn, checking to see if it encloses the
center of the other ellipsoid (see Figure 5). Let A be an axis
of one of the ellipsoids. The amount by which we expand A

is found by projecting the axes of the other ellipsoid onto A

and taking the L2 norm of the projections. For example, sup-
pose that we want to test ellipsoid E1 with center P and axes
{Ap,Bp,Cp} against ellipsoid E2 with center Q and axes
{Aq,Bq,Cq}. We first expand E1 to create the ellipsoid E′

1

with center P and axes:

A′
p =

(
1+

√
(Ap·Aq)2+(Ap·Bq)2+(Ap·Cq)2

Ap·Ap

)
Ap (3a)

B′
p =

(
1+

√
(Bp·Aq)2+(Bp·Bq)2+(Bp·Cq)2

Bp·Bp

)
Bp (3b)

C′
p =

(
1+

√
(Cp·Aq)2+(Cp·Bq)2+(Cp·Cq)2

Cp·Cp

)
Cp. (3c)

Next we test to see if E′
1 encloses point Q. This can be done

by finding the distance between Q and P in a stretched space
in which E′

1 is a unit sphere:

d2
e =

((Q−P)·Ap)
2

(Ap·Ap)2 +
((Q−P)·Bp)

2

(Bp·Bp)2 +
((Q−P)·Cp)

2

(Cp·Cp)2 . (4)

In the stretched space, if de < 1 then E′
1 contains Q; other-

wise it does not. The two ellipsoids are considered to inter-
sect if both of the expanded ellipsoids enclose the center of
the other ellipsoid.

We also add a number of early outs that make our test
faster and more accurate. First, if the center of E1, or the
endpoints of any of its axes lie within E2 (or vice-versa) the
ellipsoids must overlap. Also, if the centers of E1 and E2 are
further apart than the sum of their semimajor axes, then the
ellipsoids cannot intersect.

Figure 6 demonstrates the accuracy of our ellipsoid over-
lap test. The right figure shows the worst case scenario for
our test–when a thin ellipsoid intersects another one at an an-
gle. Even in this case, the test is accurate enough for place-
ment without visual overlap. Of course, if total precision is
required an exact test (using our early outs) can be used.

Determining triangle coverage. With the ellipsoid intersec-
tion test in place, we need to define a test for triangle cover-
age. This test must determine whether additional ellipsoids
can be placed on a given triangle without overlap. In the case
of spheres we determined triangle coverage by expanding
neighboring points by a minimum radius, checking the ex-
panded spheres to see if they cover the triangle. We adopt

Q
P

Aq

A’p

Bp

Bq

Ap

B’p

A’q

B’q

Figure 5: Geometry for the ellipsoid overlap test.

Figure 6: Ellipsoid overlap test examples. The orange el-

lipsoid is translated relative to the blue one and overlap is

tested. Green areas show false negatives, where our approx-

imate method returns no overlap when overlap exists. Red

areas show false positives.

a similar approach for ellipsoids, constructing a minimum
ellipsoid within the triangle, and expanding the neighboring
ellipsoids by it to determine triangle coverage.

Given that Emin is the minimum ellipsoid allowed on the
triangle, the triangle coverage test proceeds as follows: For
each ellipsoid in the neighborhood of the triangle, E,

1. Expand E by Emin and test to see if the expanded ellipsoid
encloses the triangle vertices.

2. Expand Emin by E, place the center of the expanded el-
lipsoid at the center of E and check the triangle vertices
for enclosure once again.

The triangle is deemed to be covered if any of the expanded
ellipsoids enclose all three of its vertices. Dart throwing is
guaranteed to terminate as long as the minimum ellipsoid
provided to the test can in fact be placed somewhere on
the triangle. Figure 7 shows examples of ellipsoid distri-
butions. Note that ellipsoids offer a number of interesting
object placements that would not be possible with spheres
alone.

Dart throwing in the ellipsoid case. Dart throwing in the el-
lipsoid case proceeds similar to the variable sphere case. The
algorithm generates a desired ellipsoid, E along with a mini-
mum allowed scale, smin. It attempts to place E or scale it to
fit in its current location. If the ellipsoid cannot be placed, the
triangle on which the dart was thrown is tested for coverage
using E∗smin as the minimal ellipsoid. Finally, we subdivide
or discard the triangle as dictated by the coverage test.
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Figure 7: Ellipsoid distributions generated by our system.

7. Geodesic Dart Throwing

While the Euclidean distance metric is often acceptable,
some applications and problem setups require points to be
distributed according to Geodesic distance (shortest distance
on the surface). Figure 8 illustrates such a case. The test
model contains a number of thin vanes, and samples on ei-
ther side of a vane interfere with each-other in the Euclidean
case, causing undersampling. On the other hand, geodesic
dart throwing has no difficulties, and properly samples the
surface.

In this section we present an optimized dart throwing al-
gorithm for geodesic distance-based dart throwing. It has
the characteristics that (1) every dart is accepted since all of
the free surface area is explicitly tracked, (2) spatially vary-
ing density is supported, and (3) the algorithm allows for a
time/quality tradeoff.

Distance propagation. We base the geodesic distance cal-
culation in our algorithm on fast marching [Set96] with a
spherical wavefront approximation to the geodesic distance.
While not perfect, this approximation is generally accurate
to within a few tenths of a percent of the exact distance
[WDB∗08]. Briefly, in fast marching, distance travels out-
ward from a source point (dart) moving from vertex to vertex
in the mesh. The spherical distance propagation rule that we
use works as follows: Given a triangle with vertices X0, X1
and X2, and distance values t1 and t2 at X1 and X2, we want
to find the distance t0 at X0. This can be solved by projecting
the triangle onto a plane, yielding vertices X̂0, X̂1 and X̂2, as
shown in figure 9. A virtual source point Ŝ is then produced
in the same plane, and t0 is evaluated as ‖X̂0 − Ŝ‖.

Projection onto the plane begins by defining three vectors,
N, U and V , that serve as the triangle’s coordinate system:

N =
(X2−X1)×(X0−X1)

‖(X2−X1)×(X0−X1)‖ , U = X2−X1
‖X2−X1‖ , V = N ×U.

Letting d12 = ‖X2 −X1‖ and setting X̂1 as the origin of the
coordinate system yields the values

X̂1 =(0,0), X̂2 =(d12,0), X̂0 =((X0−X1)·U, |(X0−X1)·V |)

for the projected vertices. The location of the virtual source
Ŝ (a hypothetical point in the projected plane at distance t1

Figure 8: Point sets created using Euclidean (left) and

Geodesic (right) distance metrics.

X1=(0,0)
^

X0
^

X2=(d12,0)
^

S
^

t1
t2

h

t0

d12

ad12

Figure 9: Spherical wavefront propagation geometry.

from X̂1 and t2 from X̂2) can be computed as

Ŝ = (ad12,−h),

where

a = 1
2 +

t2
1−t2

2
2d2

12
and h =

√
t2
1 −a2d2

12.

At this point t0 can be tentatively set to ‖X̂0 − Ŝ‖. However,
the update is only valid if the computed value for t0 is greater
than both t1 and t2, and the x intercept of the segment be-
tween Ŝ and X̂0 lies between X̂1 and X̂2, or in other words

0 ≤ xs + h
y0+h (x0 − xs) ≤ d12,

where x0, y0 and xs are x and y coordinates of X̂0 and Ŝ.
If either of these tests fails, or if t2

1 − a2d2
12 is negative, the

update reverts to Dijkstra’s approximation:

t0 = min( t1 +‖X0 −X1‖, t2 +‖X0 −X2‖ ).

Triangle connectivity and initial subdivision. Unlike the
algorithms presented so far, geodesic dart throwing requires
the mesh connectivity. To avoid updating connectivity dur-
ing dart throwing, we perform most of the mesh subdivision
required by the algorithm as a preprocess. Sudivisions that
take place during dart throwing are internal to individual tri-
angles, and we do not update the connectivity for them.

Let smax be the longest edge of a triangle, and rmin be
the minimum dart radius specified at the vertices. In the ini-
tial subdivision, mesh triangles are split recursively on their
longest edge until rmin > αsmax, where α ∈ (0,2] is a user
specified value that controls the subdivision rate. We then
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r0 , t0

r1 , t1

r2 , t2

rd+r(B)=t(B)

Figure 10: (Left) Close-up of a triangle on the dart bound-

ary. The triangle is clipped on the approximate dart bound-

ary by a straight segment, producing 1 or 2 surviving sub-

triangles (shown in blue). The red region shows the error

compared to the ideal boundary. (Right) The boundary for a

dart thrown in our system (inner edge of the blue region).

α = 2.0 α = 1.0 α = 0.5

Figure 11: Averaged Fourier transforms for geodesic dart

throwing with different α values.

remove T junctions in the mesh by further subdivision as
needed and recalculate the mesh connectivity.

Subdivision during dart throwing. During dart throwing,
we must track the uncovered area on each triangle. To do
this, we create a list of subtriangles for triangles that are
partially covered. Referring to figure 10, the dart boundary
on a partially covered triangle is defined by the set of points
B satisfying the equation rd + r(B) = t(B), where rd is the
radius of the originating dart, and t(B) and r(B) are the t

value at B and the radius of a dart that would be thrown at B.

[FZ08] showed that in the case of variable density, the
ideal dart boundaries are general conics. However, for effi-
ciency reasons we approximate them by line segments, lin-
early interpolating the r and t values on the triangle edges to
find the approximate dart border. The maximum error caused
by this clipping procedure is (2 −

√
4−α2/4)r, or about

27% of the dart radius at α = 2.0, 6.4% at α = 1.0, and 1.6%
at α = 0.5. Figure 11 shows Fourier transforms for point
sets created using different α values. The error caused by
the dart boundary approximation manifests itself as a slight
loss of power in the “blue noise rings”, with α = 0.5 be-
ing virtually indistinguishable from a standard dart throwing
periodogram.

Dart throwing in the geodesic case. Conceptually, our
geodesic dart throwing algorithm proceeds by placing a
point on a free location, marching the geodesic distance (t)
out to the dart boundary, and repeating. As in the Euclidean
case, dart radius values are stored at the triangle vertices.

In practice, a dart is thrown by first choosing a triangle
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Figure 12: Timings for the geodesic dart throwing algo-

rithm (α = 1.25). The graph shows points per second for

different models and point set size.

T uniformly with respect to its uncovered area. Once again,
we use logarthmic binning for this purpose. Next, we pick a
point uniformly on T , or one of its subtriangles if it is par-
tially covered. The distances to the vertices of T are then
computed, and the vertices of T are placed in a vertex queue.
The fast marching routine then propagates t outwards to the
dart boundary using the spherical wavefront update rule. Fi-
nally, completely covered triangles are flagged as such, and
partially covered triangles and subtriangles are clipped. At
no time during this process do we alter the connectivity of
the mesh. Instead, each partially covered triangle stores a
list of active subtriangles. All distance calculations are done
on the vertices of the original mesh, and distances are trans-
ferred to the subtriangles by barycentric interpolation.

Geodesic dart throwing results. Figure 12 shows timings
for the geodesic dart throwing algorithm. In general, runtime
is linear in the total number of triangles processed after the
initial subdivision rather than the number of points produced
(about 300k to 450k triangles per second on our test ma-
chine). One competing method to our geodesic dart throw-
ing is the direct placement algorithm of Fu and Zhao [FZ08].
They report sample generation times of less than 50 points
per second, several orders of magnitude slower than our
method. (These times include point relaxation and remesh-
ing, but they state that the majority of the time is taken in
the initial sample placement.) Our geodesic dart throwing
method also compares favorably to the tile based method of
Li et al. [LLLF08]. A direct comparison is difficult, but our
algorithm is about three times faster than their fastest stated
time for the the bunny model (15k vs. 5k points per second).
This does not including the time they require to make the
PolyCube map for the surface tiling.

8. Applications and Examples

In this section we demonstrate three applications of point
sets made using our system: remeshing, hair placement and
the modeling of mosaic tiles.

Remeshing. Remeshing polygonal objects allows a user to
create models with more or less polygons than an input
model, or regularize its triangulation. Because of its ability
to quickly generate high quality point sets with a specified
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Figure 13: (Left) Optimized dart throwing creates variable

density points. (Right) A new mesh created from the points.

Figure 14: (Top) A lion with 230k hairs placed by opti-

mized dart throwing. (Bottom) From left to right, random,

stratified, and ODT hair placement.

density, optimized dart throwing is an good way to generate
the vertices of a revised mesh. Figure 13 shows a remesh-
ing example using ODT. For this example, we employed a
user-specified density function to determine the vertex place-
ments, but other density functions based on surface curva-
ture [Tur92], mesh saliency [LVJ05] or edge feature extrac-
tion [FZ08] could easily be incorporated into the point gen-
eration process.

Hair and fur rendering. The current trend in hair and fur
rendering for close shots is to instantiate individual hair
fibers, which may require placing hundreds of thousands of
hairs on an object. Our algorithm can quickly place a large
number of well spaced hairs that provide even surface cov-
erage and a smooth rendered appearance. Figure 14 shows

Figure 15: An elephant decorated with mosaic tiles, with

tile locations determined by ODT.

Figure 16: A mosaic of ellipsoid tiles placed with our ellip-

soid dart throwing algorithm.

a rendering with nearly a quarter million hairs placed us-
ing our algorithm. As shown in the close-ups, our algorithm
produces a smoother hair distribution with fewer gaps than
either random or stratified placement.

Mosaic tile placement. The placement of mosaic tiles is
another application of optimized dart throwing. Figure 15
shows an elephant figurine decorated with a mosaic of tiles.
In this case, each point becomes a mosaic tile in the model
and the Voronoi diagram of the point set acts as a template
for the tile shapes. Figure 16 shows a different mosaic built
with non-overlapping ellipsoids. The subtle coloration ef-
fects in this example result from the different sizes, aspect
ratios and amounts of shadowing on the ellipsoids.

9. Conclusion

This paper presented optimized dart throwing (ODT) algo-
rithms to generate Poisson disk point sets on surfaces. We
demonstrated the ability to directly handle several surface
types, including triangle meshes, spheres, Bezier patches,
subdivision surfaces and implicits. We extended the algo-
rithm to handle non-uniform densities, ellipsoid placement,
and point sets spaced according to geodesic distance. Fi-
nally we demonstrated ODT in the context of remeshing,
hair modeling, and mosaic tile placement.
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Limitations and Future Work. Optimized dart throwing is
quite fast in the uniform case, but it can run much more
slowly when producing non-uniform distributions because
of the acceleration grid. One area for future work would be to
find a more efficient acceleration structure for finding neigh-
borhoods of points with different sizes. A solution to this
issue would be useful in other problem settings, such as col-
lision detection and scattered data interpolation.

Ideas for extending the modeling capabilities of ODT in-
clude placing arbitrary objects without overlap, adding con-
straints to the dart placement such as lines that the points
may not cross, and coherently animating the point sets.
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