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Abstract—An agile methodology for mixed signal simulation
is presented allowing seamless connection of simulators on
as needed basis eliminating overheads of the communication
backplane, sophisticated synchronization and kernel modifica-
tion. The methodology uses the SystemC AMS synchronization
layer which supports user defined solvers and simulators.
The cosimulation is wrapped in a statically scheduled timed
dataflow node. The simulated executable specification enables
co-design, partitioning, refinement, virtual prototyping and
architecture exploration of the design space.

I. INTRODUCTION

Heterogeneous systems often comprise of analog, digital,
DSP, RF, software or even MEMS components. Such
systems are common in communications, automotive,
biomedical and defense applications. System behavior is
often described at varying level of abstractions using
a variety of design methods, languages and tools. The
functionality of each subsystem is usually worked out by
a specific team with knowledge in a certain discipline.
Often there is not a single tool that supports all Models of
Computation (MoC) describing the heterogeneous system.
At times teams have models written already that they like to
reuse. At the system definition phase the architects like to
explore architectures or experiment with system tolerance
or performance by model refinement. In many cases the
system description is an executable specification that is
used to backtrack system requirements. Such scenarios de-
mand quick simulations where models can be “dropped-in.”
Cosimulation is probably the only means where designers
prior to design implementation can bring together their
pieces of work and study full heterogeneous system behavior
in a unified fashion. The advantage of simulator coupling is
to use the simulator that has the most appropriate solver
for the subsystem [1]. The specification and validation of
a heterogeneous system can be realized in a distributed
simulation scheme where the system block functions are
simulated together by consorting EDA tools. The resulting
coupling allows understanding of the heterogeneous model
inter-dependencies so as long the coupling is relax and its
mechanics are clear-cut. Distributed cosimulations are often
a necessity because tools have best performances on specific
operating systems and different machine architectures.

Our methodology is “meet in the middle” approach start-
ing with top-down executable specification while cosimulat-
ing possible problem areas of the system as fine grained in a
bottom-up manner. The remainder of the paper is organized
as follows. In Section II we introduce difficulties with
simulator coupling and touch on previous works. Section III
details our approach and rationale for mitigating problems of
Section II. In Section IV we demonstrate a small example.
Section V presents outlook and finally, we conclude in VI.

II. PREVIOUS WORK AND ISSUES

Designers generally abstain from simulator coupling for
many reasons. They anticipate that the process would take
too long tying the engineering hours in coupling effort than
the design itself primarily because:

1) Simulators’ interfaces are not known [1].
2) Signals, ports, data types of module blocks and

semantics of MoCs would need interface components
e.g. polymorphic signals [2], converter channels [3],
channel adapters [4] or generic converters [5].

3) A common synchronization scheme [6] leading to
the correctness of computation is missing because
simulators of different domains consist of different
kernels and employ different algorithms or run at
different time bases e.g. whether to synchronize at
every simulation cycle, i.e. never simulate in future, or
use causality constraints to block the computation until
constraining conditions clear or let a simulator run
ahead of others then rollback restoring some previous
known state.

4) A communication [6] mechanism for data transfer
among simulators would be needed.

5) Choice of a master or top-level simulator is intricate
to make because it must support connectivity and
coordination with cosimulators.

6) Simulation speed and accuracy is highly debatable.
7) Designers are not application programmers.
All major tool vendors by and large have some sort of

interface for issue 1, typically C language interface [7][8].
Issue 2 is not a showstopper as some adaptation is always
necessary. Issue 3 has varying solutions e.g. [9] depending
on cosimulation topology. Issue 4 is broadly handled as a
backplane [1] [6], a simulation controller [10], a central



simulation coordinator [11] and a cosimulation bus [7].
However, these solutions are only viable if tight coupling
is required, centralized exchange at system level is usually
a needless overhead [8] at the cost of accuracy. Issues 5 and
6 are absorbed by SystemC AMS itself as a master simulator
that is flexible, open source and provides hooks (MoC and
synchronization layer) for external simulator connection and
its synchronization to SystemC AMS. Finally the interfacing
effort as identified in 7 requires no intensive software devel-
opment. Our technique shall touch on all these problems.

Our goal is to go beyond the executable specification from
early on in the engineering cycle i.e. add refined models
in the specification which would assist in trading deci-
sions related to co-design, system partitioning, refinement,
architecture exploration, virtual prototyping and verification
right from the system definition phase. We use SystemC
AMS for continuous time computation on top of SystemC
which is a discrete event (DE) simulator. We attach SystemC
AMS client (master) to VHDL (slave) simulator at server.
VHDL computed outputs are ported into SystemC AMS and
synchronized by the synchronization layer above the kernel.
The external simulator is called from within AMS timed
dataflow block and loaded with data driven on block input.
The output is computed on remote simulator, received in
TCP sockets and is then driven to the output port of AMS
block which invoked the cosimulation. The access to remote
simulator is possible through the simulator’s procedural
interface. Since SystemC AMS and SystemC types are native
to C/C++ and cosimulator interface is also C based, no
special converters or channels are needed for signal and data
type conversion.

III. METHODOLOGY

A. Client Server Configuration
Figure 1 shows interfaces involved in the distributed

cosimulation topology. SystemC AMS acts as a master
simulator running at the client computer which connects
to the simulator at the server computer. The simulation
runs in full automation requiring no user intervention. Two
binaries are obtained. The main SystemC AMS description is
compiled with the client cosimulating wrapper discussed in
Sub-section C. Another wrapper runs at the server as a sim-
ple program. Both wrappers communicate via sockets. The
client wrapper passes data tokens and necessary information
to the server wrapper to compute the MoC which then sets
up the simulator after scrutinizing the received information.
Setting up the simulator suite is a major task since a series
of tools has to be called in the right order and with many
options for the simulator environment. This job can be
done in two ways: either executing a setup script written
in simulator’s native scripting language from inside the
wrapper; or embedding the setup calls in the wrapper itself
as if they would be made from the simulator command
line interface. In either case the simulator tools have to

be passed the data tokens. Besides the data token, the
information related to MoC evaluation such as any other
signals required in computation that do not come from the
SystemC AMS description e.g. clock, reset are generated
in the local testbench at the server. The testbench is an
important element in cosimulation, it must drive the model
with properly timed and locally generated signals since the
model to be evaluated on a mature and commercial simulator
is finer than the system level model and thus needs more
input signals than simply the input data. Furthermore, the
refined models should never be modified for the sake of
cosimulation.

B. Timed Data Flow

The Timed Data Flow (TDF) [12] modeling formalism
in SystemC AMS stems from the Synchronous Data Flow
(SDF) paradigm for describing streaming DSP applica-
tions running concurrently. SDFs produce and consume a
predetermined number of tokens in each firing. The TDF is a
synchronous reactive MoC best understood as a compromise
between timed and untimed MoCs. TDF uses predetermined,
discrete constant time steps which result in a pool of tokens
equally spaced in time [13]. TDF sampled data are tokens
whose sampling rates are determined by the system clock.
Figures 2 and 3 show a typical TDF cluster and static firing
schedule.

At the core of TDF class is the processing() member
function that is called in SCA_TDF_MODULE() when-
ever module’s continuous time behavior is to be evaluated.
Discrete event models are precisely timed where every clock
tick is accounted for transitions. However such precision
at system level modeling is unwarranted because impor-
tant design decisions become obscure in detailed timing
information. Therefore TDF model is suited for streaming
DSP applications with constant sampling rates, systems
described by transfer functions (input output) that mimic
continuous time waves and high sampling systems that
signify analog signals.

C. Cosimulation Wrapper at Client

When a module in a TDF cluster is to be cosimulated, a
wrapper is instantiated inside processing(). The module
is modeled as a blackbox that has input ports, port attributes,
output ports and processing(). But processing()
does not implement continuous time evaluation behavior
as it normally would in absence of cosimulation; rather
it calls the wrapper to perform the computation task on
dedicated remote simulator. The wrapper encapsulates all
necessary functionality needed to evaluate the module. This
functionality includes:

1) Format input and TDF attributes and data as strings.
2) Transport data, attributes and socket file descriptor to

remote simulator and receive computed results. Op-
tionally echoes are received from the server ensuring
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Figure 1. Layered interfaces of client server based distributed cosimulation

Figure 2. TDF cluster with attributes
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corrupt data or incorrect buffer sizes are recognized
by the server.

3) Communicate any other information, commands, op-
tions, delays, etc. that may be useful for the simulator
before acting.

The input data and signals are either SystemC or SystemC
AMS hardware types. These types are formatted using
overloading, static type casting and other built-in C/C++
constructs. All data is eventually converted to C-strings to
be accepted by the socket. At the server side, the data is read
and written using the simulator’s C interface as well. Note
that such distributed simulation topology using socket calls
with SystemC AMS as master completely eradicates the
need of special converters or channels. The wrapper provides
a flexible interface for cosimulation as the interface is unique
for each cosimulating model with respect to its ports and
attributes. The wrapper arguments are the input data and

attributes that will be used by the simulator for model
evaluation and socket file descriptor set by client OS. The
wrapper return argument is the computed result by the re-
mote simulator. For DE models that do not take a clock sig-
nal, the wrapper is instantiated in SystemC SC_METHOD()
and SC_MODULE() classes. The execution semantics of
SC_THREAD() class of SystemC in suspension, forever
termination after execution or containing infinite loops are
not naturally suitable for hardware modeling and therefore
for cosimulation either. In fact SC_THREAD() decelerates
simulation speed many fold compared to SC_METHOD()
[14]. The TDF cluster is not traversed to the next TDF
module until a return value is received which then is driven
to the output port of the module that invoked cosimulation.
Thus the main simulation and cosimulation continue in
a dataflow cycle visiting each node and executing it in
the graph. Multiple modules in the TDF cluster can have
their own wrappers e.g. in transmit path of a mixed signal
transceiver module encrypting data and in the receive path
also for decryption. Therefore multiple cosimulations can be
triggered from the top level system simulation.

D. Cosimulation Synchronization

The DE kernels of SystemC at client and VHDL sim-
ulator at server run on their own time bases which are
not synchronized to each other. However, SystemC AMS
synchronization layer registers all the discrete time and
TDF MoCs with their signals. The layer synchronizes AMS
continuous time models to the DE models (SystemC). It also
synchronizes external simulators to the SystemC kernel. An
application specific simulator is just another solver to the
synchronization layer. The layer determines the fixed step
time points at which analog and digital models in static
dataflow will be synchronized as well as the execution order
of the solvers. This scheme does not burden the kernel by
continually synchronizing solvers; rather the decision when
to synchronize is determined by the analog stepping which



is an estimation of the truncation error [15] of the infinite
Taylor series involved in computation. The truncation error
arises due to numerical integration of the finite number of
steps. The selection of step size by the layer is related to
system clock and sampling rates and it must be large enough
to establish that signals have changed their values in the
step window. When the C wrapper is invoked at the client
requesting cosimulation, this is the point in TDF flow at
which the node waits for the computed tokens to return
from the cosimulator. Since there is no data available in
the node to output, the TDF MoC simply waits for the
external simulation to finish. Once values are returned, the
external simulator connection is lost and the main simulation
continues until a new input is loaded at the MoC blackbox
that would again instigate cosimulation. The TDF MoC acts
as if its own processing() solver is busy computing the
outputs. Thus the TDF semantics and AMS synchronization
layer when used by the wrapper need no fancy synchroniza-
tion.

E. C Wrapper at Server

The wrapper at the server runs in the background as a
small program in a parent process with a listening socket.
The program also checks out the licenses for the requested
features of the tools needed in cosimulation. When a con-
nection is made from the client, the wrapper validates the
incoming data then spawns into several child processes.
Each child process executes a specific tool of the functional
simulator. There are as many child processes as the number
of tools that would be called. Each child is dead after
executing the tool. Figure 4 shows server fork-exec
calls during execution of the tool chain. At the end of all
successful exec() calls only the parent process is alive that
waits for a new connection from client for next simulation
iteration. The Cadence Incisive Unified Simulator (IUS) is
a comprehensive functional simulator. The chain of toolset
consists of among others a VHDL simulator (NCVHDL),
an elaborator (NCELAB) that generates a simulation object
file referred to as a snapshot image and the simulator (NC-
SIM) that simulates snapshot images. Both NCELAB and
NCSIM are unified single kernel engines for mixed VHDL,
Verilog and SystemC simulations. Precompiled models are
elaborated and simulated bypassing NCVHDL child process
and preelaborated models are directly simulated by NCSIM
bypassing both NCVHDL and NCELAB child processes.

During the simulator execution, the wrapper loads a
shared library that accesses VHDL objects discussed in
the next Sub-section. The library contains bootstrap or
task registering functions that enable C level access and
simulation control. This library is created using the Cadence
PLI Wizard. For real valued DE ports, the VHDL tools must
suppress restrictions imposed by VHDL Initiative Toward
ASIC Libraries (VITAL) level 0 compliance (IEEE 1076.4-
2000 VITAL ASIC Modeling Specification). These models
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Figure 4. Execution of cosimulation tool chain

will not be accelerated.

F. VHPI based C Level Access
The C level access of VHDL design objects and data for

read and write tasks is possible by implementing the VHDL
Programming Interface (VHPI). Cadence IUS simulator also
provides an extensive C language interface to integrate,
import and simulate foreign models written in C. Earlier
HDL based cosimulation interfaces [8] have been built
around Verilog Procedural Interface (VPI), the VHPI is a
new procedural interface released by IEEE. VHPI allows
run time access and modification of postelaborated and
simulated VHDL design objects in a hierarchal traversal
using a reference handle. The VHPI enables simulation
interaction and control using C routines. When a VHDL
simulation object, no matter how deeply nested in the
hierarchy, is to be accessed e.g. component, port or signal
a handle (vhpiHandleT) defined in the vhpi_user.h
is returned representing that object. VHPI supports access
of wide range of VHDL data types. The ports are written
on time resolution base on the clock driven by the testbench
while the ports are read off on value change base. For serial
lines, the value changes are correctly aligned on time base to
assemble complete words. Any number of ports and signals
can be monitored for value changes.

For models that require several tokens e.g. an ADC that
samples a continuous time wave and produces thousands of
samples, large data when received at the server is written
to a file and then applied to the VHDL model in the order
it was sampled. The corresponding outputs are obtained in
order as well and then sent to SystemC AMS. If the sample
values do not change much in dynamic range then the values
that reflect a borderline are used for faster simulation.

For static models (no new values during computation),
data can be input to the elaborator as a C-string argu-
ment using VHDL generic. The socket file descrip-
tor is also passed as generic to the VHDL testbench
which outputs it on a port for the shared library to be
read. The shared library reads computed data from VHDL



model and writes it to the set file descriptor. A new file
descriptor is set by the OS at every new cosimulation
evoking by the client and this value is communicated to
the VHDL testbench at server. Since port types can be
long bit vectors, VHDL std.textio.all package con-
verts C-strings passed as generic to VHDL data type.
All VHPI callbacks for example vhpi_get_value(),
vhpi_put_value() are registered. The simulation time
is tracked by vhpi_get_time().

All VHPI related functionality is compiled into the shared
library that is dynamically loaded by the NCSIM simulator
exec() call inside the server wrapper. The simulation start
and stop times are passed to the NCSIM exec() call
as well. If there are various VHPI applications built for
different types of designs, it is possible to compile VHPI
application as static shared library into the NCSIM simulator
executable. Thus new simulator executables can be obtained
each augmented with specific VHPI application. Optionally
the simulator can be kept online with the waveform analyzer
if the design is to be debugged, else the simulator will exit
when reaching the stop time. Once the output values are
obtained they are saved in the (value, time) data structure.
The set socket file descriptor is also available to the shared
library and therefore the output data is sent to the SystemC
AMS client simulator directly from the VHPI application
in the server wrapper. If the client is expected to refine
more than one models using scalable cosimulation, multiple
wrappers with their own socket ports and shared libraries of
VHPI routines can be run within a single server application
e.g. one wrapper simulating encryption and other decryption
behaviors.

G. Mixed Language Simulation
The methodology can be extended for mixed VHDL-

Verilog designs often desirable. The VPI which is Verilog
equivalent of VHPI uses similar callbacks for object re-
trieval, property access and synchronization. In fact VHPI
has its roots in VPI which is a more mature interface. The
methodology is also equally applicable to any vendor’s sim-
ulator compliant of VPI/VHPI e.g. Synopsys. Most simulator
suites consist of a chain of executables of various tools
which can be individually executed by fork-exec calls.
The methodology allows the use of the most popular lan-
guages of ASIC and SoC design spectrum: HDLs, SystemC
and their AMS extensions.

IV. EXAMPLE

Figure 5 shows part of a mixed signal transceiver. The
shadowed blocks are modeled in TDF domain whereas
regular blocks are of DE domain. The module byte2bit, a
boundary block between TDF and DE domains, is a simple
parallel to serial converter that uses multirate TDF to convert
9-bit words to single bits. The proposed methodology is
applied to this block with a cosimulation wrapper:
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Figure 5. Part of a transceiver model in mixed TDF and DE domains

SCA_TDF_MODULE(byte2bit) {
sca_tdf_in<sc_bv<9> > in port;
sca_tdf_out<bool> out port;
void attributes() {
out.set_rate(9);}

data = in.read();
void processing(){
token = cosim_wrapper

(c_strings(data, rate, file_desc));
{socket_comm(data, rate, file_desc);
commands to spawn Cadence IUS;
echoes();
status();}

out.write(to_bool(token));}
}

The equivalent model is simulated in VHDL while a
testbench uses rate attribute to clock a shift register as:

sampling_rate <= conv_integer(rate_slv);
token_vec <= conv_std_logic_vector(token, rate);
file_desc <= conv_std_logic_vector(fd, 8);
s <= s(7 downto 0) & ’1’;
sca_tdf_out_vhdl <= s(8);

Upon receiving tokens, the wrapper at server creates child
processes to execute the tool chain as follow.

daemon_parent_pid();
nbr_of_bytes = read(new_sock, buf, sizeof buf-1);
validate_messages();
(token, rate, fd) = extract_data(buf);
fork_calls();
execv(NCVHDL, opts, args, "set_rate.vhd", "byte2bit.vhd",
"testbench.vhd");
execv(NCELAB, opts, args, "generic", "token",
"worklib.entity_tb:beh");
execv(NCSIM, opts, args, -input @tcl_script,
"+loadvhpi VHDL2C_DLL", "+start=180", "+stop=350",
"+inst=:uut:comp_byte2bit", "worklib.entity_tb:beh");

The VHDL to C shared library reads and records register
output events (value toggles and times). For example:

EXPIT void
print_vhdl(const vhpiCbDataT *cbPtr)
{sigListP array =
(sigListP)cbPtr->user_data;
fprintf(vcd,"#%llu\n", time2int64(cbPtr->time));
fprintf(vcd,"b%s %s\n",
strtok(cbPtr->value->value.str, "’"),array->id);
if (strcmp(array->id, "%") == 0)
fprintf("cbPtr->value->value.str, b\"%s\");}
..
EXPIT int delVcl(p_cb_data cbPtr)
{



..
status_code = write (fd, buffer, sizeof buffer);
..
}

To form complete words the values are backward/forward
filled (carry over) for the positions in which they did not
change. The processed values are written to out port of
byte2bit module.

The cosimulated results are equivalent to pure SystemC
AMS simulation which validates the methodology and in-
terfaces. The run time of the interface computation is dom-
inated by the complexity of VHDL model that is simulated.
For precompiled and elaborated models, the times depend
only on the execution of NCSIM, the output token rate for
each input, the output token length and forward/backward
filling for serial outputs. Regardless of the CPU usage,
the benefit of cosimulating RTL models with executable
specification related to overall design cycle is significant.

V. FUTURE WORK

The methodology shall be applied to evaluate complex
VHDL models in high level SystemC AMS description.
These models will be pure digital, real valued behavioral
analog models and mixed signal models. The methodology
will be verified for cosimulating multiple models in a single
top level description.

VI. CONCLUSION

Very often designers are faced with interfacing of sys-
tem level models with refined models written for different
domains. We present a simple methodology around single
kernel SystemC AMS simulator that uses the TDF model
of computation which is at a level of abstraction where
various models can nicely co-interact. The methodology
is not software intensive to discourage hardware engineers
to construct cosimulation interfaces. The TDF paradigm,
though not cycle accurate, delivers timed data. SystemC
AMS supports hooking peripheral simulators and facilitates
their synchronization. The C language based coupling of
simulators ensures interoperability. The framework allows
mixing different levels of abstraction, domains, languages
and tools for an overall simulation with adequate speed.
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