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Abstract—Virtual power plants aggregate smaller energy re-
sources to a single “virtual” large one. This is done to appear as a
larger player on the market, with one single interface for control,
ancillary services and business requests. A virtual storage power
plant (VSPP) (also) aggregates loads, coordinating them in a way
that it imitates a real storage power plant. This paper discusses
how far a VSPP can go into its underlying processes to optimize
its performance.

Loads, although very simple on the first view, can behave in a
pretty complex way. Estimating their current and future state is
the goal of an anticipative VSPP. Having insight into the customer
processes enables the VSPP to operate more optimized and to
trade future shedding potential.

I. INTRODUCTION

The electricity system experiences new challenges. A 100+

years old, reliable and optimized infrastructure is now facing

the pressure to change its topology, working principles and

purpose. In the near future we will need a flexible, bidirec-

tional energy exchange down to the end customer. A customer

who by then will be rather called “participant”.

Mainly driven by new, decentralized and lightweight ways

of generating electricity, customers demand for grid access

that allows them to feed back to the grid. Especially renewable

energy forms need a good grid due to their stochastic nature.

Unfortunately wind and solar radiation does not respect the

standard load patterns and need to be supported by other

energy forms and an energy grid that absorbs their unpre-

dictable behavior. The expected rise in renewable energy

sources makes this need even more acute (Figure 1 gives a

relatively conservative outlook from [2]).

One main contribution for a more optimal and more reliable

grid operation are “intelligent” loads. This means that loads

have certain degrees of freedom (change their schedule, par-

tially shed load for some time, duty cycle, etc.) and that they

can interact and cooperate by some means of communication.

Before optimization takes place, however, one must understand

the nature of the problem: the loads and their properties.

Up to now, most energy/load management systems are

configured by trained staff. A tedious and expensive task. It

would be great if load management systems could learn the

needs and properties of the customer process. Unfortunately

these processes are sometimes very complex. This paper is a

try to shed some light on this problem and proposes to use

• more data acquisition equipment (embedded nodes that

are part of the load management system),

• a set of simple load models, and

• a network that connects these nodes to enable coopera-

tion.

The loads that are supposed to be understood and influenced

in a soft and smart way often do not reveal what there “inner

driver” is. They appear – at least to the energy consultant – as

a black box with an energy consumption as output and several

known and unknown inputs. Often they contain sophisticated

controls that make the situation even more complex.

II. LATENT VARIABLES

Expecting that a load with a control module (programmable

logic controller, scheduler, thermostat, etc.) behaves intelli-

gently is naive. It is sad reality that most of the commercial

loads and controls have no (active) “intelligence” at all. A

typical air conditioning system of a supermarket or school is

switched on in the morning and switched off in the evening

(if at all). There might be a temperature sensor, but it is

often overridden, not to speak of CO2 sensors. The same

applies to lighting which is typically controlled with a fixed

schedule. The only difference one sees is (hopefully) caused

by weekends or holidays.

On the other hand, the behavior of loads can be pretty

complex. Think of a cooling system in an industrial process

(Figure 2). A Wednesday in May might be a typical Wednes-

day in May: the shift starts at 6:00 a.m., the order situation is

typical for May, etc. But if the outside temperature is unusually

high, the time constants of the thermal inertia changes. The

cooled goods heat up quicker and more energy is needed to
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Fig. 1. Renewable energy forms are on the rise.
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Fig. 2. Examples for inputs to a load process.

cool them. If several of such loads are aggregated on one

customer site, it is a pretty complex task to derive the latent

variables of the individual loads from the overall consumption

chart.

Latent variables are the internal states and energy levels of

a consumer (Figure 3). If the consumer follows a deterministic

state machine, the state counter might be the latent variable. To

outside, only the energy consumption is visible, but it follows

the command of its internal variables and triggers that enter

the load from outside. A thermal process (cooling, heating)

typically has its internal temperature as a latent variable. Its

value represents is “virtually” stored energy and its future

behavior. The main energy counter at the customer site does

not know any of these latent variables and sees only an overall

consumption pattern. Often the latent variable is based on a

state machine with time and customer behavior as input.

Knowing the latent variables would make energy manage-

ment much easier. Load behavior could be predicted, schedules

could be executed etc. There are three ways of accessing these

latent variables:

• Analysis: someone analyses the individual loads and sets

up a model for each of them. This is impractical in real

life.

• Measurement: the chart measured at the energy counter

is analyzed. Deriving individual qualities of such an

aggregated set of data is not easy. There are, however,
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Fig. 3. Loads charts of loads with latent (internal) process variables and
scheduled behavior. T is the dominant time constant for an internal (latent)
thermal process (upper chart). Visible to outside is just a rectangle shaped load.
A scheduled process (lower chart) does not have physical latent variables but
follows a finite state machine (FSM) and has a state counter as latent variable.
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Fig. 4. Samples of system behavior (n process parameters reduced to two
dimensions) and the average sample.

chances that if you add heuristic process knowledge, to

get at least an idea of the loads. Google Power Meter

[4], for instance, targets exactly this. It is assumed that

private homes consists of a standard set of consumers

(refrigerator, dryer, etc.) with characteristic load patterns.

The aggregated chart is then analyzed to separate it into

individual loads. This might work for homes that are

alike, but is of no use in an industrial or commercial

setting.

• Individual measurement: The way of choice for profes-

sional energy information systems and load management.

The important loads are equipped with measurement and

control nodes that monitor the loads’ behavior. Out of

their consumption patterns they can derive a simplified

model (e.g. a time constant T for a first-order [a.k.a. PT1]

behavior or a schedule for lighting).

It is the latter method that is typically used for industrial

and commercial customers. The necessary infrastructure surely

costs money, but the gain refinances the investments. Even

though (only a few important) individual loads are measured,

it is still not easy to derive a model and their latent variables

out of their consumption patterns.

III. CATEGORIES OF LOADS

The authors work with two categories of loads in his

simulations [3]:

• Thermal processes of first order

• Scheduled loads (with < 10 states)

A load of such a category can then behave in a variety of

ways. Schedules might change, time constants might change.

etc. It is the constellation of internal process parameters and

their current latent variables that result in a specific behavior

(i.e. energy consumption).

This leads to a classical problem in “blind” statistics: If

you walk beside a cow, you two have an average leg count

of three. Monitoring a device for some time with n sensors

(a sensor directly corresponds to a know stimulus) leads to a

set of samples, each sample being a vector of n elements. The

samples form an n-dimensional space, each sample being a
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Fig. 5. A schedule might change. The load stays a scheduled load, but its
timing etc. depends on stimuli like the current day of the week.

point in this space. Figure 4 shows a simplified example: the

n dimensions (n process parameters) are reduced to two (p1

and p2).

The average sample lays in the (weighted) center of the sam-

ples. Depending on the way of distribution, this average might

make no sense at all (think of the legs). Therefore, samples

must be categorized, either with heuristic process knowledge

or blindly, based on statistical methods. As industrial processes

are too complex to be analyzed each time, it is the latter

method that must be chosen. The n-dimensional search space

is examined for “clouds” of samples, without knowing exactly

what these clouds mean (see also [8]). Figure 5 has labeled

“clouds”, but often it is not possible to find out why a group

of samples exists, so they are just named with numbers.

An energy management node has therefore the following

tasks:

• Determine which category of load it manages

• Derive the latent variables of the load

• Share its findings (state of “virtual” storage, near-future

behavior etc.) with other nodes

• Optimize the collective behavior

The second step works better the more sensors the node

applies to the load. If the internal temperature, the state of

doors and buttons, etc. is known to the node, it can easier

derive the internal values than in the case when it only has

the energy consumption pattern.

The latter two steps require communication and cooperation

among the nodes.

IV. WIDE AREA ENERGY MANAGEMENT

Aggregating and decomposing energy resources is the prin-

ciple of so-called “virtual power plants” (VPP, [5]). A number

of power generators are grouped and collectively managed.

The reason for this is that energy balance is still a process

between large players. Entering this market has several barri-

ers, one of them being the size of the power plant. If smaller

entities want to participate, they can form such a VPP and

appear as one large power plant to the market and to the

control system.

A new category of VPP is not only based on distributed

generation but also on loads: A “Virtual storage power plant”

VSPP. A VSPP aggregates loads and their potential of shed-

ding, shifting and changing their behavior. Unlike existing

load aggregates (e.g. demand response via FM broadcasts or

power line audio frequency ripple control signals), anticipative

VSPPs would allow for planning, as the have – within certain

limits – knowledge about the internals of their processes.

This is not only “softer” (the individual processes are shed

only if their storage characteristics allow for that) but also

potentially fair and accountable. Those members of the VSPP

that contribute to a certain goal (follow some given load chart,

keep frequency stable, etc.) are known to the system and

potential rewards can be shared in a fair way.

We approach this new category of power plant with a

number of steps.

First studies (like the PROFESY project [1], and the IRON

project [7]) and the currently running INSEL project have

shown encouraging results. INSEL uses the JEVis system

[6] for scheduling large (mid voltage) customers in the city

of Hamburg, Germany. The goal is to use historic data for

selecting potential future schedules (hoping that the system

“can do what it has already done”). A potential improvement

of this would lead to an anticipative VSPP:

• Having models of the individual load nodes

• Using latent variables to generate a set of possible future

behavior

• Selecting a “good enough” combination of individual

future behaviors

The current task is to set up simulations for loads and their

respective management nodes [3]. The goal is to derive good

load models out of only a few sensors. The ideal case would

be the “google method” [4] where the main energy counter is

the only sensor input.

V. CONCLUSION AND FURTHER WORK

This research is still in its concept phase and in its infancy.

There are several unresolved issues, mainly scalability and

stability questions that must be analyzed and verified by means

of simulation.

The system depends on wide area communication infras-

tructure, which unavoidably leads to the Internet. If network-

based control is supposed to be done via this infrastructure,

we have to assume certain qualities of service (QoS) that the

Internet cannot satisfy. Of particular interest are

• Latency

• Availability

• Information Security

Workarounds for the non-guaranteed latency of the Internet

can be based on using side channel information (grid fre-

quency, FM broadcast, etc.) to synchronize the system.

Availability is often solvable with the contract, the VSPP

will have. Also traditional power plants do not have an avail-

ability of 100%, but have planned and unplanned downtimes.

The VSPP surely must satisfy certain maximum ratings for
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unavailability but a diversified and distributed topology can

significantly help to improve that.

Information security is often ignored. The most important

aspects of information security are authenticity of the ex-

changed messages and integrity of the messages. Injection

of false and malicious information must be detected, since a

“botnet” of mid-voltage power nodes might create some harm

if orchestrated in the right way.

Another topic is the prediction and optimization algorithm

itself. As there are no resources planned for tuning and con-

figuring the system, machine learning will play a big role. The

system is supposed to adopt to changes and to optimize itself

without much manual interference. Plausibility and stability,

however must always be guaranteed and verifiable by human

operators. For this, again, a supporting simulation will be

necessary. This is subject to further work.
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