
D I S S E R T A T I O N

Hybrid Optimization Methods
for Warehouse Logistics

and the Reconstruction of
Destroyed Paper Documents

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der
technischen Wissenschaften unter der Leitung von

ao. Univ.-Prof. Dipl.-Ing. Dr. Günther Raidl
Institut für Computergraphik und Algorithmen E186

Technische Universität Wien

und

ao. Univ.-Prof. Dr. Ulrich Pferschy
Institut für Statistik und Operations Research

Karl-Franzens-Universität Graz

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Mag.rer.soc.oec. Dipl.-Ing. Matthias Prandtstetter
Matrikelnummer 0025600

Am Neubau 28, 2100 Korneuburg

Wien, am Matthias Prandtstetter

Kurzfassung

Diese Dissertation beschäftigt sich mit dem Lösen von kombinatorischen Optimie-
rungsproblemen aus zwei unterschiedlichen Anwendungsbereichen: der Platz-
verwaltung und Berechnung von Kommissionierungstouren aus dem Bereich der

Lagerverwaltung sowie die Rekonstruktion von zerstörten Papierdokumenten aus dem
Bereich der Forensik. Obwohl diese beiden Probleme aus Sicht der Anwendung wenig
gemeinsam haben, kann man dennoch Parallelen feststellen, wenn man sie im Detail be-
trachtet, da sie Varianten von wohlbekannten kombinatorischen Optimierungsprobleme
sind. So ist die Lagerplatzverwaltung mit dem als blocks world bekannten Problem ver-
wandt und die Berechnung von Touren sowie die Dokumentenrekonstruktion stehen stark
in Beziehung zum Handlungsreisendenrpoblem. Zusätzlich wird eine kurze Darstellung
von Standardmethoden zum Lösen schwerer kombinatorischer Optimierungsprobleme,
die im Weiteren für die untersuchten Problemstellungen adaptiert werden, präsentiert.

Zuerst wird eine Variante der Lagerplatzverwaltung betrachtet, die unter anderem in der
Papierindustrie angewandt wird. Die dort verwendeten Lagerhäuser zeichnen sich durch
auf einander orthogonal stehende Lagergänge aus. Die Lagerplätze selbst werden mittels
einer Last-In, First-Out-Strategie verwaltet. Das heißt, nur auf die letzte an einem La-
gerplatz eingelagerte Papierrolle kann direkt zugegriffen werden. Will man hingegen eine
weiter hinten stehende Papierrolle ausfassen, muss man alle davor platzierten Rollen ent-
nehmen und (temporär) an anderen Lagerplätzen zwischenlagern. Das Ziel der in dieser
Arbeit verfolgten Variante der Lagerplatzzuweisung besteht darin Einlagerungen zu be-
rechnen, sodass die Anzahl der Umlagerungen während der Auslagerung, und somit die
benötigte Zeit, minimiert wird. Unglücklicherweise ist die genaue Produktionsreihenfolge
der Papierrollen im Vorhinein nicht bekannt, da es immer wieder zu Maschinenausfällen
kommt. Weiters sind die exakten Lieferdaten nicht bekannt beziehungsweise können sich

iii

Kurzfassung

unvorhergesehen ändern, zum Beispiel aufgrund von Verspätungen der Frächter. Neben
einer Ad-hoc-Zuweisungsstrategie wurden auch zwei Umordnungsalgorithmen entwickelt,
die in weiterer Folge verwendet werden können, um Ad-hoc-Umlagerungen sowie größere
Umorganisationen des Lagers während Stehzeiten durchzuführen. Die entwickelten Algo-
rithmen wurden in einem Lager eines Projektpartners getestet und die erreichten Ergeb-
nisse sowie die Rückmeldung der Arbeiter zeigten die hohe Qualität der Lösungen auf.
Als zweites Problem aus dem Bereich der Lagerlogistik wurde die Berechnung von Kom-
missionierungstouren durch ein Lager, sodass die benötigte Zeit minimiert wird, betrach-
tet. Dafür wurde ein exakter Algorithmus basierend auf dynamischer Programmierung
zur Berechnung von optimalen Touren in einem

"
klassischen\ Lagerhaus entwickelt, wo-

bei Lagerarbeiter letztlich den Touren folgend durch das Lager gehen um die bestellten
Artikel einzusammeln. Dieser exakte Ansatz wurde zum Lösen von Teilproblemen ver-
wendet und in ein größeres Framework integriert um zusätzliche Nebenbedingungen
bezüglich Lieferdaten, Kundenbestellungen und der Zuweisung von Lagerarbeitern zu
Lagerwägen erfüllen zu können.

Das zweite große Themengebiet dieser Dissertation entstammt aus dem Gebiet der Fo-
rensik und beschäftigt sich mit der Rekonstruktion von zerstörten Papierdokumenten.
Die berücksichtigten Aspekte können in drei Klassen eingeteilt werden: (a) das Rekon-
struieren von händisch zerrissenen Papierseiten und die Wiederherstellung von (b) in
Streifen oder (c) in Rechtecke geschreddertem Papier. Obwohl die Aufgabenstellung für
alle drei Varianten auf den ersten Blick ähnlich ist, liegen gravierende Unterschiede im
Detail: Während zum Beispiel bei der Rekonstruktion von händisch zerrissenem Papier
geometrische Information ausgenutzt werden kann, sind in den beiden anderen Fällen alle
Schnipsel (nahezu) gleich geformt. Deswegen wird eine Zielfunktion eingeführt, die ver-
sucht die Wahrscheinlichkeit, dass zwei Schnipsel nebeneinander platziert werden sollen,
abzuschätzen. Obwohl ein endgültiges (halb-)automatisches System zur Rekonstruktion
von Papierdokumenten auch Mustererkennung und Bildverarbeitung ausnutzen wird,
konzentriert sich diese Arbeit primär auf einen gewissermaßen ergänzenden Ansatz. Da-
für wird das Problem zuerst als kombinatorisches Optimierungsproblem formuliert, wel-
ches dann mittels Transformation auf das Handlungsreisendenproblem abgebildet und
mittels variabler Nachbarschaftssuche gelöst wird. Zusätzlich werden Schranken mit Hil-
fe einer Lagrangerelaxierung berechnet. Ein Ameisensystem und eine variable Nach-
barschaftssuche werden auf die Rekonstruktion von in (kleine) Rechtecke geschnittenem
Papier angewandt. Testergebnisse zeigen, dass mit diesem Ansätzen Instanzen mit bis zu
300 Schnipseln (fast perfekt) gelöst werden können. Diese Instanzgrößen entsprechen in
etwa Dokumenten mit zehn Seiten. Berücksichtigt man allerdings die Komplexität dieser
Problemstellung, unterstreichen die Ergebnisse das große Potenzial der vorgestellten Lö-
sungsansätze. Weiters konnte gezeigt werden, dass die Anzahl der nötigen Operationen
eines menschlichen Rekonstruierers erheblich reduziert werden konnte.

iv

Abstract

Themain topic of this thesis is the solving of real-world combinatorial optimization
problems from two domains: storage location assignments and picking tour com-
putations in warehouse management as well as the reconstruction of destructed

paper documents from the field of forensics. Although from the application point of view
these two topics have not much in common, parallels can be identified when analyzing
them in more detail. All of them are extended versions of well-known combinatorial
optimization problems, i.e., the storage location assignment is a variant of blocks world;
whereas the tour computations as well as the reconstruction of documents are related to
the traveling salesman problem. In addition, a short overview on the standard methods
for solving hard combinatorial optimization problem is given which will then be adapted
for the topics of this thesis.

First, a variant of the storage location assignment problem is examined which typically
arises among others in paper industry. Related warehouses consist of aisles orthogonal to
each other and storage locations are accessed using a Last-In, First-Out policy, i.e., only
the last stored item is directly accessible from each storage location. In case someone
wants to access a paper roll located not immediately accessible, all paper rolls placed
in front of the requested one need to be removed and (temporarily) stored in other lo-
cations. The goal of the storage location assignment examined within this thesis is to
compute an assignment of paper rolls to stockyards such that during shipping minimal
picking times arise which is equivalent to minimizing the number of necessary relocation
operations when loading. Unfortunately, the concrete production order of the paper rolls
stored within the warehouse is not known in advance due to technical constraints. Even
more, the shipping dates are only estimations and may suddenly change, e.g., due to
delays of the carrier. However, beside the assignment of positions within the warehouse

v

Abstract

two rearrangement strategies have been developed such that ad-hoc relocations as well as
warehouse reorganizations during idle times can be performed for improving the current
warehouse state. The algorithms described within this part were directly applied in the
warehouse of a partner company and the results obtained with respect to the warehouse
states as well as the feedback of the warehouse worker underlined the high quality of the
proposed approaches.
As a second problem from the domain of logistics and warehouse management the com-
putation of order picking tours through a warehouse such that the total order picking
times are minimized is investigated. For this purpose, an exact algorithm based on dy-
namic programming for computing optimal tours through a “classical” stockyard which
will be walked by warehouse men operating trolleys is presented. This procedure is ap-
plied as a subproblem solver within a larger framework regarding additional constraints
related to shipping dates, customer orders and worker to trolley assignments.

The second large topic of this thesis originates from the field of forensics and focuses on
the reconstruction of destroyed paper documents. The aspects considered here can be
divided into three subdomains: reconstruction of (a) manually torn paper documents,
(b) strip shredded documents and (c) cross cut shredded documents. Although the back-
ground is the same for all three of these concrete applications, they differ in important
details, e.g., while for the reconstruction of manually torn paper shape information can
be exploited during the restoration process, the snippets produced by strip shredders or
cross cut shredders are all (almost) equally shaped. Therefore, two different error esti-
mation functions trying to estimate the likelihood that two snippets should be aligned
with each other are proposed. Although a (semi-)automatic reconstruction system will
finally incorporate pattern recognition and image processing techniques, we mainly fo-
cus on a somehow complimentary approach. Therefore, this problem is firstly formu-
lated as a combinatorial optimization problem which is then solved by first applying a
transformation to the traveling salesman problem, via a hybrid variable neighborhood
search incorporating human user interactions and a Lagrangian relaxation/heuristic for
computing lower bounds. For the reconstruction of cross cut shredded documents ad-
ditionally to a variable neighborhood search an ant colony optimization based method
is applied. Experimental results document that instances with up to 300 shreds can
be (almost perfectly) reconstructed using the presented approaches. This instance size,
however, corresponds to documents with only a few pages, e.g., approximately ten sheets
of paper using standard shredding devices. Considering the complexity of this problem
the tests confirm the high potential of the proposed approaches. Even more, they show
that the number of user operations when assembling destroyed documents is reduced to
a minimum consisting of only a few final operations for obtaining the original document.

vi

Danksagung

Zuallererst möchte ich Prof. Günther Raidl für seine ausdauernde und hervorra-
gende Betreuung danken. Ohne seine Unterstützung und Ratschläge wäre vieles
nicht so geworden, wie es letztlich hier niedergeschrieben ist. Auch Prof. Ulrich

Pferschy, der sich bereit erklärt hat, die Arbeit zu begutachten, und der es geschafft hat,
in kürzester Zeit wertvolles Feedback zu dieser Arbeit zu geben, gilt mein Dank.

Bedanken möchte ich mich weiters bei meinen Arbeitskollegen, die – jeder auf seine
eigene Art – zum guten Gelingen dieser Arbeit beigetragen haben:

• Bin Hu, der mir viele Einblicke in chinesische (Essens-)Gewohnheiten gegeben hat

• Martin Gruber, dessen Unterstützung man sich in allen Belangen sicher sein kann

• Andy Chwatal, der für die eine oder andere astronomische Lehrstunde und Diskus-
sion zur Verfügung stand

• Markus Leitner, der er schaffte, mir den Rang des
"
Morgens-der-erste-am-Institut-

zu-Seiende\ abspenstig zu machen

• Mario Ruthmair, dessen Bodenständigkeit und Fähigkeit zur klaren Darstellung
von Problemen stets die Felsen in der (organisatorischen) Brandung waren

• Philipp Neuner, Aksel Filipovic und Andreas Weiner, die stets bei technischen
Problemen zur Stelle waren

• Stephanie Wogowitsch, Angela Schabel und Doris Dickelberger, die mich bei or-
ganisatorischen Tätigkeiten stets verlässlich und kompetent unterstützt haben

vii

Danksagung

• sowie Ania Potocka, Raul Fechete, Patrick Klaffenböck und Thorsten Krenek, die
in ihrer Funktion als Studienassistenten immer eine Stütze in der Lehre waren

• Daniel Wagner, mein ehemaliger Zimmerkollege, und Sandro Pirkwieser, mein
derzeitiger Zimmerkollege, erhalten noch eine Extraportion Dank – mit ihnen habe
ich über viele (kleine) Probleme diskutiert, die nach unseren Gesprächen keine
mehr waren.

Selbstverständlich gilt mein Dank auch meiner Familie – vor allem meinen Eltern, die
irgendwann damit aufgehört haben, mich zu fragen, wann ich denn nun endlich mit
meiner Dissertation fertig werde.

Danke an meine geliebte Frau Ursula, die mich in allen Dingen stets unterstützt und mir
immer motivierend zur Seite steht.

Bildung ist das, was übrig bleibt, wenn man alles,
was man in der Schule gelernt hat, vergisst.

(Albert Einstein)

viii

Contents

1. Introduction 1

2. Methodologies 7
2.1. Exact Methods . 8

2.1.1. Dynamic Programming . 8
2.1.2. Integer Linear Programming . 10
2.1.3. Lagrangian Relaxation . 15

2.2. Metaheuristics . 16
2.2.1. Local Search . 17
2.2.2. Variable Neighborhood Search . 18
2.2.3. Variable Neighborhood Descent . 19
2.2.4. Ant Colony Optimization . 21

2.3. Hybrid Approaches . 22

3. Logistics and Warehouse Management 25
3.1. Location Assignment . 26

3.1.1. Production Process . 27
3.1.2. Problem Definition . 29
3.1.3. Related Problems and Complexity 32
3.1.4. Stocking Strategy . 34
3.1.5. Relocation Strategy . 35
3.1.6. Experimental Results . 43

3.2. Routing . 48
3.2.1. Problem Definition . 49

ix

Contents

3.2.2. Related Work . 51
3.2.3. A Hybrid Variable Neighborhood Search Approach 52
3.2.4. Experimental Results . 60

3.3. Summary . 61

4. Reconstruction of Destructed Documents 65
4.1. Manually Torn Paper Documents . 67

4.1.1. Complexity Results . 71
4.1.2. Reconstructing Edges of Paper Sheets 74
4.1.3. Exploiting Geometrical Information 76
4.1.4. Fragment Stack Analysis . 77
4.1.5. Computer Vision Techniques . 78

4.2. Strip Shredded Text Documents . 79
4.2.1. Related Work . 80
4.2.2. Formulation as Combinatorial Optimization Problem 81
4.2.3. Complexity Results . 83
4.2.4. Error Estimation Function . 84
4.2.5. The Concept of Quality . 86
4.2.6. Solving RSSTD via Reformulation as a Traveling Salesman Problem 87
4.2.7. Solving RSSTD via Variable Neighborhood Search and Human

Interaction . 93
4.2.8. Computing Bounds for RSSTD via Lagrangian Relaxation 98
4.2.9. Discussion of Related and Arising Problems 109

4.3. Cross Cut Shredded Text Documents . 112
4.3.1. Formal Problem Definition . 113
4.3.2. Construction Heuristics . 115
4.3.3. Variable Neighborhood Search based Approach 121
4.3.4. Ant Colony Optimization Based Approach 123
4.3.5. Experimental Results . 126
4.3.6. Concluding Remarks . 128

4.4. Impact on Confidentiality . 129

5. Conclusions and Future Work 131

Bibliography 135

A. Pages Used for Generating Instances 149

B. Curriculum Vitae 159

x

Chapter 1

Introduction

Hybridization techniques are generally based on the combination of two (or more)
mainly complimentary approaches lacking in some properties when being ap-
plied on their own to overcome a given problem. Only the combination of these

methods, however, is in many situations capable of producing the desired output.

One prominent example for a direct application of hybridization is the hybrid car. This
kind of automobile relies, among others, on the so called kinetic energy recovery system
(KERS). Using KERS kinetic energy set free during brake applications is in most cases
transformed into electric power, which is temporarily stored and in the following used
for easing the acceleration process. It is assumed that using this technology the fuel
consumption of vehicles can be optimized.

Another example arising in zoology is the mule, which is a crossing of a horse as mother
and a donkey as father. Mules combine the power of horses while being as resilient
and sure-footed as donkeys. Although mules were already of great importance in the
Roman empire they are becoming more popular again since the beginning of the 21st
century [87].

Due to the complexity of many combinatorial optimization problems arising in real-world
applications hybridization of methods for solving them played and plays a major role in
computer sciences and operations research during the last decade and in recent years.
Especially the combinations of exact methods, resulting in proven optimal solutions,
with (meta-)heuristic approaches, often providing (high quality) solutions in reasonable
computation times, are highly promising with respect to solution qualities as well as
computation times. Nevertheless, such a “crossing” is in most cases non-trivial and

1

Chapter 1. Introduction

Figure 1.1.: A typical warehouse layout as considered within this thesis.

sophisticated methods for aggregating the advantages of the combined methods while
minimizing their disadvantages need to be developed.

Applications are, among others, production optimization, routing and telecommunica-
tions, cutting and packing, and just to mention one of the most important application
areas of combinatorial optimization: supply chain management—although this impor-
tance might be rooted in the fact that a vast amount of money can be earned in this field.
Solving large instances of hard combinatorial problems is a challenging task and therefore
the development of powerful algorithms for tackling them is of great importance.

This thesis deals with combinatorial optimization problems taken from two at a first
glance completely different domains: While in the first part the computation of storage
location assignments in warehouses as well as the computation of optimal tours through
the warehouse for picking articles which were ordered by customers is considered, the
second part concentrates on the reconstruction of destroyed paper documents as arising
in the field of forensics.

Although the computation of storage locations is of general interest in any warehouse
management system, a special case arising in paper industry is tackled within this work.
A typical warehouse in this application is structured as follows, see also Fig. 1.1: all
aisles are orthogonal to each other, storage locations are accessible only from one aisle
and all storage locations are structured using a Last-In, First-Out strategy, i.e., only the
article (paper roll) stored to a storage location at last can be directly accessed. In case
a paper roll not directly accessible needs to be removed from the warehouse, e.g., due to
shipping, all other paper rolls in front need to be relocated. Obviously, these additional
movements of paper rolls slow the shipping process down. Though, it is desired that
especially the time needed for loading is minimized—on the one hand to reduce the
waiting time of customers and on the other hand to be able to serve as much customers as
possible without increasing the for example the number of warehouse men. In addition,

2

the likelihood that a paper roll is damaged is raised each time it is moved due to the
appliance mounted on the fork trucks used for lifting paper rolls. Obviously, this leads
to the requirement that paper rolls need to be assigned to storage locations such that
they are sorted according to the sequence needed during shipping. Unfortunately, they
are not produced according to this order. Even more, the precise production sequence is
in most cases not entirely known since (additional) high priority orders may arrive lately
and machine breakdowns occur from time to time. Within this work, an ad-hoc stocking
strategy is developed which will be used for assigning storage locations to paper rolls on a
first-come, first-serve basis, i.e., for each paper roll arriving from production a stockyard
is immediately assigned. In addition, a relocation strategy is proposed reassigning paper
rolls to new storage locations such that the current warehouse state can be improved
according to requirements stated by the warehouse manager.

While this first investigated application assigns storage locations to items, the second
topic explored within this thesis is related to computing routes through a warehouse.
The underlying warehouse structure is basically the same as for the storage location
assignment problem, see also Fig. 1.1, i.e., aisles orthogonal to each other and racks
only accessible from one aisle. This time, however, all articles stored within one storage
location are equivalent, i.e., no relocations of articles are necessary. A couple of ware-
house men walk through the warehouse operating a trolley and collect articles ordered
by customers by placing them on their trolley. These items are then brought to a so-
called packing station where they are boxed and handed over to a shipping company.
Although each customers typically orders several articles, they need not be picked by
the same warehouse worker since there is an intermediate storage in the packing station.
Obviously, it is tried to minimize the time needed by the worker collecting all articles,
which corresponds to minimizing the lengths of the routes to be walked. For this pur-
pose, it is self-evident that in a first step a partitioning of all ordered articles will be
computed such that articles located nearby will be picked along the same tour. In a
second step, the concrete determination of tours will be performed. However, there are
some restrictions which will to be regarded. For example it is necessary that all articles
are delivered to the packing station within a specified time and the capacities of the
trolleys need to be regarded.

With respect to the restoration of destroyed paper documents, three different applica-
tions are considered: the reconstruction of manually torn paper documents, the recon-
struction of strip shredded paper documents and the reconstruction of cross cut shredded
paper documents. Although all three of these applications seem to be very similar on
a first glance, crucial differences can be identified on a closer look, see also Fig. 1.2.
While for the reconstruction of manually torn paper documents the shape of remnants
can be exploited, all shreds obtained using a shredder device are (almost) equally shaped
(and sized). One possible approach would be to reconstruct the documents based on

3

Chapter 1. Introduction

(a) (b)

Figure 1.2.: An example for remnants as obtained when manually tearing (a) and me-
chanically shredding (b) paper documents.

the information contained on the front (and back) faces of the shreds. For this purpose
it is convenient to apply pattern recognition and image processing techniques to gather
as much information as possible. Nevertheless, after extracting useful features it is still
necessary to assemble the shreds such that the original document is restored. Within
this work, we entirely focus on this second step, i.e., the actual reconstruction assuming
that during a preprocessing step valuable information to be exploited was obtained. The
relationship of these three problems to the solving of jigsaw puzzles is obvious. In addi-
tion, it will be shown that the reconstruction of shredded documents is strongly related
to the well-known traveling salesman problem. Obviously, the problem of reconstructed
a potential evidence will arise in crime scene investigations. Additionally, in archeology
related problems arise when trying to reconstruct clay jugs out of clay fragments or
restoring frescoes possibly destructed during earth quakes.

Overview of the Thesis

This work is structured as follows: The next chapter will give a short survey of (standard)
optimization techniques applied to (hard) combinatorial optimization problems including
among others an introduction to linear programming, dynamic programming, variable
neighborhood search and ant colony optimization.

In Chap. 3 two works related to logistics and warehouse management, namely a storage
location assignment problem and a routing problem in warehouses are presented. This
chapter mainly reflects the work done during a project with our industry partner Data-
phone GmbH located in Vienna, Austria. Large parts of this chapter were published in

4

U. Ritzinger, M. Prandtstetter, and G. R. Raidl. Computing optimized stock
(re-)placements in Last-In, First-Out warehouses. In S. Voss et al., editors,
Logistik Management, pages 279–298. Physica-Verlag, 2009.

and

M. Prandtstetter, G. R. Raidl, and T. Misar. A hybrid algorithm for com-
puting tours in a spare parts warehouse. In C. Cotta and P. Cowling, editors,
Evolutionary Computation in Combinatorial Optimization – EvoCOP 2009,
volume 5482 of LNCS, pages 25–36. Springer, 2009.

Furthermore results of this chapter have been presented at the AIRO2008, the annual
conference of the Italian operations research society, in Italy in 2008 and the joint work-
shop Entscheidungsunterstützung in der Logistik – Geographische Informationssysteme,
Simulation und Optimierung of the Austrian and German operations research societies
in Salzburg, Austria, in 2008. In addition, two master theses [118, 93] related to this
topic were co-supervised by the current author.

Chapter 4 focuses on the reconstruction of destructed paper documents, whereas in
the first section of this chapter methods related to the reconstruction of manually torn
documents are presented. This part of the chapter mainly acts as a literature overview
as well as a summary of the master theses [123, 14] co-supervised by myself focusing
on document reconstruction. A presentation related to this topic was given at the 11th
International Workshop on Combinatorial Optimization in Aussois, France, in 2007.

The second part of Chap. 4 deals with the reconstruction of strip shredded documents.
One related master thesis [95] was supervised by us and earlier versions of this section
were published in

M. Prandtstetter and G. R. Raidl. Combining forces to reconstruct strip
shredded text documents. In M. J. Blesa et al., editors, Hybrid Metaheuristics,
volume 5296 of LNCS, pages 175–189. Springer, 2008.

as well as in

M. Prandtstetter. Two approaches for computing lower bounds on the recon-
struction of strip shredded text documents. Technical Report TR 186–1–09–01,
Institute of Computer Graphics and Algorithms, Vienna University of Tech-
nology, 2009. submitted to Operations Research Letters.

The third section of this chapter focuses on the reconstruction of cross cut shredded text
documents and large parts were published in

M. Prandtstetter and G. R. Raidl. Meta-heuristics for reconstructing cross
cut shredded text documents. In G. R. Raidl et al., editors, GECCO ’09: Pro-

5

Chapter 1. Introduction

ceedings of the 11th annual conference on Genetic and Evolutionary Com-
putation, pages 349–356. ACM Press, 2009.

Final remarks indicating possible future research directions are presented in Chap. 5.

6

Chapter 2

Methodologies

Within this chapter, we will focus on the presentation of some selected meth-
ods—both of exact and heuristic nature—which will be a basis for the solution
approaches discussed in more detail in the remaining chapters of this thesis.

First we will, however, give a definition of combinatorial optimization problems, cf. [15]:

Definition 1 (combinatorial optimization problem). A combinatorial optimization prob-
lem is a set of instances. Each instance is a pair (S, f) with S indicating a finite set
of feasible solutions x ∈ S and function f : S → R assigns to each solution in S a real
value f(x).

Set S is also called search space and the goal is to find a solution x∗ such that f(x∗) ≤
f(x) is satisfied for all x ∈ S. Obviously x∗ denotes an optimal solution.

The methods for solving hard combinatorial optimization problems (COPs) are as dif-
fering as the problems arising in real-world applications and academic research projects.
They can, however, be classified into three main categories: exact, heuristic, and hybrid
approaches. While exact algorithms are able to provide a proven optimal solution they
are in general very time-consuming such that they can often be applied to small or mod-
erately sized instances only. Heuristic approaches are, in contrast, often quite fast with
respect to execution times, but only provide approximate solutions and usually do not
provide quality guarantees. So called approximation algorithms—a subclass of heuris-
tics—are capable of giving such a guarantee on the quality of obtained solutions. Hybrid
algorithms, finally, try to combine advantages of both, exact and heuristic approaches,
such that high quality solutions—in certain cases even including some estimation on
solution quality—are returned within reasonable computation times.

7

Chapter 2. Methodologies

On the side of exact algorithms following approaches are most prominent, among others:
dynamic programming [13], Branch&Bound [139], and constraint programming [121], as
well as the large class of approaches based on linear programming including integer
linear programming, Branch&Cut, Branch&Price, Branch&Cut&Price [97, 100, 139] and
Lagrangian relaxation based techniques [11].

With respect to heuristics a further classification can be done: Roughly speaking there
are construction heuristics and improvement and repair heuristics. While the former aim
in generating a solution to a given problem, the latter try to improve a given (possibly
invalid) solution with respect to some objective function. Among all types of heuristics
the most straightforward ones are so called greedy heuristics, which construct a solution
from scratch by choosing and adding an immediately most lucrative appearing solution
component until a complete solution is obtained. Hereby, they never withdraw a made
decision. Other heuristics are based on the concept of local search, which aims to im-
prove a given solution by small, i.e., local, changes. Improvements are always accepted,
while worse solutions are discarded. These approaches are, however, often very prob-
lem specific and they are in general finally caught in local optima. To escape those
valleys containing local optima metaheuristics are often applied, which are more gen-
eral solution strategies specified in more abstract ways and can therefore be applied to
a wide range of different problems. Successfully applied metaheuristics based on local
search [62] are, among others, simulated annealing [61], tabu search [44], iterated local
search [88], and variable neighborhood search [58]; inspired by nature, especially biol-
ogy, are ant colony optimization [33], particle swarm optimization [72], and population
based approaches like evolutionary algorithms [9], memetic algorithms [96], or scatter
search [47].

2.1. Exact Methods

The large class of exact methods can further be divided in several subclasses of algo-
rithms following different paradigms. In this work we focus, however, only on a few
selected general schemes like dynamic programming, (integer) linear programming based
approaches and Lagrangian relaxation.

2.1.1. Dynamic Programming

Dynamic programming (DP) was developed in the 1950s by Bellman [13]. The basic
principle of dynamic programming is to divide a given problem P0 into a sequence
of subproblems P1, P2, . . . , Pk such that subproblem Pk can be (trivially) solved and
a solution to problem Pi can be directly derived from Pi+1, with i = 0, 1, . . . , k − 1.

8

2.1. Exact Methods

In contrast to the apparently related concept of Divide&Conquer the subproblems are
dependent of each other.

Bellman presents a rule on how to derive subproblems for a given problem P0:

“Principle of Optimality: An optimal policy has the property that whatever
the initial state and initial decision are, the remaining decisions must con-
stitute an optimal policy with regard to the state resulting from the first
decision.” [13]

To be able to efficiently apply DP to combinatorial optimization problems this implies
that on the one hand, the subproblems are extracted such that the optimal solution to
subproblem Pi+1 can be exploited when constructing an optimal solution to Pi, with
0 ≤ i ≤ k−1. On the other hand, it needs to be guaranteed that the results obtained for
already solved subproblems are stored, e.g., in memory, and can be efficiently accessed
when deriving other solutions, cf. [23].

Although in most cases DP based approaches are applied to polynomially solvable prob-
lems, there are situations in which even for NP-hard problems DP is successful. One
such optimization problem is the classical 0/1 knapsack problem (KP); see [71] for a
comprehensive study on knapsack problems: Given are a set of n items having profits
pj and weights wj , for 1 ≤ j ≤ n, and a constant maximum capacity c. The goal is now
to find a subset S of the items such that the profit p(S) =

∑
j∈S pj of the selected items

is maximized while the capacity constraint
∑

j∈S wj ≤ c is respected.

Using DP the 0/1 knapsack problem can be solved in pseudo-polynomial time, i.e., in
time complexity polynomially bounded by the instance size n when all wj are integer
and c is polynomially bounded by n. For this purpose, a matrix mi,j and a matrix si,j ,
with 0 ≤ i ≤ n and 0 ≤ j ≤ c, is defined whereas the field si,j corresponds to a selection
of the first i items having a capacity equal to j. The field mi,j is set to the associated
profit of the selection in si,j . Following recursion is used to compute matrix m:

m0,0 = 0 (2.1)
m0,j = −∞, ∀j ∈ {1, . . . , c} (2.2)
mi,0 = 0, ∀i ∈ {1, . . . , n} (2.3)
mi,j = mi−1,j , ∀i ∈ {1, . . . , n} , j ∈ {0, . . . , wi − 1} (2.4)
mi,j = max {mi,j ,mi−1,j ,mi−1,j−wi + pi} , ∀i ∈ {1, . . . , n} , j ∈ {wi, . . . , c} (2.5)

The values of matrix s are set accordingly. For this purpose, all values are first initialized
to ∅. Then the sets yielding the profits stored in mi,j are saved in si,j , with i ∈ {1, . . . , n}
and j ∈ {wi, . . . , c}, i.e., si,j = argmaxS∈{si,j ,si−1,j ,si−1,j−wi

∪{i}} {p(S)}.

9

Chapter 2. Methodologies

The basic idea of this model is to first solve the problem of optimally packing the
knapsack with just one item (i = 1), i.e., the item is selected or not. These two solutions
correspond to the fields m1,0 and m1,w1 , respectively. All other fields of row i are set to
−∞ using the above rules and indicate that no solutions for the corresponding fields exist.
The solution for deciding which of the first two items should be packed is now derived
from the solution for just one item by either packing the second item to the first one,
selecting only the second one, selecting only the first one or selecting none of both. The
corresponding profit values of these solutions can, as long as the total weight does not
exceed c, be found in the fields m2,w1+w2 , m2,w2 , m2,w1 and m2,0, respectively. Obviously,
the situation can occur that two different selections of items have the same weight. In this
case, the solution with the better, i.e., higher, profit is stored for further computations
while the worse solution is discarded. The profit of the best solution can be obtained
via finding that column j with maximum associated profit for the problem regarding all
solutions mn,j . Obviously, the corresponding selection of items is stored in sn,j .

2.1.2. Integer Linear Programming

There is a vast amount of combinatorial optimization problems which can be modeled
as an integer linear program, e.g., the knapsack problem [71] already introduced in the
previous section or the well-known traveling salesman problem [84]. An integer linear
programming (ILP) formulation consists of a linear objective function to be maximized
over a set of integral decision variables and linear inequalities and equalities to be fulfilled.
A basic introduction into this field is given in [139]. For more advanced techniques we
refer to [97]. Each ILP can also be written in the following standard form:

max cx

s.t. Ax ≤ b (ILP)
x ≥ 0 and integer

where A is anm×n coefficient matrix, c an n-dimensional row vector, b anm-dimensional
column vector and x an n-dimensional column vector of integer variables, with m,n ≥ 1.
In some situations it is convenient to also allow some non-integer, i.e., rational, variables
y. The so-called mixed integer linear program (MIP) can then be written as

max cx + hy

s.t. Ax + Gy ≤ b (MIP)
x ≥ 0 and integer
y ≥ 0

where c, A, b and x is defined as above and G denotes a m × p coefficient matrix, h a
p-dimensional row vector, and y a p-dimensional column vector of fractional variables.

10

2.1. Exact Methods

In case variables x in (ILP) are restricted to the binary domain {0, 1}, the resulting
formulation is called binary integer program (BIP):

max cx

s.t. Ax ≤ b (BIP)
x ∈ {0, 1}

Many combinatorial optimization problems (COPs) can be formulated as ILP, MIP or
BIP, e.g., see [71] for formulations of the knapsack problem. When modeling a certain
COP it might be more natural to express the problem as minimization problem which
in addition might contain equalities. It is, however, easy to express each equality by two
inequalities (one with ≤ the other with ≥) and multiply one by −1. In addition, each
maximization problem can be transformed into an equal minimization problem (again
by multiplication with −1) [97, 139]. Therefore, we assume in the following section that
we have a maximization problem.

Linear Programming

Let us now introduce some additional definitions and observations which will be used
within the thesis: The linear programming (LP) relaxation of a MIP (or ILP or BIP)
is obtained by omitting the integrality constraints for formulation (MIP) (or (ILP)
or (BIP))

max cx + hy

s.t. Ax + Gy ≤ b (LP)
x ≥ 0
y ≥ 0

The set PMIP = {x : Ax + Gy ≤ b, x ≥ 0 and integer, y ≥ 0} corresponds to the set of
feasible solutions to (MIP) while PLP = {x : Ax + Gy ≤ b, x ≥ 0, y ≥ 0} denotes the
set of valid solutions to (LP). It is easy to show that PMIP ⊆ PLP since any solution
x ∈ PMIP is also member of PLP. Now, it is obvious that maxx {cx : x ∈ PMIP} ≤
maxx {cx : x ∈ PLP} holds and therefore the objective value obtained by solving the
linear program, i.e., determining x ∈ PLP minimizing the objective function cx, is always
greater than or equal to the value obtained for solving the original mixed integer program.
Since this relationship always holds, the minimal LP relaxation value is always an upper
bound for the optimal objective value of the original problem. Using interior point
methods [73] or the ellipsoid method [70] the LP relaxation value can be obtained in
time polynomially bounded in the number of variables and constraints. In practice,
however, variants of the simplex algorithm are most often used due to its typically better

11

Chapter 2. Methodologies

Figure 2.1.: An enumeration tree for a knapsack instance with n = 3 items.

runtime-behavior, although its worst case runtime is exponential. An introduction to
this highly important algorithm [31] is given in [23].

The simplex algorithm exploits the following observations for set PMIP:

• PMIP = ∅ ⇒ no solution exists, i.e., the LP is infeasible.

• PMIP 6= ∅ and ∄ inf {cx : x ∈ PMIP} ⇒ the LP is unbounded, i.e., although it is
feasible no optimal solution can be identified.

• PMIP 6= ∅ and ∃ inf {cx : x ∈ PMIP} ⇒ there exists an optimal solution x∗ =
min {cx : x ∈ PMIP}. However, there exists a vertex x of PMIP such that cx = cx∗.

LP based Branch&Bound

Using linear programming techniques upper bounds on the objective value of the op-
timal solution for given integer linear programs can be computed. Lower bounds can
essentially only be obtained by computing solutions to the original problem [139]. Ob-
viously, the best lower bound corresponds to the objective value of the optimal solution.
Although for some problems finding (any) solution is easy, the open question is: “How
to find good solutions?”. This is in general NP-hard, i.e., it is very unlikely that an
algorithm exists which is polynomially bounded in the instance’s input size. One naive
approach for obtaining solutions to the original problem would be to apply complete
enumeration on the set of decision variables. E.g., for the 0/1 knapsack problem in-
troduced in Sec. 2.1.1 this would result in enumerating all possible selections of items
to be packed. Clearly each of the selections needs to be checked whether it is valid
with respect to the capacity constraint. Since all possible selections are inspected the
optimal one is visited, too. Although this approach might be applicable to (very) small
instances the number of solutions to be checked is exponential in the number of items
n, i.e., O(2n). The corresponding enumeration tree for an instance of the 0/1 knapsack

12

2.1. Exact Methods

problem with n = 3 items is shown in Fig. 2.1. The root of the tree corresponds to the
initialization. The first level corresponds to the decision whether or not item 1 should
be packed into the knapsack. Level two corresponds to the decision for item 2, and so
on. To keep the number of nodes in this tree as small as possible it is usual to constrain
the tree. For example, if a selection of items is already violating the capacity constraint
it is not necessary to further investigate all solutions containing the violating selection
as subset. Furthermore, (upper) bounds on the solution quality can be computed for
each subtree not yet examined. E.g., one such bound can be computed as the already
packed profit plus the profit of all so far not considered items. If this sum is less than
or equal to the profit of an already obtained solution, the corresponding branch of the
tree needs not to be examined anymore since no further improvement can be achieved
in that subtree. Obviously, the bounds generated by this heuristic will not be very tight
since the constraint on the capacity is completely disregarded.

However, linear programming techniques can be incorporated in such an approach.
See Alg. 1 for pseudocode of this procedure. Let us assume that polyhedron P =
{x : Ax ≤ b, x ≥ 0} corresponds to the LP relaxation of the ILP to be solved. If solution
xLP obtained is integer, i.e., the relaxed integer constraints are fulfilled, the ILP is solved
to optimality. Otherwise, heuristics incorporating the solution to the LP can be used
for generating a lower bound, i.e., a feasible solution. Anyhow, at least one variable xi,
with 1 ≤ i ≤ n is fractional. Let xLP

i be the value of variable xi in x∗. Now, two new
subproblems P1 and P2 can be specified with

P1 =
{
x : Ax ≤ b, x ≥ 0, xi ≤ ⌊xLP

i ⌋
}

(2.6)
P2 =

{
x : Ax ≤ b, x ≥ 0, xi ≥ ⌈xLP

i ⌉
}

(2.7)

This step is also referred to as branching. By recursively solving the newly generated
subproblems three cases can occur:

• If the best lower bound, i.e., the best obtained feasible solution, is equal to the
local upper bound, i.e., the value of the current LP relaxation, then the current
best solution is optimal with respect to the current subtree, i.e., this branch of the
tree can be pruned.

• If the best lower bound is greater than the local upper bound, the corresponding
subtree can be pruned, since the best achievable solution in this branch cannot be
better than the best already obtained solution.

• In all other cases, i.e., if the gap between the lower and the upper bound is positive,
the process has to be further iterated for this subtree.

More advanced techniques may be additionally applied for improving this LP-based
Branch&Bound algorithm. For example, it is common to incorporate a cutting plane [139]
approach when the number of constraints in the original formulation is large or even

13

Chapter 2. Methodologies

Algorithm 1: Branch&Bound
Input: set {Ax ≤ b, x ≥ 0 and integer}
Data: z . . . local upper bound
Output: optimal solution x∗

P ← {Ax ≤ b, x ≥ 0};
set of subproblems S ← {P};
while S 6= ∅ do

// select one subproblem and remove it
P ← select one problem in S;
S ← S \ {P};
// solve the subproblem
xLP ← min {cx : x ∈ P};
if P is infeasible then
continue; // prune the tree

z ← cxLP;
if z < cx∗ then
continue; // prune the tree

if xLP is integral then
x∗ ← xLP; // set new incumbent
continue; // prune the tree

// compute an integral solution using heuristics
x← a heuristic solution to P ;
if cx > cx∗ then

x∗ ← x;
// select a fractional xi ∈ xLP

P1 ←
{
x : x ∈ P, xi ≤ ⌊xLP

i ⌋
}
;

P2 ←
{
x : x ∈ P, xi ≤ ⌈xLP

i ⌉
}
;

S ← S ∪ {P1, P2};
return x∗;

14

2.1. Exact Methods

exponential in the instance size. If the number of variables is exponential column gener-
ation [90] is applied which iteratively adds promising variables on demand. The resulting
approach is then referred to as Branch&Cut and Branch&Price [139], respectively.

2.1.3. Lagrangian Relaxation

As already outlined in the previous section the computation of lower bounds is one
crucial point in the successful application of Branch&Bound algorithms. Although the
computation of bounds using LP relaxations is a standard technique better bounds can
sometimes be obtained by applying the so-called Lagrangian relaxation [11] (LR). Let
us assume the following ILP formulation for a minimization problem is given

min cx (2.8.1)
s.t. Ax ≥ b (2.8.2)

Bx ≥ d (2.8.3)
x ∈ {0, 1} (2.8.4)

where A is an m×n and B and p×n coefficient matrix, respectively, c an n-dimensional
row vector, b and d anm-dimensional and and p-dimensional column vector, respectively,
and x an n-dimensional column vector of integer variables, with m,n, p ≥ 1.

Now, it is easy to define a Lagrangian relaxation by associating Lagrangian multipliers
λ with constraints (2.8.2) and relaxing them into the objective function:

min cx + λ(b−Ax)
s.t. Bx ≥ d (LR)

x ∈ {0, 1}

Therefore, λ is a n-dimensional row vector. It can be shown that an optimal solution
of formulation (LR) provides a lower bound on the optimum of formulation (2.8) for
any λ ≥ 0 [11]. Obviously, it would also be possible to relax constraints (2.8.3) instead
of constraints (2.8.2). However, normally those constraints are relaxed which make a
problem “hard” to solve. In addition, we are interested in finding among all possible
values for λ that set of multipliers which maximizes the lower bound, i.e.,

max
λ≥0


min cx + λ(b−Ax)
s.t. Bx ≥ d

x ∈ {0, 1}

 (LD)

This problem is also referred to as Lagrangian dual program (LD). There are two issues
open related to a development of an LR: Which of the constraints should be relaxed?

15

Chapter 2. Methodologies

As already mentioned, one normally will relax the “hard” ones but at the same time
it can be shown that in case formulation (LR) exhibits the integrality property, which
states that the LP relaxation of (LR) is always integral, the bounds obtained by LR are
equal to the value obtained via a standard LP relaxation. Therefore, one will in general
try to find a set of constraints to be relaxed into the objective function such that the
remaining formulation does not contain the integrality property.

The second issue is related to the computation of optimal λ-values, i.e., the determination
of λ maximizing (LD). Fortunately, this problem turns out to be piecewise linear and
concave. The standard approach in practice is to apply a subgradient procedure [11].
The idea is to iteratively solve the Lagrangian dual program and to compute for each
element of λ a so-called subgradient indicating how much the corresponding constraint is
satisfied or violated. In case a relaxed constraint is still violated the corresponding λi is
enlarged while it is reduced when the constraint is “over-satisfied”. Choosing appropriate
values for strategic parameters the iterative process can be controlled and fine tuned.

Lagrangian Heuristic

Additionally to the computation of lower bounds by applying Lagrangian relaxation, it
is also possible to generate solutions to the original formulation by developing a so-called
Lagrangian heuristic (LH). The idea is to derive solutions from the values obtained via
LR which will constitute upper bounds on the original problem. Again, the process can
be prematurely terminated as soon as the lower bound and the upper bound coincide.

Although LR and LH both are not exact approaches on their own for obtaining solutions
to their underlying problem, they are often incorporated in a Branch&Bound algorithm
for computing lower and upper bounds which then results in an exact method.

2.2. Metaheuristics

Although exact methods theoretically provide optimal solutions to any given problem in-
stance, the practical application of such methods is often limited to small and moderately
sized instances—especially when applied to hard combinatorial optimization problems.
Therefore, it is convenient to sacrifice proven optimal solutions for the sake of desired
time and memory performance by applying (meta-)heuristics.

By the term metaheuristic, which has been introduced by Glover [45], a large class of
algorithms is denoted which have in common that they are relatively abstractly speci-
fied, problem independent approaches guiding and controlling low-level, problem-specific
heuristics. Due to their nature they can be applied to a huge amount of optimization

16

2.2. Metaheuristics

Algorithm 2: LocalSearch
Input: initial solution x

neighborhood structure N
Output: possibly improved solution x

repeat
// get neighbor of x
x′ ← step(N(x));
// improvement or not?
if f(x′) < f(x) then

x← x′;
until a stopping criterion is met ;
return x;

problems by simply adapting and/or interchanging their problem-specific parts. Based
on these principles they rely on, the following classes of metaheuristics, among others,
can be identified: local search based metaheuristics like simulated annealing [61], iter-
ated local search [88], variable neighborhood search [58] and tabu search [44] as well as
population based and nature inspired metaheuristics like evolutionary algorithms [9], ant
colony optimization [33], memetic algorithms [96], genetic programming [81] and particle
swarm optimization [72]. Within this work only a small subset of these metaheuristics
is applied which will be shortly introduced in the next few sections.

2.2.1. Local Search

Local search [62] (LS) tries to improve a given initial solution by iteratively applying
small changes, so-called moves. Neighborhood structures used for defining neighborhoods
of candidate solutions of a current solutions are one main concept of LS. More formally
they can be defined as follows:

Definition 2. A neighborhood structure N is a function N : S → 2S mapping each
solution x ∈ S in a set S of feasible solutions to a set of neighbors, the so-called
neighborhood N (x) of x.

Let us assume that an objective function f : S → R is given assigning each candidate
solution x a real objective value. The most straightforward concept of a LS is shown
in Alg. 2. The function step(Ni(x))—also called step function—indicates which of the
neighbors of x should be selected. The most frequently applied step functions are:

17

Chapter 2. Methodologies

best improvement: When applying this examination strategy neighbor x′ of solution
x is returned for which f(x′) ≤ f(x′′), with x′′ ∈ N(x), applies, i.e., among all
neighbors that one is chosen which imposes the best improvement.

first improvement: This step function is often also called next improvement and returns
that neighbor which is the first one (according to the examination order of the
neighborhood) improving the current objective value.

random neighbor: Among all neighbors in N(x) for a solution x one will be randomly
chosen. Although the selection of the neighbor is quite fast an improvement occurs
with lower probability than for the other two step functions.

Let us now introduce the concept of a local minimum:

Definition 3 (local minimum). A solution x is called a local minimum with respect to
neighborhood structure N if f(x) ≤ f(x), with x ∈ N(x), holds.

When applying either best or first improvement as step function in Alg. 2 no further
improvement can be found as soon as a local minimum is reached. Obviously, it will be
convenient to terminate LS at this point. However, when using a random neighbor strat-
egy it cannot be reliably stated whether or not a local optimum is obtained. Therefore,
it is common to terminate LS in such situations as soon as for example a given number
of iterations without improvement or a predefined time limit was reached. Finally, let
us introduce the term of a global optimum:

Definition 4 (global optimum). A solution x∗ is said to be globally optimal when f(x∗) ≤
f(x), with x ∈ N , for any theoretical neighborhood structure N holds. I.e., a solution
is globally optimal if it is locally optimal with respect to all (possible) neighborhood
structures.

Let us note that obviously a solution which is locally optimal does not need to be globally
optimal.

2.2.2. Variable Neighborhood Search

Variable Neighborhood Search [94, 56, 58] (VNS) is a local search based metaheuristic
which tries to overcome the drawback of pure local search approaches often getting stuck
in local optima. To escape them, perturbation moves, so-called shakings, are performed
which, in contrast to multi-start heuristics, try to preserve large amounts of a local
optimum. This behavior is based on the observation that often local minimums are
relatively close to each other. Therefore, randomly changing only subparts of a local
optimum raises the probability that the search can be continued in another close region

18

2.2. Metaheuristics

Algorithm 3: Basic Variable Neighborhood Search
Input: initial solution x

a set of neighborhood structures N1, . . . ,Nkmax

Output: possibly improved solution x

k ← 1;
while k ≤ kmax do

// shaking
x′ ← randomly choose one solution in Nk(x);
// perform local search
x′ ← LocalSearch(x′);
// improvement or not?
if f(x′) < f(x) then

x← x′;
k ← 1;

else
k ← k + 1;

return x;

of the search space. For this purpose it is necessary to define neighborhood structures
Ni, with 1 ≤ i ≤ kmax used as a basis for the shaking moves. Basically, Ni+1, with
1 ≤ i ≤ kmax − 1 will be chosen in such a way that Ni(x) contains in general solutions
closer to x than solutions in Ni+1(x). The shaking neighborhoods will then be examined
systematically, i.e., a random move to a solution contained in Ni+1 will only be applied
when the last iteration of VNS starting with a random move with respect to Ni did not
improve the current best solution, with 1 ≤ i ≤ kmax−1. However, as soon as an overall
improvement during the local search phase could be achieved, the shaking will restart
with N1. For an outline of this metaheuristic we refer to Alg. 3.

2.2.3. Variable Neighborhood Descent

In contrast to local search variable neighborhood descent [56, 58] (VND) tries to system-
atically explore multiple neighborhood structures. However, in contrast to basic VNS
the step function applied is in general either best or next improvement and not ran-
dom neighbor for examining the neighborhood structures. An ordering N1, . . . ,Nlmax of
the neighborhood structures is defined. VND now tries to find a local minimum with
respect to neighborhood structure Nl and proceeds with Nl+1 if it was found starting
with l = 1. Anyhow, the case can occur that an improvement could be identified in Nl,
with 1 ≤ l ≤ lmax. Then the search is proceeded with resetting l to 1. By using this

19

Chapter 2. Methodologies

Algorithm 4: VariableNeighborhoodDescent
Input: initial solution x

neighborhood structures N1, . . . ,Nlmax

Output: a local optimum with respect to all neighborhood structures
N1, . . . ,Nlmax

l← 1;
while l 6= lmax do

// get neighbor of x
x′ ← step(Nl(x));
// improvement or not?
if f(x′) < f(x) then

x← x′;
// return to the first neighborhood structure
l← 1;

else
// proceed with the next neighborhood structure
l← l + 1;

return x;

systematic approach, the ordering of neighborhoods must be done such that Nl 6⊆ Nl−1

holds, for 2 ≤ l ≤ lmax. If Nl ⊆ Nl−1 would hold for any 2 ≤ l ≤ lmax it is obvious that
an examination of neighborhood Nl(x) cannot yield better results than an (already com-
pletely performed) exploration of Nl−1(x) for any solution x. See Alg. 4 for pseudocode
of this procedure.

The key concept of VND is the observation that a global optimum is a local optimum
with respect to all possible neighborhood structures while the reverse does not neces-
sarily hold. Therefore the success of a concrete application of VND to a combinatorial
optimization problem is mainly based on the proper definition of neighborhood struc-
tures and an appropriate ordering of them. In general, this order will be determined
based on the size or time complexities for examining the neighborhoods, i.e., small neigh-
borhoods are explored first and only in case no improvement can be found in them the
search is extended to more complex structures.

Anyhow, in some situations no truly convincing static order can be identified. Then
it is promising to apply strategies for dynamically changing the sequence on neighbor-
hood structures. In [112] Puchinger and Raidl propose to order the neighborhoods for a
certain solution x according to decreasing improvement potential of the neighborhoods.
This potential can, for example, be identified using linear programming techniques. In

20

2.2. Metaheuristics

contrast to this approach which only tries to estimate the benefit of operations performed
in the future, i.e., moves to be applied according to the neighborhood structures, Hu and
Raidl [64] proposed a dynamic ordering based on the contribution of each neighborhood
structure during the already performed search. Here the ordering of neighborhood struc-
tures during the next VND iterations is determined by computing a performance rating
depending on the time used for examining the corresponding neighborhood during the
last iteration and the quality of the solution obtained by this exploration.

Approaches like these can be applied whenever the order of the neighborhood structures
is not induced by their definition, i.e., examination times complexities and/or inclu-
sions of neighborhood structures in other. However, there are also situations in which
neighborhood structures contribute relatively often during the beginning of the search
procedure but loose their potential in later iterations, see for example Sec. 3.2.

General Variable Neighborhood Search Scheme

While VNS suffers from the weakness of the local search applied VND lacks in the
ability to escape local optima with respect to all used neighborhood structures. It is
therefore convenient to combine both metaheuristics by applying VND as local search
procedure during VNS. The resulting metaheuristic is also referred to as general variable
neighborhood search scheme. However, be aware that the neighborhood structures used
in VNS for shaking moves are in general different to the neighborhood structures defined
for the embedded VND. There is a large variety of other VNS and/or VND based
approaches: For example, by omitting the local search phase of VNS a so-called reduced
variable neighborhood search is obtained. An introduction to VNS/VND in general and
to variants of them can be found in [57].

2.2.4. Ant Colony Optimization

The ant colony optimization [34, 33] (ACO) metaheuristic is member of the large class
of nature inspired algorithms. The development of ACO was inspired by the behavior
of real ants when finding paths between their home and food locations. Instead of
directly communicating with each other, an indirect communication is established using
so-called pheromone. While walking along the paths pheromone trails are laid which
can be followed by other ants. Analogously to nature, a group of agents—also called
(artificial) ants— is defined which is guided by (artificial) pheromone. Throughout the
search process this pheromone information—typically stored in a pheromone matrix—is
dynamically updated and provides a basis for decisions made by the agents. Since each
ant updates the pheromone matrix according to solutions built by itself, this matrix
represents somehow a long-term memory of all solutions found by the agents. However,

21

Chapter 2. Methodologies

Algorithm 5: AntColonyOptimization
Input: number m of ants to be used
Output: the best obtained solution
initialize pheromone matrix;
while termination condition not met do
construct m candidate solutions based on pheromone and heuristic
information;
apply local search; // optional
update pheromone matrix;

return best so far found solution;

it is important that solutions are not only constructed by considering the pheromone
matrix but also locally available information is exploited. It should be noted that ants
are relatively autonomous in the sense that they are independent of each other and only
communicate with each other by the pheromone trails laid.

The general ACO metaheuristic is shown in Alg. 5. As can be seen, the process is started
by initializing the pheromone matrix to meaningful values. Often it is convenient to
uniformly initialize the matrix but there are also applications where a more advanced
initialization is applied, e.g., [52]. Afterwards each of them ≥ 1 available ants constructs
a new solution. To these solutions a local search based procedure can be applied. Finally,
an update of the pheromone matrix is done, whereas first—again in analogy to nature—a
certain amount of pheromone is evaporated and then the new pheromone is laid with
respect to the solutions obtained by the ants. Different formulas can be applied for
this final, but crucial step. For an advanced presentation of different methods we refer
to [34].

Although this concept when first presented as an ant system on the traveling salesman
problem [32] did not convince due to non-competitive results in comparison with the
state-of-the-art approaches, other variants and a wide range of applications like vehicle
routing, scheduling and the quadratic assignment problem [41, 91, 128, 92] led to the
today’s importance of this metaheuristic.

2.3. Hybrid Approaches

As already outlined exact methods often suffer from the fact that the running times typ-
ically increase dramatically with increasing problem sizes. (Meta-)heuristic approaches
on the other hand are often able to provide good solutions in acceptable times but with-
out any guarantee on the quality of the solution. Approximation algorithms are somehow

22

2.3. Hybrid Approaches

a special case, since they provide a quality measure under certain conditions. However,
there are problems for which no constant factor approximation algorithm exists, unless
P = NP, e.g., the traveling salesman problem [122, 84]. Nevertheless, another promis-
ing approach is to combine advantages of both, exact and metaheuristic, approaches
by hybridizing them. Highly successful applications of such hybridization techniques
have been proposed in recent years [63, 76, 102, 103, 104, 106, 113]. Hybridization
approaches based on exact and heuristic methods can, however, be partitioned in two
large classes [110, 113, 114]: collaborative combinations and integrative combinations.
Collaborative hybridizations are characterized by the fact that two approaches exchange
information with each other but do not incorporate the other approaches, i.e., they are
executed in parallel, intertwined or sequential. The second class of combinations con-
sists, however, of hybridizations where one approach incorporates the other one, i.e., ei-
ther metaheuristics using exact methods as subordinates or exact methods incorporating
heuristics for solving subproblems. In addition, there are also other approaches focusing
on the hybridization of two (or more) metaheuristics, e.g., [135]. Furthermore, some-
times it is even tried to incorporate human problem solving abilities in (semi-)automatic
systems, e.g., [79].

Prominent representatives for the incorporation of exact methods for solving subprob-
lems are very large-scale neighborhood search [2] (VLNS) techniques. The basic idea is
to define complex neighborhood structures resulting in (very) large neighborhoods used
within a local search based approach. However, an exploration of such neighborhoods
using naive enumeration methods will not be applicable and more advanced approaches
are necessary. Depending on the concrete definition of the neighborhood structure,
dynamic programming or (integer) linear programming based techniques will be more
convenient. For example, for the traveling salesman problem exchanging simultaneously
k > 1 edges of the current solution will in general result in O(2k) different candidate
solutions. Obviously, for large k a naive (complete) enumeration of the candidate solu-
tions is not possible. For a dynamic programming based VLNS approach for the TSP
we refer to [37]. Another approach based on the incorporation of dynamic programming
techniques in a corridor method is presented in [20]. A similar approach with respect to
the basic idea of fixing some variables while others are left free was presented in [106]
where the neighborhood is examined by applying integer linear programming techniques.

For exact methods incorporating metaheuristics one can refer to the Branch&Bound al-
gorithm presented in Sec. 2.1.2. Here the exact algorithm is mainly dependent on the
computation of proper bounds. These bounds are often computed using heuristics, e.g.,
for solutions to the original problem construction heuristics regarding the variables set
during branches are incorporated. Furthermore, one crucial point in the efficient appli-
cation of Branch&Bound to hard optimization problems is the definition of a branching
rule, i.e., a (almost) deterministic method for deciding on which variable branching will

23

Chapter 2. Methodologies

be performed. In addition, during each iteration of Branch&Bound a currently unsolved
subproblem needs to be selected. This can of course be done using a naive enumeration
method but it will obviously be more promising when heuristics are applied for esti-
mating the improvement potential for each subtree. Obviously, that one with maximal
possible improvement should then be selected.

During Branch&Cut approaches it is necessary to separate violated cuts to be added
to the model during the next iteration. However, even the separation of the cuts can
be a hard problem which implies that this needs to be done using heuristics for large
instance sizes. For approaches using this concept we refer to [109, 51]. Similar ideas can
be applied in a Branch&Prize approach for which the generation of new columns is a
hard optimization problem. For a recent work related to heuristic column generation we
refer to [101].

24

Chapter 3

Logistics and Warehouse
Management

Nowadays, logistics and warehouse management, which are subfields of supply
chain management [83], are one of the most important tasks in production
environments. On the one hand it has to be assured that all components needed

during the production process are available and on stock but on the other hand the costs
induced by storage capacity, i.e., storage space, should be minimized. Furthermore, the
access times to individual items located in the storage should be kept as low as possible
in order to optimally serve customers as well as to reduce idle times during production.

Recent investigations revealed that about 33 percent of money invested in logistics can
be attributed to the costs arising in inventory management [138]. Therefore, a proper
investigation of savings that might be achieved within this part of supply chains is
necessary and is in many cases profitable. We refer to [138] for a literature review on
this topic over the last 30 years.

One of the main factors in the organization of warehouses is, among others, the through-
put policy to be used within the storage [129]. The best known strategies are last-in,
first-out (LIFO) and first-in, first-out (FIFO) policies. Nevertheless, there are also other
policies especially developed for different kinds of goods to be stored, e.g., first-produced,
first-out (FPDO) or first-expire, first-out and first-deliver, first-out (FDFO). FPDO and
FDFO mainly find application in lines of businesses coping with products having best-
before dates assigned [129]. While these main inventory decisions are strongly dependent
on the line of business and have to be made when building warehouses, there are other

25

Chapter 3. Logistics and Warehouse Management

decisions to be made on a daily or even shorter basis, e.g., the planning of routes and
tours for drivers when delivering goods or the assignment of articles to storage locations
during the stocking process.

Within this chapter we focus on two specific problems arising in logistics and warehouse
management: a variant of a storage location assignment problem as well as a route finding
problem. While the former focuses on the computation of (optimal) storage locations for
articles to be stored within the warehouse, the latter concentrates on the computation
of tours throughout the warehouse such that the total length of the routes to be walked
by warehousemen and therefore the overall working time of the workers is minimized.
Of course, various side constraints to be described in the corresponding sections of this
chapter need to be regarded in both applications.

Although the quality of an assignment of storage locations to articles has a direct in-
fluence on the lengths of walks to be processed later by warehousemen during picking,
these two problems are often considered independently of each other. This is based on
the fact that in most situations either the tour finding is trivial, e.g., each article has
to be delivered on its own, cf. Sec. 3.1, or the storage locations are predefined, cf. Sec.
3.2. Furthermore, tours through a warehouse strongly depend on the structure of the
warehouse. Therefore, a reorganization of the storage exploiting properties of the goods
to be stored as well as typical customer behavior [36] may be more convenient in some
situations.

Both approaches presented within this section are the outcome of a cooperation with in-
dustry partners, namely Dataphone GmbH, located in Vienna, Austria, and Hamburger-
Spremberg located in Pitten, Austria, and Spremberg, Germany. The obtained results
were published in [107, 119] and presented at four international conferences and work-
shops in the years 2008 and 2009.

3.1. Location Assignment

In this section, we focus on a storage location problem arising in paper industry. To op-
timize the production efficiency, e.g., minimize cutting loss, it is common to temporarily
store the just produced paper rolls in an intermediate store until the customers pick
up their orders. Obviously it is desired that the stocking process should be performed
as fast as possible. Therefore, it is highly preferable that all paper rolls of currently
served customers are directly accessible. If this is not the case blocking rolls, i.e., those
paper rolls preventing the direct access of warehousemen to the requested rolls, should
be reinserted into the storage at the best possible location. At the end of a working day
there might be additional time left for reordering part of the warehouse such that all
orders to be processed during the next day are optimally accessible.

26

3.1. Location Assignment

conveyor

exits to lorry parking lot

exit to railroad

st
o
ra

g
e

lo
c
a
ti
o
n
s

st
o
ra

g
e

lo
c
a
ti
o
n
s

st
o
ra

g
e

lo
c
a
ti
o
n
s

st
o
ra

g
e

lo
c
a
ti
o
n
s

(a)

a

a

(b)

Figure 3.1.: (a) Schematic plan of the warehouse and (b) extract of the storage.

In the next two sections a detailed description of the underlying problem and a more for-
mal definition including an evaluation function for estimating the likelihood of additional
paper roll relocations during stock removal are given. Based on this evaluation function
a stocking strategy is presented in Sec. 3.1.4, and Sec. 3.1.5 includes the description of
relocation strategies utilizing variable neighborhood descent and greedy methods. Both
approaches are evaluated on different warehouse states in Sec. 3.1.6.

3.1.1. Production Process

In paper industry it is common to apply a three stage production process: At first paper
roll blanks are produced which are cut into paper rolls of individual lengths in the second
stage. At last the produced rolls are shipped.

In our case, the first two steps of the production process are optimized such that all
ordered rolls of same paper type and grammage are consecutively produced and that
the offcut of each blank is as small as possible. Due to this the production order of rolls
is not sorted according to any attribute that is relevant for shipping. After cutting the
paper rolls are transported on a conveyor belt into the warehouse.

The warehouse itself is organized as follows: The storage consists of parallel aisles and
each aisle contains to its left and right side storage locations for storing rolls, also called
strips, see Fig. 3.1a. Although, there is no physical separation between the strips they
are always accessed from the corresponding aisle. In each strip the first roll is placed at
the end of it and all further rolls are put in according to the last-in, first-out throughput
policy, see Fig. 3.1b for an extract of two strips with rolls stored at them. The strips
are all physically identical except with respect to their capacities. There are some strips
dedicated to the storage of rolls of short length, i.e., rolls with less than 1250mm.
Such rolls can be loaded in a more space-saving way and thus they should be stored

27

Chapter 3. Logistics and Warehouse Management

together at theses special locations. There are three workers (one is responsible for
placing the rolls from production and two are assigned for picking up outgoing rolls) who
are equipped with forklift trucks for transporting the rolls, mobile terminals displaying
various information (e.g., where the roll should be stored) and mobile bar code scanners
to communicate each operation (removal and placing of rolls) to a centralized database.
Therefore, the current state of the warehouse including the advance in the loading of
paper rolls is known at any time.

When the assignment of rolls to storage locations is done in a simple, greedy manner
it often occurs that rolls have to be rearranged to provide direct access to those rolls
for shipping. This leads to increased removal times. Therefore it is important that the
removal sequence of the rolls is considered at the time of storage and hence the most
important criteria are the shipping dates of the rolls. Besides this there are also other
attributes: It is desired that the rolls are grouped by customers, i.e., all rolls for one
customer should be at the same location. In addition, each customer has a preferred
type of shipment (by lorry or freight car) and therefore the rolls should be placed in
those strips which are near the according exit, see also Fig. 3.1a. For a complete list of
constraints and different aims regarded in this work and their influence on an evaluation
function used for our optimization approach, see Section 3.1.2.

Unfortunately, it is in our case not possible—neither for the workers nor for any computer
aided decision system—to gather the exact production sequence. This is mainly caused
by frequent breakdowns or failures of certain machines needed for special types of paper
such that for a short term other paper types are produced, or express orders of customers
which have to be fulfilled almost immediately. Thus, the investigated storage location
assignment problem is an online problem [4]. A further reason for not globally planning
a fixed storage location for each roll is that customers frequently pick up their order
lately or even too early.

Therefore, the depositer has to estimate the best available storage location for each new
roll to be stored. In literature there exists some work for the related storage location
assignment problem [17, 1, 59, 66], which has been shown to be NP-hard [1]. Anyhow,
according to the classification used in [17] the storage location assignment problem ex-
amined within this work uses class-based storage as stock location assignment strategy,
i.e., each roll is assigned to a certain class according to its attributes and then (arbi-
trarily) stored at a location dedicated to that class of paper rolls. To overcome this
arbitrariness in selecting the best available storage location for each paper roll, we pro-
pose a finer grained evaluation function within this work that assigns to each (possible)
warehouse state a positive value approximately indicating the likelihood of occurring
conflicts, i.e., paper roll reallocations, during stock removals. The most promising paper
roll assignments are suggested to the warehousemen via a mobile terminal.

28

3.1. Location Assignment

Although this approach works quite well, it must not be disregarded that due to stock
removals there might arise the situation that an explicit rearrangement of paper rolls
would significantly improve the warehouse situation, i.e., reduce the number of con-
flicts in future stock removals. Therefore, we additionally use a variable neighborhood
descent [58] based approach for computing rearrangement operations that can be per-
formed by warehousemen currently not busy. Again, there are some requirements which
have to be regarded when implementing such a method. Mainly, it has to be assured
that after each single rearrangement operation, the warehouse state is reasonably good
such that in case the rearrangements have to be suspended the stock removal operations
can still be efficiently performed. Due to the fact that rearrangement operations are
only performed when no other jobs are to be completed it is not possible to count on
these reallocations during storage location assignment. In addition, the number of times
one roll is moved should be kept low.

3.1.2. Problem Definition

Within this section we provide a more formal definition of the introduced problem. In
addition we present an evaluation function which will be used in the further context for
approximately indicating the likelihood of conflicts, i.e., necessary paper roll realloca-
tions, arising during stock removal operations.

We are given a warehouse W and a set of nr paper rolls R = {1, . . . , nr}, which in-
cludes all rolls in the system. The warehouse itself consists of n storage locations
i ∈ W = {1, . . . , n}, which are organized according to a last-in, first-out throughput
policy. Therefore, we can define a tuple Si = (si,1, . . . , si,fi

) for each strip i ∈ W indi-
cating that roll si,l has been assigned to i before si,l+1, with 1 ≤ l < fi and fi ∈ N0

indicating the fill level of strip i, i.e., the number of rolls stored in storage location
i ∈ W . While each strip i ∈ W has a maximum capacity ci, each paper roll j ∈ R has
a given weight wj . Obviously, at each time

∑
j∈Si

wj ≤ ci holds. Further we are given
a set of no orders O requested by costumers, where each order K ∈ O is a set K ⊆ R
of paper rolls and define the set Ω(i) = {K ∈ O | ∃ l : si,l ∈ K} as the set of all orders
having at least one paper roll l ∈ R stored in strip i ∈ W . In addition, we define set
DK = {i ∈W | Si ∩K 6= ∅} as the set of storage locations containing at least one roll
of an order K ∈ O. As already mentioned the exact shipping date is not known, but an
expected shipping date dK as well as the preferred shipping mode mK ∈ {truck, train}
are given for each order K ∈ O.

Each paper roll j ∈ R has a certain positive length, and those rolls with a length shorter
than 1250mm are called small goods. Constants w small

i ∈ {0, 1} indicate which storage
locations i ∈ W are dedicated to storing small goods; for these locations w small

i is
one and for all others zero. It is, however, possible (but not favored) that small and

29

Chapter 3. Logistics and Warehouse Management

large paper rolls are stored in the same strip, cf. also Eq. (3.6) defined later. Similarly,
constants w truck

i ∈ [0, 1] and w train
i ∈ [0, 1] define with which preference paper rolls

shipped by truck or train should be stored at locations i ∈ W , respectively. Note that
w truck

i + w train
i = 1 does not necessarily hold. Finally, we denote by W the (current)

warehouse state W, i.e., a snapshot of the current situation in the warehouse.

Evaluation Function

To present a method for either finding the best storage location(s) for a given paper roll to
be stored or moving operations for improving the situation in the warehouse within this
work, it is necessary to develop an evaluation function that approximately indicates the
likelihood of future conflicts, i.e., paper roll reallocations becoming necessary, during
stock removals for a given warehouse state W. The basic concept of this evaluation
function E(W) is as follows: In case E(W) = 0 holds it is very likely that during
stock removals no additional reallocations of paper rolls are necessary. With increasing
value of E(W) this likelihood decreases, i.e., the likelihood of reallocations increases. In
addition, not only the likelihood increases but also the expected number of occurring
conflicts, i.e., more reallocations will become necessary during each stock removal step.
Therefore the value of E(W) is not (strongly) bounded from above, since it is almost
always possible to generate a worse warehouse state by adding an additional roll to the
storage that generates additional conflicts. The evaluation process, however, is based
on restrictions implied by observations stated by the warehouse manager of our paper
production company.

The evaluation of a current warehouse state W is done in two steps: firstly all possible
conflicts arising in single strips i ∈W are computed and secondly a rating regarding the
complete warehouse is done. Both values are then appropriately weighted and the sum
represents the objective value of the warehouse state. The most important reason for
conflicts is the expected shipping date dK of the orders K ∈ O. Therefore, we introduce
function date(i) ≥ 0 counting the number of conflicts in strip i ∈ W occurring with
respect to the shipping dates associated with the rolls stored in i. A conflict occurs for
two paper rolls si,l and si,l′ , with si,l, si,l′ ∈ Si, iff l < l′ and dK < dK′ , with si,l ∈ K,
si,l′ ∈ K ′, respectively, and K, K ′ ∈ O, i.e.,

date(i) =
fi−1∑
l=1

fi∑
l′=l+1

χd(si,l, si,l′), ∀i ∈W, (3.1)

with χd(j, j′) = 1 iff roll j is going to be shipped before j′; otherwise χd(j, j′) = 0, with
j, j′ ∈ R.

30

3.1. Location Assignment

Another important reason for conflicts is the mix-up of different orders within one strip.
Therefore function order(i) counts the number of different orders stored at location
i ∈ W ; in addition the inhomogeneity of orders stored in the same strip is considered,
yielding the following definition:

order(i) = |Ω(i)|+
fi−1∑
l=1

χo(si,l, si,l+1), ∀i ∈W, (3.2)

with χo(j, j′) = 1 iff the orders of rolls j, j′ ∈ R are different; otherwise χo(j, j′) = 0.
Next, the number of strips used for storing all rolls of an order K ∈ O is computed.
Function distr(W) sums up these distribution values of all orders:

distr(W) =
∑
K∈O

DK . (3.3)

Since the orders of customers are known, it can be decided if there are still some paper
rolls in production or not. Of course, it should be emphasized that each order is stored
at few locations (the best case is if only one strip is needed for each order). Therefore,
it is meaningful to reserve space in the storage for each uncompleted order. This is done
by using function cap(W) which computes the number of paper rolls not yet stocked
and which cannot be assigned to the same storage location as the other paper rolls of
the same order:

cap(W) =
∑
K∈O

max


∣∣∣∣∣K \ ⋃

i′∈W

Si′

∣∣∣∣∣−maxi∈W

ci −∑
j∈Si

wj

 , 0

 (3.4)

In addition, function compl(W) counts the number of orders that are not yet completely
stocked and have at least one stocked roll blocked by another one of another order. Thus,
blocking of not yet completely stocked orders is also penalized.

The process of loading the rolls on lorries or freight cars should be finished as fast as
possible by minimizing the lengths of the paths the warehousemen have to move the
rolls. Therefore, we store paper rolls preferably close to the exit presumably later used
during stock removal. This is done according to function ship(i), with i ∈W , under the
assumption that vt

j is equal to one iff roll j ∈ R should be shipped with trucks; otherwise
vt
j = 0 holds:

ship(i) =
∑
j∈Si

(
vt
j ·
(
1− w truck

i

)
+
(
1− vt

j

)
·
(
1− w train

i

))
, ∀i ∈W. (3.5)

Analogously, function small(i), with i ∈ W , increases when long paper rolls are stored
in strips dedicated to small goods or when short paper rolls are stored in strips not

31

Chapter 3. Logistics and Warehouse Management

dedicated to them. Under the assumption that vs
j = 1 for paper rolls j ∈ R with a

length shorter than 1250mm and vs
j = 0 otherwise, small(i) can be defined as:

small(i) =
∑
j∈Si

∣∣∣vs
j − w small

i

∣∣∣ , ∀i ∈W. (3.6)

Empty strips are the most valuable ones because virtually all paper rolls or even orders
can be stored in them while increasing the likelihood for conflicts only minimally, if at
all. Therefore, it should be well considered at which time empty strips will be started
to be used. For this, we define a function empty(i) increasing the objective function by
a small amount if strip i ∈W is not empty, i.e.,

empty(i) =

{
0 if strip i is empty
1 otherwise

(3.7)

Finally, we define the evaluation function E(W) as a linear combination of all previously
defined functions. Each of the sub-functions is weighted using an appropriate coefficient
in order to balance the influence of the individual components among each other:

E(W) =
∑
i∈W

(
γd · date(i) + γo · order(i) +

γs · ship(i) + γe · empty(i) + γσ · small(i)
)
+

γδ · distr(W) + γκ · cap(W) + γc · compl(W)

(3.8)

Though objective function (3.8) covers the most important aspects during stocking op-
erations in our particular paper industry application, there are further special cases that
can be considered. For a more detailed approach we refer to [118].

3.1.3. Related Problems and Complexity

Although the here proposed storage location assignment problem and the related reloca-
tion problem tackled in Sec. 3.1.5 is strongly restricted due to the underlying real-world
application it is nevertheless possible to find parallels to other related problems which
mainly differ in the constraints imposed by industrial settings and environments.

For example, container yards in large seaports mainly possess the same characteristics as
warehouses in our storage (re-)location problem, i.e., containers are stored in so-called
bays consisting of stacks of containers. Obviously, only that container placed on top
of a stack can be directly accessed. To be able to face competition it is, however, for

32

3.1. Location Assignment

seaport container terminal operators important to keep the loading times of ships as
short as possible. Therefore, it is convenient that during unproductive times in terms of
loading operations reorganization operations are performed such that the containers can
be directly loaded into the vessel according to the desired order imposed by the shipping
company owner. However, to keep the reorganization workload as low as possible, it is
desired to find a work plan which consists of a minimized number of container movements.

Depending on the time when the reorganization is performed there are different variants
of this reorganization problem: The so-called block relocation problem (BRP) mainly
focuses on the reorganization of the bay(s) during loading operations, i.e., movements
of containers only occur whenever a container is blocked by other containers placed
on top of it. One main characteristic of this problem variant is that the number of
containers in the bay is consequently reduced, i.e., as soon as a container currently
needed is on top of a stack it is shipped. Approaches tackling this problem are, among
others, a corridor method based approach incorporating a dynamic programming for-
mulation [20], a Branch&Bound based algorithm [75] as well as a heuristic decision
rule [75]. In [74] an evaluation approach estimating the number of relocation operations
was presented.

Another variant of this problem is the so-called pre-marshalling problem which differs
from BRP simply by the fact that all operations are performed in idle times and therefore
containers cannot be directly loaded into vessels. Obviously, they have to be stored in
the bay and therefore a final arrangement of containers is search such that during loading
operations no additional reshuffling operations are necessary. However, the number of
container movements should be minimized. Beside an application of a corridor method
based approach [19] a local search based heuristic incorporating ILP techniques for solv-
ing subproblem [85] as well as a multi commodity flow model [86] were proposed.

For a survey on container terminal operations and (optimization) problems related to
the operation of container yards we refer to [127]. Although these problems have been
extensively studied both from the practical and theoretical point of view no statements
on the complexity of the related problem variants can be found literature. Nevertheless,
by reformulating these problems it is possible to utilize theoretical results to other closely
related problem. One of these problems is the problem of sorting a given (unordered)
sequence of integers using complete network of stacks [80]. In this problem the goal is to
find a minimum number of shuffles, i.e., moves of numbers between stacks, such that a
sorted sequence of the inputs is achieved. In [80] it is shown that this problem is NP-
hard. Obviously, this problem corresponds to the block relocation problem as arising in
container terminals. A second result is obtained for the so-called blocks-world planning
problem which asks to find a minimal schedule of moves such that a valid rearrangement
of blocks is achieved. The blocks can either be placed on top of each other or on the
table. Certain further restrictions can apply, e.g., certain placements of blocks on other

33

Chapter 3. Logistics and Warehouse Management

Algorithm 6: Stocking Strategy
Input: W: current warehouse state, j ∈ R: paper roll
Data: bestStrip: so far best strip for paper roll j,

bestEval: value of best so far found warehouse state
Output: strip i ∈W roll j should be assigned to
bestStrip← null ; bestEval←∞;
foreach i ∈W \ {i′} do
W ′ ←W after adding paper roll j to strip i /* assuming i is not full */
if E(W ′) < bestEval then

bestStrip← i;
bestEval← E(W ′);

return bestStrip;

blocks can be required and/or forbidden for valid solutions. Gupta and Nau [53] showed
that this problem including the variant directly corresponding to our relocation problem
is NP-hard.

3.1.4. Stocking Strategy

Based on function (3.8) it is easy to develop a straightforward greedy stocking strategy.
For this purpose, one simply needs to compute the changes in E(W) when adding the
new roll alternatively to each feasible strip in the storage. That one resulting in the best
warehouse state is chosen. For pseudocode of this procedure see Alg. 6.

Influence of the Weighting Coefficients

As already mentioned above each of the sub-functions of the objective function (3.8) is
weighted by a factor for controlling its influence on the evaluation of a given warehouse
state. Unfortunately, it is not trivial to find a parameter setup being valid for any pro-
duction setting. Even more, there exists no generally good weighting factor adjustment.
Although this might be disappointing for warehouse operators, this circumstance holds
a crucial advantage: By tuning these parameters and adapting the relations it is possible
to implement different stocking strategies. For example it might be promising to ensure
for certain customers that paper rolls ordered by them are directly accessible all the
time. In this case one will increase the weighting factor γo such that a mix-up of or-
ders becomes very unlikely. Nevertheless, this behavior might not be appropriate for all
customers. In such a case the weighting factors may even be differently instantiated in

34

3.1. Location Assignment

dependence of the customers which finally leads to a more complex but also significantly
more flexible objective function.

In this work, we use the following fixed weighting factors which were determined after
consulting the warehouse manager of our case company: γd = 150, γo = 5, γs = 1,
γe = 20, γσ = 40, γδ = 25, γκ = 20, γc = 50.

3.1.5. Relocation Strategy

Due to the online and stochastic aspects of our problem, even the best stocking strat-
egy finally results in suboptimal storage situations, which means that reallocations are
necessary during shipment. Additionally, empirical data provided by our case company
implies that the filling level of the storage usually is about 70–80%, i.e., the stocking
opportunities are rather limited. When applying the above presented stocking strategy
over a longer time, it is only able to prevent major immediate conflicts to a certain
degree anymore. For generally improving the warehouse state and to exploit idle times
of warehousemen it is possible to perform relocations of paper rolls. Of course, the aim
of this is to reduce the number of conflicts occurring during stock removals and improve
the warehouse situation.

There are different types of possible relocations: The first class of reallocations is neces-
sarily to be performed during stock removal operations when one or more paper rolls are
blocking rolls to be shipped. The second and more laborious type is performed during
idle times of warehousemen. Dependent on the available time various movements can be
done. To be flexible in this point the system has to accept inputs from the workers indi-
cating the number of rolls to be reallocated resulting in a list of movements improving
the current warehouse state.

One obvious approach for achieving this is a greedy method presented in the next section
selecting always the next best paper roll for relocation. In addition, we present a variable
neighborhood descent based approach generating movement lists to be processed by the
warehouse workers.

Greedy Reallocation

The greedy reallocation procedure (GRP) removes a roll j ∈ R which is directly accessible
and causes conflicts during removal operations with highest probability, i.e., under the
assumption that W denotes the current warehouse state

j = argminj′∈
S

i∈W{si,fi
∈Si}

{
E(W ′) | W ′ =W after removing roll j′

}
. (3.9)

35

Chapter 3. Logistics and Warehouse Management

Algorithm 7: GreedyRelocationProcedure(W, nm)
Input: W: current warehouse state, nm: number of available relocation moves
Data: W ′, W ′′: intermediate warehouse states
Output: L: list of moves to be performed
repeat

j ← argmin
j′∈
S

i′∈W

n
si′,fi′

∈Si′
o {E(W ′) | W ′ =W after removing roll j′};

W ′ ←W after removing j;
i← argmini′∈W {E(W ′′) | W ′′ =W ′ after storing roll j at location i′};
W ′′ ←W ′ after moving j to strip i;
if E(W ′′) < E(W) then
W ←W ′′;
add appropriate movement instructions to L;
cnt← cnt + 1;

until cnt ≥ nm or no further improvement could be achieved ;
return L;

Afterwards this roll is reinserted into the storage at the best strip i ∈W , i.e.,

i = arg min
i′∈W

{
E(W ′′) | W ′′ =W ′ after storing roll j at location i′

}
, (3.10)

whereW ′ denotes the warehouse state after removing paper roll j from its current strip.
This procedure is repeated until either the number of available moves nm is reached
or there is no further improvement achievable, i.e., roll j is best stored at its original
storage location. An outline of the pseudocode is given in Alg. 7. For experimental
results obtained using GRP we refer to Sec. 3.1.6.

Variable Neighborhood Descent Based Approach

Obviously, the main disadvantage of GRP lies in the fact that moves are selected on a
purely greedy basis disregarding the improvement potential of moves to be investigated
in further steps. Thus, it is not possible or at least very unlikely to resolve conflicts
arising in connection with paper rolls not directly accessible. We propose an approach
based on variable neighborhood descent (VND) [58].

VND itself basically exploits the observation that a local optimum with respect to one
neighborhood is not necessarily a local optimum with respect to another and any global
optimum is also locally optimal with respect to any neighborhood. Therefore, a suc-
cessful application of VND mainly relies on a set of multiple appropriately defined
neighborhood structures, which are systematically examined. For this purpose, the

36

3.1. Location Assignment

first neighborhood structure is searched until no further improvement can be achieved.
Then, the next neighborhood structure is examined, but as soon as an improvement
could be achieved the search is continued using the first neighborhood structure again.
This is repeated until a solution is found that is locally optimal with respect to all used
neighborhood structures, see also Sec. 2.2.3.

This implies that two criteria must be regarded when following a VND based approach:
on the one hand the proper definition of neighborhood structures to be used and on
the other hand an appropriate order for examining these neighborhood structures. Both
aspects will be discussed in more detail in the following.

Neighborhood Structures The main idea of the neighborhood structures used in this
work is to resolve conflicts with respect to the sub-functions of the objective function (3.8)
step-by-step. The neighborhood structures are defined as follows:

N1: A neighborhood based on this structure consists always of only one solution, namely
that one which can be obtained by applying the above presented greedy reallocation
procedure to a given warehouse state W. In other words, the exclusive member of
this neighborhood can be obtained by identifying that roll which increases E(W)
most.

N2: Any solution contained in a neighborhood based on this structure can be obtained
by applying a move which first removes all rolls from a strip i ∈ W such that
no conflicts with respect to the shipping dates occurs in strip i, see Eq. (3.1).
Afterwards the removed rolls are immediately greedily reassigned to other strips
i′ ∈W \ {i}, i.e., in the same order as they are removed.

N3: This neighborhood structure is based on the idea that the jointly relocation of
multiple rolls already directly stored in the same strip and being member of the
same customer order might resolve possible conflicts with respect to shipping dates,
format specifications or shipping mode. Therefore, to obtain a solution according
to this neighborhood structure, one reallocation of such a group of paper rolls to
one other strip which is best-suited, i.e., for which the objective is minimal, is
performed.

N4: While in neighborhood structure N3 groups of paper rolls being part of the same
customer order are moved, the basic principle of this neighborhood structure is
to create such groups. For this purpose, a move for this neighborhood structure
consists of first removing all directly accessible rolls contained in the requested
customer order. Let us denote the set of strips affected by this first part of the move
by W ′ ⊆W . During the second part of the move, the strips are then moved to one
strip i ∈W ′, i.e., the underlying move concentrates (a part of) one order in a strip.

37

Chapter 3. Logistics and Warehouse Management

N5: This neighborhood structure is defined via moves which first remove the minimum
number of rolls from a specified strip i such that Si ⊆ K ∈ O holds. Obviously, the
rolls removed are reassigned based on the greedy reallocation procedure to other
strips.

N6: This neighborhood structure is defined for resolving conflicts caused by rolls placed
deep inside of any strip, i.e., rolls which were assigned to this storage location
relatively early. Therefore, one move with respect to this neighborhood structure
consists of removing all paper rolls of a strip i ∈ W and then greedily assigning
them to other strips i′ ∈W \ {i} in the same order they were removed. Obviously,
each solution contained within a neighborhood based on N6 contains at least one
strip which is totally empty.

While the size of N1(W) is in O(1) for any warehouse state W, the sizes of all other
neighborhoods is in O(|W |): for each of these neighborhoods the underlying moves
effect one strip while the rest of the moves is mainly based on the greedy reallocation
procedure (and therefore deterministic). Using appropriate datastructures N1(W) can
be examined in time O(|W |2). While N2(W), N5(W) and N6(W) can be examined
in time O(|W |2 · maxi∈W {|Si|}) the time for the search in neighborhoods N3(W) and
N4(W) is bounded from above by O(|W | ·maxK∈O {|K|}). In order to achieve this an
incremental update of the evaluation function is implemented and the following two step
functions are used:

Resolving Most Conflicts (RMC): This step function selects among all solutions in a
certain neighborhood N(W) that one which rearranges those rolls causing the most
conflicts with respect to E(W). Although very similar, preliminary tests revealed
that a best improvement strategy is not as promising as this RMC step function.
Anyhow, in case of ties the first found is selected.

Proportionally Random Neighbor (PRN): When using this step function for examin-
ing a neighborhood N(W) one of the candidate solutions contained in N(W) is
chosen randomly. The probability for choosing one solution is proportional to
the contribution of the moved rolls to the objective function (3.8), i.e., a roulette
wheel selection [50] is applied. Therefore, it is very likely to relocate rolls caus-
ing conflicts with high probability. At the same time, not so promising candidate
solutions might also contribute to a finally computed list of relocation moves.

Neighborhood Order Beside the definition of neighborhood structures the sequence to
be followed when examining them is of crucial importance for VND based approaches.
Although there exist rules of thumb for ordering the neighborhoods [58], empirical tests
in [64, 112, 107] revealed that dynamically chosen neighborhood orderings sometimes
significantly improve the finally obtained solutions. Therefore, we investigated four

38

3.1. Location Assignment

neighborhood ordering strategies which are, however, associated with certain applica-
tions of the previously defined step functions. These combinations were identified based
on preliminary tests:

Ordered: This is the classical neighborhood ordering strategy as described in [58], i.e.,
the neighborhoods are arranged according to increasing size and/or examination
times. Although the asymptotic examination times are similar to each other in the
worst case, the actual examination times experienced in practice are on average
increasing for N1 to N6. Therefore, when using this neighborhood ordering, Ni is
examined before Ni+1 for i = 1, . . . , 5. All neighborhoods are examined according
to the RMC strategy.

Reversely Ordered: The contribution of neighborhoods with small indices is limited
to resolving conflicts occurring for paper rolls quite recently assigned to storage
locations. Since the available time for reallocations is rather short, it is very likely
that conflicts for paper rolls assigned early will not be resolved during relocation
phases. In addition, by first applying more time expensive rearrangements, it is
possible to eliminate these conflicts. Therefore, this neighborhood ordering first
examines neighborhood structure N6 and continues with N5, N4, N3, N2 and N1,
respectively. Again, all neighborhoods are searched using the RMC step function.

Randomized: Based on the observation that the current warehouse state is permanently
changing and therefore the type of arising conflicts is always in flux, a randomly
chosen and constantly altering neighborhood ordering might be promising. Addi-
tionally, a variation in the utilized step function is performed such that there are
nine different combinations of neighborhood structures and step functions. The
application of the PRN strategy to neighborhood structures N2, N3 and N6 will
be denoted by N7, N8 and N9, respectively, in the following. The next neighbor-
hood Ni to be examined, with i = 1, . . . , 9, is selected on a purely random basis
each time a neighborhood examination is finished. In addition, a neighborhood
structure is removed, i.e., no longer considered, if it did not yield a new improved
warehouse state within its t last consecutive examinations. Based on preliminary
tests the value of t is set to five for our application.

Dynamically Randomized: Analogously to the randomized ordering strategy the next
neighborhood Ni to be examined, with i = 1, . . . , 9, is chosen randomly when
applying this ordering strategy. Again N7 to N9 denote the application of the
PRN strategy to N2, N3 and N6, respectively. The probabilities for selecting the
neighborhoods, however, are adjusted each time a selection is performed. Detailed
values for the applied probabilities will be given below. Analogously to the purely
randomized ordering, neighborhood structures are removed as soon as t consecutive
examinations did not provide improved warehouse states.

39

Chapter 3. Logistics and Warehouse Management

VND Framework Given the current warehouse state W, a number of paper rolls to
be relocated, and a preferred neighborhood ordering and examination strategy strat,
Alg. 8 can be used for computing a list of paper roll relocations to be performed by
warehousemen. After initializing all temporary variables, the main loop of the procedure
is entered and is executed until either no more neighborhoods are left to be examined
according to strat or the number of yet available paper roll movements is equal to or less
than zero. In case of either the randomized or the dynamically randomized neighborhood
ordering is chosen, this algorithm is repeatedly executed for r rounds. Although any
arbitrary value could be chosen for the maximum number of rounds, r = 50 seems to be
promising based on the observation that computation times on a standard PC for our
paper production company are then acceptable, i.e., at most about three minutes. The
list of rearrangements resulting in the best new warehouse state is then returned by the
algorithm.

Depending on the value of parameter strat of Alg. 8 one or r iterations of the outer
loop are performed. During one iteration the list of paper roll movements is, however,
constantly lengthened, i.e., a once added move is never removed again. Obviously, this
behavior corresponds to a greedy arrangement of warehouse operations and we think that
this algorithmic design decision should be explained in detail. Based on an requirement
analysis conducted in cooperation with the warehouse manager of our industry part-
ner two fundamental requirements were identified: The reorganization of the warehouse
might be interrupted at any time due to customers (unexpectedly) arriving for picking up
their order. Therefore, each operation performed in the warehouse must guarantee that
the warehouse state afterwards is better than before the movement of the corresponding
rolls. However, each of the moves used for defining the neighborhood structures for
our VND approach is assumed to be atomic, i.e., all corresponding reallocations will be
completely performed before interrupting the reorganization. This also implies, how-
ever, that too complex reorganization steps are undesired. In addition, the algorithm is
indented to be concurrently executed while the warehouse worker already apply the first
proposed moves. Obviously, it is therefore not meaningful to withdraw already made
decisions (especially if the corresponding paper roll relocations were already executed).
Nevertheless, sometimes the first paper roll relocations are not immediately applied by
the warehouse men which can be exploited by accordingly setting parameter strat of
Alg. 8 such that r rounds are performed. In this case, the proposed heuristic is based on
the same principles as a multistart heuristic like greedy randomized adaptive search pro-
cedure (GRASP) [117]. Nevertheless, be aware that in our case the starting point for the
local search is always the current warehouse state, i.e., in contrast to GRASP the same
solution. Furthermore, although we are interested in a warehouse state of minimal costs,
i.e., having a minimum number of conflicts with respect to objective function (3.11), the
output of the algorithm is a list of moves for reaching this state.

40

3.1. Location Assignment

Algorithm 8: RelocationVariableNeighborhoodDescent(W, nm, strat)
Input: W …current warehouse state,

nm …number of available paper roll movements,
strat …neighborhood ordering strategy and step function to be used

Data: l …index of currently examined neighborhood structure,
n′, n′′ …remaining number of available paper roll movements,
W ′,W ′′ …intermediate warehouse states,
bestVal …value of the best so far obtained warehouse state,
bestL …list of rearrangements for reaching the best so far obtained
warehouse state

Output: L …list of moves to be performed
bestL← ();
bestVal←∞;
repeat
L← ();
W ′ ←W;
n′ ← nm;
repeat

l← index of neighborhood to be examined next according to strat;
W ′′ ← examine neighborhood Nl(W ′) according to strat;
if E(W ′′) < E(W ′) then

n′′ ← n′−number of roll moves needed for obtaining W ′′ from W ′;
if n′′ ≥ 0 then
add roll relocations for obtaining W ′′ from W ′ to L;
W ′ ←W ′′;
n′ ← n′′;

until no more neighborhoods left to be examined or n′ ≤ 0 ;
if E(W ′) < bestVal then

bestVal← E(W ′);
bestL← L;

until until 1 or r repetitions are reached (depending on strat) ;
return L;

41

Chapter 3. Logistics and Warehouse Management

Table 3.1.: Selection probabilities of the neighborhoods in DRVND in dependence
on the number of still available moves nm.

nm N1 N2 N3 N4 N5 N6 N7 N8 N9

<20 0.50 0.20 0.10 0.05 0.03 0.02 0.04 0.04 0.02
20–100 0.35 0.15 0.10 0.10 0.02 0.15 0.05 0.05 0.03

>100 0.05 0.05 0.05 0.20 0.15 0.30 0.05 0.05 0.10

The following four different variants of VND were implemented and compared with each
other (for test results see Sec. 3.1.6):

Ordered VND (OVND): For this variant of VND the parameter strat is set to ordered
(neighborhood order is fixed and RMC strategy is used). Since the algorithm is
deterministic only one round is performed.

Reversely Ordered VND (ROVND): While the number of still available moves nm is
greater than or equal to 80, this algorithm uses a fixed reversely ordered neigh-
borhood ordering. As soon as nm falls below a given value, the order is reversed,
i.e., the same order as for OVND is used. In our setting, this value is set to 80
which was identified in preliminary tests based on the typical characteristics of cus-
tomer orders. In contrast to OVND, this setting tries to first apply more complex
rearrangement to the warehouse such that large improvements can be achieved.
However, as soon as the number of still available moves gets closer to zero the
degree of freedom with respect to rearrangements also decreases. It is therefore
more likely that further improvements are obtained using short rearrangements,
i.e., relocations with only a few paper roll movements. Analogously to OVND only
one round needs to be performed in Alg. 8 due to the deterministic nature of this
setting.

Randomized VND (RVND): For this setting the randomized neighborhood ordering is
selected. Therefore, N1 to N6 are using a RMC strategy and N7 to N9 are searched
by the PRN step function. Hence, r rounds are performed in the algorithm and
the list of relocation moves resulting in the best warehouse state is returned.

Dynamically Randomized VND (DRVND): This variant applies dynamically random-
ized neighborhood ordering. The concrete probability values are shown in Tab. 3.1.
Each time, the number of still available moves nm falls below a value indicated in
the column labeled nm, the probabilities for selecting neighborhoods N1 to N9

are adjusted to the values shown in the corresponding columns. These values
were identified during preliminary tests and were then refined with the help of the
warehouse manager of our industry partner. Again, the basic concept relies on

42

3.1. Location Assignment

the observation that as long as the number of still available moves is relatively
high, the exploration of neighborhoods based on the more complex neighborhood
structures seems to be more promising. However, if only a view moves are left, the
likelihood for an improvement based on these complex neighborhood structures
decreases. Further, it would also be imaginable that self-adaptive neighborhood
orderings are applied as presented in [64, 112, 107]. These methods are, however,
proposed for applications were the number of still available moves in not limited.
Furthermore, these methods always rest upon the improvement potential, cf. [112],
or the number of improvements (and examination times) in the past, cf. [64, 107].
In our case these measures are, however, not reasonable due to the limitation on
available moves.

3.1.6. Experimental Results

In our paper production company the stocking strategy presented in Sec. 3.1.4 is already
applied in practice. Comparing warehouse states previously obtained by the old stock-
ing strategy, which was mainly based on the experience of the warehousemen as well as
the warehouse manager with warehouse states obtained after using the here proposed
stocking strategy, it can be clearly seen that the situation in the warehouse significantly
improved and therefore the time needed for shipping is reduced by a vast amount. Un-
fortunately, it is not possible to directly compare the old and the new stocking strategy
with each other during real time operations. Therefore, we decided to simulate the
stocking of typically produced paper rolls using the old and the new strategy.

Using this simulation based data it is possible to compare the efficiency and contributions
of the relocation strategies proposed within this thesis. In fact, the main parameter of a
typical warehouse state is the number of rolls stored within the warehouse. In our case at
most 4400 paper rolls can be stored in the warehouse. Expert knowledge indicates that
a filling level of 80% constitutes the critical level for which any further stocked paper
rolls will almost always cause conflicts—even in case of optimal placement. Therefore we
tested our relocation approaches on warehouse states with 2500, 3000 and 3500 paper
rolls stocked. All computations were performed on a single core of a Dual Opteron
processor with 2.4GHz and 4GB of RAM. As underlying database storing all production
and order relevant data an Oracle 10i database was used. Although, the number of rolls
to be relocated, can be chosen arbitrarily, we tested our algorithm for 10, 20, 50, 100,
300, 500 and 700 relocation moves, which corresponds to approximately 10, 25 and 60
minutes as well as 2, 6, 8 and 12 hours of working time. Although it is relatively rare
that one worker might relocate all day long this might occur on weekends when only few
new paper rolls are produced and the driving of trucks on highways is prohibited, which
is law in some European countries.

43

Chapter 3. Logistics and Warehouse Management

Table 3.2.: Absolute values of E(W) for six different test instances. The values represent
the objective values for the warehouse states obtained by a simulated human stocking
strategy and our stocking strategy proposed in Section 3.1.4. In the last column a lower
bound on the objective value for the warehouse states is given.

simulated stocking stocking strategy sorted stocking
avg. std

w_1 102635.0 12819.9 339.1 11807.0
w_2 130856.0 14683.0 413.0 13778.0
w_3 186835.0 23047.1 1101.4 18244.0
w_4 135203.0 17290.2 1098.9 14012.0
w_5 300881.0 49481.0 3018.7 35850.0
w_6 181877.0 64687.3 2525.2 33080.0

For testing purposes we have chosen six exemplary production data sets called w_1 to
w_6 which were provided by our industry partners. The limiting factor for our stocking
strategy as well as the VND approach are the number of paper rolls to be stored in the
warehouse as preliminary tests revealed. While warehouses w_1 and w_2 contain 2500
paper rolls to be stored, warehouses w_3 and w_4 consist of 3000 paper rolls. Finally,
w_5 and w_6 contain 3500 rolls.

For evaluating the performance of the stocking strategy we compared three different
stocking approaches. The first one corresponds to a simulation of the stocking strategy
used in our paper production company during the last years. This strategy is mainly
based on the experience of the warehouse operator and does not provide any type of
forecast—neither with respect to the shipping dates nor regarding paper rolls to be
produced in future. The corresponding objective values with respect to Eq. (3.8) are
given in the first data column of Tab. 3.2. The second column of this table lists the mean
results over 20 runs using slightly different production sequences of paper rolls obtained
by our stocking strategy including standard deviations. The final column lists values
obtained by first sorting all ordered rolls according to their shipping date and customer
order and then stocking them using our stocking strategy. It can be clearly seen, that our
stocking strategy outperforms the formerly used strategy. It has to be emphasized that
an optimal warehouse state will almost never be reached in this real world application
as long as a last-in, first-out throughput policy is applied and the production process is
optimized disregarding the storage structure.

Anyhow, it is still necessary to perform relocations from time to time since the shipping
dates are often not met by the customers. These conflicts cannot be foreseen even by
the best stocking strategy. Therefore, we did experiments using the proposed relocation

44

3.1. Location Assignment

Table 3.3.: For different number of relocation moves the relative values of the finally
obtained warehouse states based on those obtained via the formerly used stocking strat-
egy are presented. Mean values are averages over 20 runs (with standard deviations
in parentheses). The last column presents p-values of Wilcoxon rank sum tests for the
hypothesis that the mean values of DRVND are better than those of RVND.

GRP OVND ROVND RVND DRVND p-val
best mean std best mean std

n
m
=
10

w_1 97.2% 97.2% 97.2% 97.3% 97.7% (0.3%) 97.1% 97.2% (0.0%) <0.01
w_2 96.2% 96.2% 96.2% 96.2% 96.6% (0.3%) 96.2% 96.2% (0.0%) <0.01
w_3 98.9% 98.9% 98.9% 98.9% 99.0% (0.1%) 98.6% 98.7% (0.1%) <0.01
w_4 98.8% 98.8% 98.8% 98.6% 98.9% (0.1%) 98.6% 98.8% (0.0%) <0.01
w_5 97.7% 97.7% 97.7% 99.2% 99.4% (0.2%) 97.7% 97.7% (0.0%) <0.01
w_6 98.8% 98.8% 98.9% 98.8% 99.0% (0.2%) 98.7% 98.8% (0.0%) <0.01

n
m
=
20

w_1 95.0% 95.0% 95.0% 95.8% 96.3% (0.3%) 94.7% 95.0% (0.2%) <0.01
w_2 92.9% 92.9% 92.9% 94.3% 94.7% (0.2%) 92.9% 92.9% (0.1%) <0.01
w_3 97.9% 97.9% 97.9% 97.5% 98.2% (0.2%) 97.6% 97.8% (0.1%) <0.01
w_4 98.4% 98.4% 98.4% 97.8% 98.1% (0.2%) 97.6% 97.8% (0.1%) <0.01
w_5 96.7% 96.7% 96.7% 97.5% 98.4% (0.3%) 96.3% 96.7% (0.2%) <0.01
w_6 98.0% 98.0% 98.1% 97.5% 98.2% (0.3%) 97.0% 97.8% (0.3%) <0.01

n
m
=
50

w_1 89.6% 89.6% 89.6% 92.0% 92.3% (0.1%) 89.4% 90.0% (0.5%) <0.01
w_2 87.6% 87.6% 87.6% 89.4% 89.9% (0.3%) 86.5% 87.6% (0.7%) <0.01
w_3 94.7% 94.7% 94.7% 95.1% 96.1% (0.4%) 94.2% 94.7% (0.3%) <0.01
w_4 97.1% 97.1% 97.1% 95.0% 96.5% (0.6%) 94.4% 95.8% (0.8%) <0.01
w_5 93.5% 93.5% 93.5% 94.4% 96.0% (0.4%) 92.7% 93.5% (0.7%) <0.01
w_6 97.6% 96.2% 95.8% 95.6% 95.8% (0.2%) 94.9% 95.3% (0.3%) <0.01

n
m
=
10
0

w_1 82.7% 82.7% 86.5% 86.6% 88.1% (0.7%) 82.4% 83.3% (0.8%) <0.01
w_2 84.9% 82.4% 83.1% 82.8% 84.4% (0.8%) 81.1% 82.5% (0.9%) <0.01
w_3 92.7% 92.3% 93.7% 91.8% 92.2% (0.3%) 91.1% 92.0% (0.3%) 0.03
w_4 97.0% 95.8% 91.9% 89.8% 90.7% (0.4%) 89.8% 90.2% (0.3%) <0.01
w_5 90.4% 90.4% 91.7% 90.2% 90.7% (0.2%) 89.5% 90.3% (0.3%) <0.01
w_6 97.6% 93.4% 94.5% 92.7% 93.6% (0.4%) 92.0% 92.5% (0.5%) <0.01

n
m
=
30
0

w_1 77.3% 67.7% 69.1% 71.0% 73.4% (1.4%) 64.0% 68.6% (3.1%) <0.01
w_2 84.9% 68.4% 66.4% 67.1% 68.9% (1.0%) 65.0% 66.6% (1.0%) <0.01
w_3 92.7% 85.6% 83.8% 83.3% 84.2% (0.9%) 80.2% 82.5% (1.3%) <0.01
w_4 97.0% 95.8% 84.5% 76.9% 79.9% (1.5%) 73.2% 78.3% (3.0%) 0.01
w_5 90.4% 85.4% 81.0% 77.7% 78.9% (0.7%) 77.7% 78.8% (0.8%) 0.31
w_6 97.6% 92.0% 95.5% 83.8% 84.9% (0.7%) 83.4% 84.7% (1.0%) 0.21

n
m
=
50
0

w_1 77.3% 63.5% 61.2% 63.0% 65.7% (1.7%) 57.3% 59.8% (2.1%) <0.01
w_2 84.9% 52.7% 51.5% 53.5% 55.3% (1.9%) 50.4% 52.0% (1.4%) <0.01
w_3 92.7% 79.1% 76.7% 74.8% 76.3% (1.0%) 71.6% 73.6% (1.3%) <0.01
w_4 97.0% 96.5% 65.7% 66.4% 67.8% (1.3%) 64.0% 66.1% (1.6%) <0.01
w_5 90.4% 77.7% 72.8% 68.9% 70.7% (1.2%) 68.3% 70.4% (1.2%) 0.10
w_6 97.6% 93.4% 96.0% 76.1% 79.0% (2.1%) 74.7% 77.2% (1.6%) <0.01

n
m
=
70
0

w_1 77.3% 59.1% 50.6% 55.3% 57.7% (1.9%) 50.0% 51.2% (1.3%) <0.01
w_2 84.9% 42.0% 43.0% 41.4% 44.0% (2.2%) 40.4% 42.0% (2.3%) <0.01
w_3 92.7% 74.8% 66.8% 64.4% 66.4% (1.5%) 60.3% 63.2% (2.1%) <0.01
w_4 97.0% 95.8% 60.0% 57.6% 58.9% (0.9%) 53.5% 56.5% (2.0%) <0.01
w_5 90.4% 76.2% 72.9% 62.5% 64.8% (1.5%) 62.5% 64.1% (1.4%) 0.01
w_6 97.6% 92.8% 96.0% 68.8% 72.7% (3.0%) 68.5% 71.2% (1.9%) <0.01

45

Chapter 3. Logistics and Warehouse Management

Table 3.4.: For different number of relocation moves the relative values of the finally
obtained warehouse states obtained via the proposed stocking strategy are presented.
Mean values are averages over 40 runs (with standard deviations in parentheses). The
last column presents p-values of Wilcoxon rank sum tests for the hypothesis that the
mean values of DRVND are better than those of RVND.

GRP OVND ROVND RVND DRVND p-val
best mean std best mean std

n
m
=
10

w_1 100.0% 99.5% 99.4% 97.9% 98.7% (0.2%) 97.8% 98.3% (0.1%) <0.01
w_2 100.0% 99.8% 99.8% 98.2% 99.2% (0.1%) 97.7% 98.8% (0.1%) <0.01
w_3 100.0% 99.4% 99.3% 97.8% 98.8% (0.1%) 97.8% 98.6% (0.1%) 0.11
w_4 99.9% 99.8% 99.8% 98.0% 98.7% (0.1%) 97.9% 98.5% (0.1%) <0.01
w_5 99.8% 99.6% 99.6% 98.1% 99.2% (0.1%) 98.2% 99.2% (0.1%) 0.48
w_6 99.9% 99.5% 99.5% 98.3% 98.8% (0.1%) 97.8% 99.0% (0.2%) 0.93

n
m
=
20

w_1 100.0% 99.4% 99.3% 97.3% 98.2% (0.1%) 97.2% 97.8% (0.1%) <0.01
w_2 100.0% 99.7% 99.6% 98.0% 98.8% (0.1%) 97.7% 98.4% (0.1%) <0.01
w_3 100.0% 99.1% 99.0% 96.3% 98.4% (0.1%) 97.0% 98.1% (0.1%) 0.04
w_4 99.9% 99.8% 99.8% 95.5% 98.1% (0.3%) 61.9% 96.3% (1.2%) <0.01
w_5 99.8% 99.4% 99.3% 96.6% 97.8% (0.3%) 96.4% 97.9% (0.2%) 0.67
w_6 99.9% 99.5% 99.5% 96.5% 97.9% (0.1%) 96.7% 98.2% (0.2%) 1.00

n
m
=
50

w_1 100.0% 98.9% 98.7% 95.2% 96.9% (0.1%) 95.0% 96.2% (0.1%) <0.01
w_2 100.0% 98.5% 98.5% 96.0% 97.0% (0.1%) 95.6% 96.7% (0.1%) <0.01
w_3 100.0% 99.1% 99.1% 95.3% 97.9% (0.2%) 93.9% 97.1% (0.3%) <0.01
w_4 99.9% 99.8% 99.8% 92.7% 96.8% (0.2%) 68.8% 93.3% (1.2%) <0.01
w_5 99.8% 99.3% 99.3% 92.5% 94.9% (0.3%) 93.3% 95.3% (0.3%) 0.99
w_6 99.9% 99.1% 99.2% 93.5% 96.0% (0.3%) 93.5% 96.2% (0.4%) 0.85

n
m
=
10
0

w_1 100.0% 98.3% 98.1% 92.7% 96.0% (0.3%) 68.0% 92.3% (1.9%) <0.01
w_2 100.0% 99.7% 99.7% 93.4% 96.6% (0.3%) 93.2% 95.6% (0.2%) <0.01
w_3 100.0% 99.1% 99.1% 92.3% 97.5% (0.4%) 92.4% 96.1% (0.5%) <0.01
w_4 99.9% 99.8% 99.9% 92.5% 96.9% (0.4%) 69.2% 93.5% (1.3%) <0.01
w_5 99.8% 99.3% 98.3% 87.6% 92.0% (0.7%) 86.7% 91.9% (0.7%) 0.46
w_6 99.9% 99.0% 99.1% 89.1% 94.4% (1.3%) 90.1% 93.7% (0.5%) 0.25

n
m
=
30
0

w_1 100.0% 99.2% 99.2% 93.7% 96.2% (0.3%) 84.8% 93.1% (0.7%) <0.01
w_2 100.0% 99.7% 99.7% 93.6% 97.0% (0.3%) 91.8% 95.3% (0.5%) <0.01
w_3 100.0% 99.1% 99.1% 92.8% 97.3% (0.4%) 90.9% 96.0% (0.5%) <0.01
w_4 99.9% 99.8% 99.9% 91.3% 96.9% (0.4%) 86.8% 93.8% (0.7%) <0.01
w_5 99.8% 99.2% 97.8% 82.5% 91.1% (0.9%) 81.3% 88.7% (0.6%) <0.01
w_6 99.9% 99.0% 98.4% 81.7% 91.2% (1.9%) 73.8% 86.4% (2.3%) <0.01

n
m
=
50
0

w_1 100.0% 99.2% 99.2% 93.3% 96.2% (0.3%) 85.1% 92.9% (0.7%) <0.01
w_2 100.0% 99.7% 99.7% 93.9% 97.0% (0.3%) 92.5% 95.3% (0.5%) <0.01
w_3 100.0% 99.1% 99.1% 92.5% 97.6% (0.3%) 92.1% 95.9% (0.3%) <0.01
w_4 99.9% 99.8% 99.9% 93.5% 97.0% (0.5%) 70.4% 93.8% (1.2%) <0.01
w_5 99.8% 99.2% 97.8% 83.2% 90.7% (1.0%) 80.1% 88.4% (0.8%) <0.01
w_6 99.9% 99.0% 98.4% 73.2% 90.6% (1.9%) 66.4% 83.3% (3.2%) <0.01

n
m
=
70
0

w_1 100.0% 99.2% 99.2% 93.2% 96.0% (0.3%) 86.9% 92.8% (0.5%) <0.01
w_2 100.0% 99.7% 99.7% 93.4% 96.8% (0.2%) 91.2% 95.2% (0.4%) <0.01
w_3 100.0% 99.1% 99.1% 94.2% 97.7% (0.2%) 90.4% 95.8% (0.3%) <0.01
w_4 99.9% 99.8% 99.9% 93.4% 97.1% (0.4%) 73.1% 93.7% (0.9%) <0.01
w_5 99.8% 99.2% 97.8% 82.6% 91.1% (0.7%) 78.3% 88.4% (1.1%) <0.01
w_6 99.9% 99.0% 98.4% 76.7% 91.2% (2.1%) 68.6% 83.5% (4.0%) <0.01

46

3.1. Location Assignment

strategies. For the VND based approach we set the values of the parameters t and r
based on preliminary tests to t = 5, i.e., the number of allowed unsuccessful exploration
of a neighborhood until it is removed, and r = 50, i.e., the number of rounds performed
for the multistart variant of our approach. While Tab. 3.3 represents values obtained
for applying the relocation strategies on warehouse states generated by the formerly
used stocking strategy, the values presented in Tab. 3.4 correspond to results obtained
by reassigning paper rolls in warehouses obtained by our stocking strategy. A value of
98% indicates that an improvement of two percent could be achieved, i.e., the estimated
probability of conflicts during removal operations with respect to Eq. (3.8) could be
reduced by 2%.

The following trend can be recognized: the more available time is dedicated to relo-
cation operations the better the obtained warehouse states become. In addition the
performance of GRP seems to be poorer for a larger number of available moves than
those of the different VND variants. Although the former tendency is obvious, GRP
could not improve further with more than 100 moves for warehouse states considered
in Tab. 3.3. It is most interesting that this behavior seems to be independent of the
number of rolls stored in the warehouse. To confirm this observation, we performed
additional tests investigating especially this fact. A possible explanation for this could
be that within our warehouse only 175 strips exist, such that only a few conflicts can
be resolved when considering always the paper rolls at the front of each strip only. A
limitation of GRP to at most 100 moves seems, however, reasonable for an application
in our paper production company. When applying GRP on warehouse states obtained
via our stocking strategy, the improvement potential is rather limited.

Regarding the performances of our VND variants it turned out that DRVND seems to
be the best VND setting for relocations consisting of many paper roll movements. If
the available time is rather limited the performances of RVND, OVND and ROVND are
similar. RVND, however, is outperformed almost always by DRVND. To validate this
hypothesis we performed Wilcoxon rank sum tests. The resulting p-values are for nearly
all tested instances below 0.01, which indicates that the assumption is in most cases
correct with an error probability of at most one percent. For those warehouse states
obtained via our stocking strategy an improvement could still be achieved using the
VND variants which implies that conflicts induced by improper production sequences
have an impact on the stocking strategy. Anyhow, it is important to assign the rolls
to good storage locations from the beginning on, since the results obtained by the new
stocking strategy could not be reached by the relocation procedure applied to warehouse
states resulting from the formerly used stocking strategy.

With respect to runtime, GRP is the fastest approach with runtimes of at most 5 sec-
onds. DRVND, which is the slowest VND variant, needs for computing 700 paper roll
movements about 3.5 minutes, which is reasonable according to the warehouse man-

47

Chapter 3. Logistics and Warehouse Management

ager of our industry partner. Finally, we investigated the number of times one paper
roll is relocated during storage reassignments. We observed that even for the test runs
including 700 moves, multiple moves of individual paper rolls seldom occur.

3.2. Routing

Although the computation of optimal storage locations for articles might increase the
quality of a storage management system while at the same time decreasing the arising
costs, there are situations for which an optimal assignment of articles to storage locations
cannot be computed. One of these situations is a spare parts warehouse. In contrast to
branches of industry like paper production spare parts supplier cannot produce ordered
articles on customer demand for reducing overall delivery times. Since the concrete
customer orders are in general unknown at the time of stocking the computation of stor-
age locations need to be performed independently. In most cases, statistics and expert
knowledge are used for determining optimal storage locations. In addition characteristics
of the articles to be stored like size and weight are considered. Nevertheless, to reduce
the overall response times to customer orders it is necessary to compute as short picking
tours as possible, which are then processed by warehousemen.

In addition, spare parts suppliers are confronted with several problems. On the one
hand, they should be able to supply spare parts both on demand and as fast as possi-
ble. On the other hand, they have to keep their storage as small as possible for various
economic reasons. Storage space itself is expensive, but more importantly by adding ad-
ditional capacity to the stock, the complexity of administration increases substantially.
Therefore, the demand for (semi-)automatic warehouse management systems arises. Be-
side keeping computerized inventory lists additional planning tasks can be transferred
to the computer system. For example, lists containing all articles to be reordered can
be automatically generated.

Obviously the main task to be performed within a spare parts warehouse is the issuing
and shipping of items ordered by customers. For this purpose, several warehousemen
traverse the storage and collect ordered articles which will then be brought to a packing
station where all items are boxed and shipped for each customer. Of course, the possible
savings related with minimizing collecting times of items are high and therefore effort
should be put into a proper tour planning. Various constraints related to capacities of
trolleys used for transporting collected articles, structural conditions of the warehouse
and delivery times guaranteed to the customers have to be considered. Nevertheless such
a tour planning system can only provide a suggestion of tours through the warehouse
since the final decisions must always be made by humans. For example it may happen
that some routes through the warehouse are unpredictable blocked due to the breakdown

48

3.2. Routing

PS

racks
packing station
rack aisles

PS

main aisles

Figure 3.2.: An exemplary storage layout. Main aisles (vertical in this sketch) and rack
aisles (horizontally aligned) are joining each other orthogonally.

of a trolley used by another worker. In this work we assume, however, that such situations
only rarely occur.

The rest of this section is organized as follows: The next section gives a detailed prob-
lem definition. In Sec. 3.2.2 we present an overview of related work. A new hybrid
approach based on variable neighborhood search and dynamic programming is presented
in Sec. 3.2.3. Experimental results complete this section.

3.2.1. Problem Definition

The problem can be defined as follows: We are given a warehouse with a storage layout
similar to that presented in Fig. 3.2, i.e., several racks are aligned such that two types
of aisles arise: rack aisles and main aisles, whereas we assume that there are two main
aisles with an arbitrary number of rack aisles lying between them. While rack aisles
provide access to the racks main aisles only act as an interconnection between the rack
aisles and the packing station. We denote by R = {1, . . . , nR} the set of racks located
in the rack aisles.

In addition, a set of articles A, with A = {1, . . . , nA}, nA ≥ 1, is given. Each article
a ∈ A is stored at a non-empty set Ra of one or more racks, i.e., ∅ 6= Ra ⊆ R. The
quantities of articles a ∈ A are given by qa : Ra → N.

We assume that a homogeneous fleet of nT trolleys used for carrying collected items
exists, each having capacity γ. A group of nW warehousemen, 1 ≤ nW ≤ nT, is operating
these trolleys and issuing ordered articles.

49

Chapter 3. Logistics and Warehouse Management

A set of customer orders is given with each order consisting of a list of articles with
demands to be shipped to a specific address. Further, a global latest delivery time L
is defined which states that all customer orders need to be shipped until that time.
Although the assignment of orders to customers is important for a production system,
we are only interested in the quantities of each article to be collected in the warehouse
for this work, since extra workers are assigned to pack all items according to orders.
Therefore, we define the set O of orders as the set of tuples (a, da) ∈ O, with |O| = nO,
stating the total integer demand da ≥ 1 of each article a ∈ A. In addition, we assume
that all articles have uniform size and the capacities of all trolleys together, i.e., nT ·γ, is
greater than the amount of articles to be collected. However, we do not require that each
order fits into one trolley. Even more, we expect that in an optimal solution multiple
orders will be carried by one trolley. In addition, one order can be split over multiple
trolleys.

Let us denote by set S a finite set of selections, whereas a selection S ∈ S is a set of
triples (a, δ, r) such that r ∈ Ra, 1 ≤ δ ≤ qa(l), and there exists an order (a, da) ∈ O with
da ≥ δ. Further, we denote by T a set of tours whereas for each Si ∈ S a tour Ti ∈ T
exists. By tour Ti we understand a walk through the warehouse visiting all locations
contained in Si such that the corresponding items of Si can be collected. The length of
tour Ti ∈ T is denoted by c(Ti).

A solution x = (S, T , Π, <T) to the given problem consists of a set T of tours corre-
sponding to the selections in S as well as a mapping Π : T → {1, . . . , nW} of tours to
workers and an ordering <T of tours such that

• |S| = |T | ≤ nT,

• tour Ti ∈ T collects all articles a ∈ Si, Si ∈ S,

•
∑

S∈S
∑

(a,δ,l)∈S δ = da, for all a ∈ A,

• worker Π(Ti) processes tour Ti ∈ T ,

• tour Ti is processed before tour Tj if Ti <T Tj for all Ti, Tj ∈ T with Π(Ti) = Π(Tj),

• all time constraints are met, i.e., for each worker 1 ≤ k ≤ nW it has to be guar-
anteed that his/her last tour is finished before the global time limit L. Therefore,∑

T |Π(T)=k c(T) ≤ L must hold for all workers 1 ≤ k ≤ nW.

We formulate the given problem as an optimization problem in which the total length of
the tours, i.e.,

∑
T∈T c(T), as well as the violations of the capacity constraints defined by

the trolleys, i.e.,
∑

S∈S max
{∑

(a,δ,l)∈S δ − γ, 0
}
, should be minimized. For weighting

the relative importance of violating capacity constraints compared to tour lengths, we

50

3.2. Routing

introduce a weighting coefficient ω such that the objective function can be written as

min
∑
T∈T

c(T) + ω ·
∑
S∈S

max

 ∑
(a,δ,l)∈S

δ − γ, 0

 (3.11)

For this work, ω is set to the maximum possible length of one tour picking up one article
plus one. Such a choice for ω implies that it is always better to use an additional tour for
collecting an item than violating a capacity constraint. Let us note that, although viola-
tions of capacities are allowed with respect to the objective function, a finally obtained
solution must not contain overloaded trolleys. Due to the relatively high weighting factor
ω, such solutions are, however, only considered during the starting phase of the proposed
algorithms while generating a first valid solution.

Although not mentioned so far, there is a further constraint which is not directly regarded
within this work: For security reasons it is demanded by the warehouse manager that
no two workers are working at the same time in the same area of rack aisles. It is,
however, almost impossible to compute the exact times when warehouse men are in
specific aisles, e.g., worker may occasionally stop to go to the restroom or talk to other
people. Nevertheless, based on preliminary tests it turned out that optimal solutions
normally do not include many different tours entering the same aisle. In most cases,
even only one worker needs to enter an aisle and collects all articles ordered during one
traversal.

3.2.2. Related Work

Obviously, the stated problem is related to warehouse management in general. An
introduction to this topic as well as an overview over tour finding, storage management
and other related tasks is given in [26].

It is obvious that the stated problem forms a special variant of the well known vehicle
routing problem (VRP) [130]. In fact, the classical VRP is extended by additional domain
specific constraints. In the classical VRP one wants to find a set of tours minimal with
respect to their total length starting at a depot and visiting a predefined set of customers.
Further, the problem studied here is related to the split delivery VRP [35], the VRP with
time windows [126] and the capacitated VRP [115]. To our knowledge, there exists only
few previous work (e.g. [40]) considering a combination of all three of these variants of
VRP. A further combination with the constraints considered in this work is, however, to
our knowledge at this time untried. However, due to this strong relationship to VRP,
it is obvious that the problem investigated within this section is NP-hard. Another

51

Chapter 3. Logistics and Warehouse Management

related routing problem arises in container terminals [83] where automatic guided vehicles
(AGVs) are utilized for transporting containers between storing locations and vessels.

Beside this obvious relationship with VRPs, this problem is also related to the generalized
network design problems [38] with respect to the possibility to collect one article from
different locations within the warehouse. At a time only one node of such a cluster has
to be visited.

3.2.3. A Hybrid Variable Neighborhood Search Approach

Based on the fact that the problem examined within this paper is strongly related to
the VRP, we expect that exact approaches are limited to relatively small instances.
In addition, short computation times are important, since the observation was made
that new orders are committed continuously by customers which implies that the algo-
rithm is restarted frequently. Since recently highly effective variable neighborhood search
(VNS) [58] approaches have been reported for diverse variants of the VRP [60, 98] we
also based our approach on a similar concept. Within our hybrid VNS, variable neighbor-
hood descent (VND) [58] is used as embedded local search procedure, and subproblems
corresponding to the computation of individual tours for collecting particular items are
solved exactly by means of dynamic programming [13], exploiting the specific structure
of the warehouse.

The Basic Principle

In this work we assume that
∑

a∈A da ≤ nT · γ, i.e., the total capacities of all trolleys is
greater than or at least equal to the total amount of ordered articles. (Just as a reminder:
we assume that all articles are equally sized.) Anyhow, in real-world settings the problem
may arise that these constraints cannot be satisfied. In that case a straightforward
preprocessing step is used, which partitions the set of orders such that for each set the
capacity constraints are satisfied. Each of these sets is then independently solved using
the proposed approach.

The tour planning algorithm mainly consists of two parts: (1) the allocation of articles to
at most nT selections and (2) the computation of concrete routes through the warehouse
for collecting all items assigned to the previously determined selections. Anyhow, both
of these parts have to be executed intertwined, since the evaluation of the mapping of
articles to tours is based on the lengths of these tours. Therefore, these two steps are
repeated until no further improvement can be achieved. Finally, an assignment of the
walks to nW warehousemen is done, such that the latest finishing time is as early as
possible and the global delivery time is respected.

52

3.2. Routing

In real-world settings it might happen that additional orders will be committed by
customers. In this situation the algorithms needs to be restarted from the beginning.
However, it is straightforward to extend this approach by an incremental update func-
tion, such that already computed solutions can be expanded to valid solutions regarding
the additional orders.

Assignment of Articles to Tours

One crucial point of our algorithm is the assignment of articles to selections such that in
a second step walks through the warehouse can be computed. Nevertheless, the capacity
constraints stated by the trolleys as well as the maximum number of available trolleys
nT have to be regarded during this allocation step.

Construction Heuristic For quickly initializing our algorithm we developed a construc-
tion method called collision avoiding heuristic (CAH). The main idea of CAH is to divide
the storage into m ≥ 1 physically non-overlapping zones whereupon each one is operated
by one trolley, i.e., m selections are generated. For this work, we set m to nW.

Since the capacities of the trolleys are not regarded within this initialization procedure
the solution qualities produced by this heuristic are not outstanding. The required
computation times are, however, very low. Therefore, CAH can be used for providing
ad hoc solutions such that the workers start collecting the first scheduled item while the
rest of the tours is improved in the meantime.

Improvement Heuristic For improving solutions generated by CAH, we present a vari-
able neighborhood search (VNS) approach using an adapted version of variable neighbor-
hood descent (VND) as subordinate. The basic idea of VNS/VND is to systematically
switch between different neighborhood structures until no further improvement can be
achieved. In fact, the crucial task in designing such an approach is the proper definition
of appropriate moves used for defining the neighborhood structures incorporated in VNS
and VND, respectively. The following seven different move types were implemented:

BreakTour(i) Selection Si ∈ S is removed from S and all articles assigned to Si are
randomly distributed over all other selections Sj ∈ S \ Si.

MergeTour(i, j) Selections Si ∈ S and Sj ∈ S are both removed from S and merged
with each other into a new selection Si′ , which is then added to S.

53

Chapter 3. Logistics and Warehouse Management

ShiftArticle(i, j, a) Any solution generated by this move differs from the underlying
solution in one article a which is moved from selection Si to selection Sj , with
a ∈ Si and Si, Sj ∈ S.

ShiftArticleChangeRack(i, j, a, r) Analogously to the ShiftArticle move, this move shifts
an article a ∈ Si to selection Sj , with Si, Sj ∈ S. In addition to this, a is now
collected from rack r ∈ Ra regardless of the position it was acquired before.

SplitTour(i) By applying this move, selection Si ∈ S is split into two new selections Si′

and Si′′ such that |Si′ | = |Si′′ | or |Si′ | = |Si′′ |+ 1. Selection Si is removed from S,
whereas Si′ and Si′′ are added.

SwapArticle(i, j, a1, a2) This move swaps two articles a1 and a2 , with Si, Sj ∈ S and
a1 ∈ Si, a2 ∈ Sj .

SwapArticleChangeRack(i, j, a1, a2, r1, r2) This move is very similar to the SwapArticle
move. After swapping articles a1 ∈ Si and a2 ∈ Sj between selections Si ∈ S and
Sj ∈ S, the rack of a1 is changed to r1 ∈ Ra1 and that of a2 is changed to r2 ∈ Ra2 .

Based on these move types, the neighborhood structures for VNS and VND are defined,
whereas the neighborhoods N1(x), . . . , Nkmax(x), with 1 ≤ kmax ≤ |S| − 1, used within
the shaking phase of VNS are purely based on BreakTour moves such that within Nk(x),
with 1 ≤ k ≤ kmax, k randomly chosen BreakTour moves are applied to x. The neigh-
borhood structures N1, . . . ,N6 for VND are defined by a single application of one of the
other six move types, such that N1, . . . ,N6 apply SplitTour, MergeTour, ShiftArticle,
ShiftArticleChangeRack, SwapArticle, SwapArticleChangeRack, respectively.

In addition to the proper definition of neighborhood structures, a beneficial order used
for systematically examining them is necessary and has a great influence on the per-
formance of VND (cf. [64, 111]). Preliminary tests showed that the contributions of
neighborhood structures N1 and N2 are relatively high during the beginning of VND
but dramatically decrease after only a few iterations. This is due to the fact that split-
ting and merging of tours is only important as long as the capacity constraints are either
violated or highly over-satisfied, i.e., there is significant capacity left in more than one
trolley. Anyhow, in most of the iterations, i.e., in about 95% of the iterations, no im-
provement can be achieved by these neighborhoods. Therefore, some dynamic order
mechanism guaranteeing that neighborhoods N1 and N2 are primarily examined dur-
ing the beginning phase of VND while being applied less frequently during the later
iterations seems to be important.

In contrast to self-adaptive VND as proposed by Hu and Raidl [64], we do not punish
or reward neighborhood structures based on their examination times, but reorder the
neighborhoods according to their success rates, i.e., the ratios of improvements over

54

3.2. Routing

examinations, only. The neighborhood order is updated each time an improvement on
the current solution could be achieved.

In addition, we adapted VND such that not only improvements on the current solution
are accepted but also moves can be applied which leave the current objective value
unchanged. To avoid infinite loops, at most z ≥ 1 non-improving subsequent moves are
allowed in our version of VND, whereas the i-th non-improving move is accepted with
probability 1− (i−1) · 1/z, only. All counters regarding the acceptance of non-improving
moves are reset as soon as an improvement could be achieved. Based on experimental
results we observed that this adaption helps to escape local optima. Especially in cases
where the swapping of two articles between two tours or the shifting of one tour to
another tour is performed for tours which have both to enter the same (sub-)set of aisles.
Although the tour lengths are not changed, the used space on the trolleys is affected
which may result in the situation that afterwards a due to the capacity constraints
impossible move can be performed. Preliminary tests revealed that setting parameter
z = 10 results in about 10% to better results while the running times are still kept
low. For larger values the solutions did not significantly improve while the running
time exceeded the desired limit given by our industry partner. As step function a
next improvement strategy was implemented, whereas a random examination order was
chosen to uniformly sample the current neighborhood.

Computing Individual Tours

Another crucial point of the proposed algorithm is the computation of concrete tours
which will be used by the warehousemen for collecting a specific set of ordered items
since the evaluation of the assignment of articles to selections is based on the shortest
possible tours, and therefore an efficient tour computation is needed.

For this purpose we will present an approach based on dynamic programming for com-
puting optimal tours through the warehouse. It should be mentioned, however, that
in [116] another dynamic programming approach was published. Although that method
can be used for computing tours as needed in our case, the method proposed in the
following is more flexible in the sense that it can be easily adapted such that not only
tours but also paths or all other traversings of the warehouse can be computed using the
same dynamic program with only a few minor modifications.

Please note that a tour as used within this work does not correspond to tours as used
within works related to the traveling salesman problem or the vehicle routing problem.
In fact, the main difference lies therein that tours within a storage are allowed to visit
each point of interest, i.e., among others the packing station, crossings of aisles and rack
positions, more than once. This is simply induced by the circumstance that in most

55

Chapter 3. Logistics and Warehouse Management

v wPS
T1

T3

T5

T2

T4

(a)

v wPS
T1

T3

T5

T2

T4

(b)

Figure 3.3.: How to construct a tour T ′ from a given tour T under the assumption that
T visits two times location w immediately after location v.

cases no direct connection between two points of interest exists. Consequently, paths
between points of interest can be walked along more than once within one tour. Anyhow,
an upper bound for the number of times the same passage is walked can be provided
based on the following two observations.

Theorem 1. Given is a tour T , which is of shortest length with respect to a set of points
of interest, i.e., all of these points are visited by T . Further, we assume that there exist
two adjacent points of interest v and w which are twice visited immediately consecutively
in T . Then the passage between v and w is once traversed from v to w and once vice
versa in T .

Proof. Let us assume that the passage between points v and w is traversed twice in
the same direction. Then, we can split tour T into five subwalks T1, T2, T3, T4 and T5

as shown in Fig. 3.3a, whereas PS denotes the packing station. A new tour T ′ can be
built by passing segment T1 from PS to v followed by traversing walk T3 from v to w
and finally walking along T5 from w to PS, see Fig. 3.3b. Since v and w are adjacent,
i.e., no other point of interest has to be visited when walking from v to w, T ′ visits the
same points of interest as T . Furthermore, since subwalks T2 and T4 are not traversed
within T ′, T ′ is shorter than T , which is a contradiction to the assumption that T is
minimal.

Lemma 1. Given is an optimal tour T with respect to a set of points of interest. Then
any two adjacent points v and w are visited at most twice immediately consecutively by T .

Proof. This lemma directly follows from Theorem 1. Under the assumption that points
v and w are visited more than two times immediately consecutively the passage between
these two points has to be traversed at least twice in the same direction.

Based on the special structure induced by warehouse layouts similar to that shown in
Fig. 3.2, we define aisle operations (AOs) and inter-aisle operations (IOs). While AOs
are representations of the walks to be performed within rack aisles, IOs correspond to
movements in main aisles. In Fig. 3.4 the sets of basic AOs and IOs are shown. Each

56

3.2. Routing

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.4.: In (a)–(e) the five basic aisle operations (AOs) are presented, whereas (f)–(j)
show the basic inter-aisle operations (IOs). In this graphics the rectangles with crosses
symbolize rack positions. The aisle, obviously, runs in-between of the racks.

(a) (b)

Figure 3.5.: Figure (a) shows a module representing that part of a tour entering and
leaving the RA from and to the left side. This aisle operation is then suitably joined
with the rest of the tour by appropriate inter-aisle operations.

of the arrows represents a part of a tour through the warehouse, e.g., in Fig. 3.4a the
corresponding aisle in entered from “the left”. In contrast, Fig. 3.4f shows a part of the
tour which leads from the “left end” of an aisle to the “left end” of the “next” aisle. By
appropriately combining these basic operations, so-called modules can be defined, which
will then be used for representing parts of tours, for an example see Fig. 3.5a. Based
on Theorem 1 it can be concluded that the number of different module types needed for
representing a tour is limited to 1792. This number can be derived as follows: As shown
in the example in Fig. 3.5a at most three incoming and three outgoing edges can be
connected to the point indicated by the small circle. Obviously, there are 26 possibilities
for selecting a subset of these edges, i.e., 64 different tour parts for each aisle end which
implies that there a total of 4092 possible modules. Some of these modules are, however,
invalid, e.g., see the invalid module depicted in Fig. 3.5b. Subtracting all the invalid
modules result in a total of 1792 valid modules.

Although it is now obvious that tours can be built by selecting an appropriate module
for each aisle to visit, it can be observed that the resulting tours may contain subtours,
which are not connected to the rest of the tour, see for example Fig. 3.6a. Unfortunately,
as shown in Fig. 3.6b, the decision whether a combination of modules is valid cannot
always be made as soon as the next module is selected. Let us denote by Nc(j) the set

57

Chapter 3. Logistics and Warehouse Management

invalidvalid

(a)

valid or invalid? valid or invalid?

(b)

Figure 3.6.: For some combinations of modules (a) it can be directly decided whether or
not they are valid. In other cases (b) this decision has to be postponed.

of those modules j′ which might be connected with module j with respect to the IOs of
j and j′, i.e., all modules j′ forming together with j possibly valid tour parts. Further,
we denote by Nv(j) the set of those modules j′ ∈ Nc(j) such that the usage of modules
j and j′ results in a definitely valid tour (part).

Therefore, we introduce two (n + 1) × (ν) matrices σ and τ , with n being the number
of aisles containing items to be selected and ν indicating the maximum number of po-
tentially used module types. An entry σij , with 1 ≤ i ≤ n and 1 ≤ j ≤ ν, corresponds
to the length of a valid tour T ′ which visits all rack locations in aisles 1 to i storing
articles to be shipped to customers and performs in aisle i the operations corresponding
to module j. Analogously, an entry τij corresponds to the total length of tour parts
which visit all racks in aisles 1 to i storing articles to be shipped and perform in aisle
i the operations corresponding to module j. Anyhow, these tour parts need not to be
connected with each other and therefore it has to be assured that they are going to be
joined into one (big) tour by operations performed in any aisle > i. Now, let us assume
that ci(j) denotes the length of the tour part(s) represented by module j when applied
to aisle i and module µ represents the IOs necessary for reaching the first aisle from the
packing station. Then, the entries of σ and τ can be computed by using the following
recursive functions:

σ0µ = τ0µ = 0 (3.12)
σ0j = τ0j =∞ ∀j ∈ {1, . . . , ν} \ {µ} (3.13)

σij = ci(j) +min
{ {

σi−1j′ : j′ ∈ Nv(j)
}
∪{

τi−1j′ : j′ ∈ Nv(j)
} }

∀i ∈ {1, . . . , n}
∀j ∈ {1, . . . , ν}

(3.14)

τij = ci(j) +min
{ {

σi−1j′ : j′ ∈ Nc(j)
}
∪{

τi−1j′ : j′ ∈ Nc(j)
} }

∀i ∈ {1, . . . , n}
∀j ∈ {1, . . . , ν}

(3.15)

For determining the optimal tour, one first needs to identify module J used for aisle n
in an optimal tour, i.e., J = argminj∈{1,...,ν}{σnj}. Then, the computations based on

58

3.2. Routing

Eq. (3.14) and (3.15) have to be performed backwards. Anyhow, it can be easily proven
that σnJ 6=∞ definitely holds. In case of ties any module can be chosen.

Assignment of Workers to Tours

In a final step, an assignment of workers to tours has to be computed such that the latest
finishing time is as early as possible while regarding the guaranteed delivery times. Ob-
viously this problem is a variant of the well known NP-complete job shop scheduling [43]
which asks to schedule a set of jobs having different lengths on a set of homogeneous
machines such that the latest finishing time of all jobs is as early as possible. In our
case, the tours correspond to jobs and and the warehouse worker correspond to ma-
chines. Several different approaches have been proposed for solving this problem, e.g.,
[49, 69, 3].

Although an application of this methods would obviously be possible, we decided to
develop a VNS based approach for assigning tours to workers. In fact, what we desire in
this step of the algorithm is a valid assignment of workers to tours, i.e., an assignment
such that all articles are collected before the deadline. It is, however, in fact unimpor-
tant how early the last article is delivered to the packing station. Since preliminary
tests revealed that in most situations the assignment arising in this problem can be eas-
ily solved and there were recently successful applications of VNS based approaches to
variants of job shop scheduling published[42, 120], we integrated the following approach
in our framework. It turned out that the computation of this scheduling was never the
limiting factor of our approach for the instances used for testing.

The developed General VNS scheme is initialized using a greedy construction heuristic
which sorts the tours ascending with respect to their lengths, and systematically assigns
them to workers. For the shaking phase a random swapping of two tours between two
workers are performed.

The local improvement phase is realized using a VND approach for which three neigh-
borhood structures are defined: the first one is based on reassign moves which simply
reassign one tour from one worker to another worker. The second one is defined via swap
moves which swap two tours between two arbitrarily chosen workers and the last one is
based on the rearrangement tours for one worker, i.e., one tour is selected and shifted to
the beginning of the schedule for one worker. The neighborhood ordering is fixed and
corresponds to this order. For examining neighborhoods a first improvement strategy is
applied as step function.

59

Chapter 3. Logistics and Warehouse Management

Table 3.5.: Average results over 20 runs for 20 instances. The initial values, the objective
values (including standard deviations in parentheses), the number of tours (nT), the
average filling degree of the trolleys used (quota) and the average computation times in
seconds are opposed for instances allowing to reverse in aisle and disallowing turning
around. The last column presents the p-values of an unpaired Wilcoxon rank sum test,
for evaluating whether the tours with turning around are 20% shorter than those without
reversing.

reversing disabled reversing enabled
inst. init objective nT quota time objective nT quota time p-Val
(01) 3750 3059.0 (132.6) 3.0 74.2 37.5 2281.0 (44.7) 3.0 74.2 35.5 <0.01
(02) 4200 3213.0 (156.5) 3.7 79.3 29.2 2348.0 (85.6) 3.5 85.0 59.1 <0.01
(03) 4260 3560.0 (109.0) 4.0 75.5 47.5 2541.5 (80.0) 4.0 75.5 78.7 <0.01
(04) 3210 2962.0 (35.8) 3.0 91.8 22.6 2298.5 (4.9) 3.0 91.8 30.6 <0.01
(05) 4020 3605.0 (105.6) 4.1 88.1 37.8 2466.5 (39.1) 4.0 90.3 55.5 <0.01
(06) 5060 4671.5 (106.7) 5.7 78.3 61.2 3576.0 (74.9) 5.4 82.0 114.6 <0.01
(07) 6050 5575.5 (79.3) 7.0 81.7 83.8 4052.5 (73.5) 6.8 82.9 192.7 <0.01
(08) 5650 5602.5 (155.8) 7.0 84.9 95.6 4159.5 (98.9) 7.0 85.5 212.6 <0.01
(09) 7000 6583.0 (246.9) 8.0 86.4 132.5 4887.5 (117.6) 8.0 86.4 334.1 <0.01
(10) 5070 4995.5 (252.1) 6.0 78.8 88.2 3589.5 (104.1) 5.8 82.2 128.8 <0.01
(11) 10740 9254.0 (268.4) 12.2 81.9 391.4 6158.5 (149.3) 11.1 90.4 845.4 <0.01
(12) 9350 8155.0 (175.9) 12.6 79.3 255.4 5952.0 (136.9) 11.7 85.4 689.0 <0.01
(13) 9970 8939.0 (256.2) 12.0 83.2 323.9 6102.0 (156.7) 11.3 88.0 715.7 <0.01
(14) 9520 9082.5 (246.5) 12.6 79.6 370.7 6165.5 (181.2) 11.7 85.8 864.3 <0.01
(15) 7690 7473.0 (270.4) 11.5 86.9 279.2 5860.5 (74.9) 11.2 89.2 673.0 0.02
(16) 11510 8878.0 (240.3) 12.2 81.9 716.4 6465.0 (165.9) 11.7 85.8 1200.0 <0.01
(17) 11460 8251.5 (216.7) 12.3 80.9 782.2 6261.5 (161.7) 11.7 85.4 1200.0 <0.01
(18) 11740 8520.0 (187.8) 12.6 79.3 748.5 6238.5 (159.9) 11.5 86.9 1200.0 <0.01
(19) 11480 8990.0 (216.8) 12.1 82.6 828.3 6349.0 (207.0) 11.7 85.8 1200.0 <0.01
(20) 12260 9644.5 (286.9) 12.6 79.6 819.0 6635.0 (164.4) 11.8 85.0 1200.0 <0.01

3.2.4. Experimental Results

For evaluating the performance of the proposed method several test runs were performed.
Our algorithm was implemented in Java 6 and all tests were run on a single core of a
Dual-Core AMD Opteron™ Processor 2.6GHz and 4GB of RAM. All instances were
randomly generated based on the characteristics of real-world data, i.e., storage layouts
and typical customer orders, provided by our industry partner Dataphone GmbH. There
are about 500 articles stored in the warehouse and between 25 to 200 randomly selected
articles have to be picked. The concrete number of items to be collected for each of the
20 generated instances is shown in the second column of Tab. 3.6.

For each of the 20 instances, we performed 40 independent runs, whereas for the half
of those runs we allowed that workers may reverse within one aisle, while for the re-

60

3.3. Summary

maining ones we assured that once an aisle is entered, it is completely traversed by the
warehousemen. To avoid excessive computation times, a time limit of 1200 seconds for
VNS was applied. See Tab. 3.5 for a detailed listing of the obtained results. The column
labeled init presents the initial values obtained by the so called s-shaped heuristic [26],
whereas we simply try to collect as much articles as possible during one tour regard-
ing the capacities of the trolleys used. The objective values provided within the next
columns correspond to the weighted sum as presented in Eq. 3.11. The standard devia-
tions (given in parentheses) are relatively low with respect to the tour lengths. Taking
a look at these average values it can be observed that the tour lengths can be reduced
by about 20% on average when it is allowed to reverse within an aisle. To statistically
confirm this observation, we performed an unpaired Wilcoxon rank sum test. The cor-
responding p-values are shown in the last column of Tab. 3.5. Regarding the number of
tours as well as the filling degree of the trolleys, no significant difference between those
runs allowing reversing and those forbidding it can be identified. Finally, taking a closer
look at the computation times, it can be observed that for those instances including the
option to reverse the running times are longer. This can be reasoned by the fact that the
number of aisle operations is more restricted for those runs forbidding reversing. Since
the available computation time was limited, the results obtained for instances 16–20
might be further improved when using looser time limits. Regarding the last step of the
algorithm, i.e., the assignment of tours to workers, all violations of the time constraints
could be resolved within a few iterations of the corresponding VNS procedure.

Regarding the performance of the proposed neighborhoods, i.e., the ratio of improve-
ments over examinations, we observed that all of them exceptN6 contribute substantially
to the final solution whereas neighborhood N6 did almost never add an improvement (see
Tab. 3.6). Nevertheless, for the small instances with 25 articles to be shipped, some im-
provements could be achieved even by N6, and therefore we included it here. Regarding
the other neighborhood structures, N3, i.e., the neighborhoods based on the ShiftArticle
move, performed best. It is interesting that neighborhood structure N4 did worse for
those instances forbidding turning around. However, this can be explained by the fact
that for these instances the degree of freedom is less than for the others which results
therein that once an aisle i has to be entered all ordered articles stored within this aisle
can be collected with less expenses from aisle i than from any other aisle. The same
observation holds for neighborhood structure N5, although this effect is less prominent
for the underlying move type.

3.3. Summary

Warehouse management and especially logistics related to warehouse management are
of great importance in today’s production facilities—mainly due to the potential for

61

Chapter 3. Logistics and Warehouse Management

Table 3.6.: Average contributions of the individual neighborhood structures to the final
solutions. The numbers represent the average ratios of improvements over examinations
over 20 runs for 20 instances with 25, 50, 100, 200 different items to be collected (#it.).

reversing disabled reversing enabled
inst. #it. N1 N2 N3 N4 N5 N6 N1 N2 N3 N4 N5 N6

(01) 25 3.6 10.6 60.2 34.4 46.9 0.2 5.9 15.9 70.2 61.5 18.2 0.0
(02) 25 4.1 12.0 61.0 32.2 33.8 0.0 5.6 19.7 73.0 46.2 16.3 1.1
(03) 25 3.6 11.8 60.5 40.6 49.9 0.1 4.4 17.1 73.4 55.2 27.9 0.0
(04) 25 4.5 11.1 52.1 27.4 34.6 0.0 7.4 18.2 70.9 42.8 6.9 0.4
(05) 25 6.6 15.2 65.9 29.3 45.2 0.8 9.1 19.9 74.2 58.0 32.3 0.0

(06) 50 10.4 17.6 69.6 3.7 18.7 0.0 10.7 23.3 81.8 53.5 7.6 0.0
(07) 50 12.2 20.7 74.3 6.0 42.0 0.0 12.9 25.7 85.6 59.6 48.2 0.0
(08) 50 13.5 19.5 72.3 1.7 55.9 0.0 19.1 28.6 87.9 29.9 40.2 0.0
(09) 50 13.9 20.3 74.4 41.2 46.3 0.0 17.8 27.8 85.8 46.8 37.4 0.0
(10) 50 9.8 17.4 70.8 9.2 22.3 0.0 12.6 23.1 81.8 66.9 18.5 0.0

(11) 100 16.0 27.1 76.3 7.9 24.6 0.0 21.6 29.4 88.5 44.0 37.0 0.0
(12) 100 18.9 29.9 77.8 0.9 24.7 0.0 18.4 28.8 88.3 47.2 39.2 0.0
(13) 100 16.5 26.2 75.9 5.9 26.7 0.0 23.5 29.3 87.3 60.4 44.9 0.0
(14) 100 14.3 27.6 78.2 1.1 19.5 0.0 19.4 27.2 88.0 50.5 33.8 0.0
(15) 100 18.2 23.2 73.4 1.1 12.8 0.0 20.1 26.7 85.3 51.1 30.8 0.0

(16) 200 18.0 30.3 75.3 2.9 8.1 0.0 25.7 31.5 88.8 46.4 30.5 0.0
(17) 200 17.9 28.8 75.7 0.0 7.9 0.0 27.0 31.8 88.8 39.3 49.2 0.0
(18) 200 19.2 28.6 76.0 3.5 15.0 0.0 28.1 32.2 88.8 53.8 38.6 0.0
(19) 200 16.1 28.1 74.5 1.8 17.3 0.0 26.2 29.8 88.4 35.9 35.1 0.0
(20) 200 16.4 28.2 75.4 1.1 6.7 0.0 27.5 34.7 90.2 46.6 32.8 0.0

reducing arising costs. Competitive advantages can be achieved by companies paying
attention in solving the hard to solve problems arising within this field of operations
research.

Within this chapter we focused on two specific problems arising during stocking oper-
ations as well as during the picking. Whereas the former one was handled by defining
a newly introduced evaluation function for warehouse states and applying greedy and
variable neighborhood descent (VND) based approaches we proposed an approach based
on variable neighborhood search (VNS) incorporating dynamic programming (DP) for
optimally solving arising subproblems for the latter one.

The stocking strategy proposed in Sec. 3.1.4 was experimentally applied in a real world
setting. The feedback given by the warehouse manager and especially by the warehouse-
men revealed that using the proposed stocking strategy the warehouse states could be
significantly improved in comparison to the prior applied methods. In addition, the
developed relocation strategy, cf. Sec. 3.1.5, based on variable neighborhood descent can
be used to reduce the likelihood of conflicts occurring during stock removal. Anyhow,
these reallocation operations are only executed during idle times of warehousemen dedi-

62

3.3. Summary

cated to shipment, which implies that a reliable stocking strategy is crucial for efficient
warehouse operations.

For the real world scheduling and tour finding problem within a spare parts warehouse
discussed in Sec. 3.2 we proposed a new hybrid algorithm combining VNS and DP.
We used a new self-adaptive VND rearranging the neighborhoods according to their
success rates for boosting the performance of the neighborhood structures used within
the embedded VND. Individual optimal tours through the warehouse are computed by
means of dynamic programming, whereas the special structure of the storage is exploited.
Experimental investigations showed that this approach performs good for instances based
on real-world characteristics. Further, we showed that the total tour lengths can be
reduced by about 20% on average when reversing within aisles is allowed. Regarding
the computation times, our approach is able to provide good results within 1200 seconds
which correspond to acceptable time limits in real-world scenarios.

Although the results obtained by our methods are promising and specifically improved
the warehouse management of our paper production company substantially, the further
improvement potential for both discussed settings is high. For example, one main draw-
back is that both approaches only concentrate on the specific problem while related
(optimization) problems like the paper production process or the stocking operations (in
case of the spare parts warehouse) are disregarded. For this purpose, a deeper investiga-
tion of the processes running in the background needs to be done such that unnecessary
intricateness is reduced and the overall production process including customer ordering,
production, stocking, and shipping is enhanced.

63

Chapter 4

Reconstruction of
Destructed Documents

Since ages sensitive data is of great importance for the human race. Beside securely
transmitting and storing (secret) messages one could also gain an advantage by
possessing information unavailable to ones antagonist—be it a military enemy or

a trade rival. Nevertheless, at some time it is usually necessary to irrecoverably destroy
this information. In the ancient world the easiest way was possibly burning a piece of
papyrus or braking stone plates containing data worth of protection into small pieces.

Nowadays sensitive data is stored, among others, by writing it down on paper. Of
course, burning such paper documents is still an imaginable method of destruction.
Unfortunately, sparking a fire is in most offices not possible such that mostly documents
are torn apart. In case of many documents and pages it is often more convenient to
use a so-called shredder. This is a device for mechanically cutting sheets of paper into
snippets of predefined size. The German institute for standardization (DIN) defines
in DIN EN 15713 eight different levels of destruction, whereas for paper only levels 1
to 6 are realized [30]. A snippet forming the output of such a shredder is then at most
5000mm2 with a maximum width of 25mm (level 1) to 320mm2 with a maximum width
of 4mm (level 6).

Anyhow, there are situations in which it is necessary to reconstruct destroyed—mainly
shredded or manually torn—documents. Of course, there are a lot of ethically ques-
tionable applications of a document recovery system like (industry) espionage. On the
other hand forensics or archeology are socially accepted fields of utilization for document

65

Chapter 4. Reconstruction of Destructed Documents

restoration. In the former, it is necessary to reconstruct sheets of paper to be used as
evidence in trials. In archeology, it is in the most cases necessary to assemble broken
parchment documents to obtain information on ancient cultures. In addition, antiquar-
ian studies concentrating on the near past are of great importance. Just to mention one,
the reconstruction of dossiers destroyed by the Staatssicherheit (Stasi, germ. German
secret police) during the last days of the German Democratic Republic (DDR) is one of
the most challenging tasks of modern archeology. The task in this project is to recon-
struct about 45 million document pages mostly manually torn into about 600 million
snippets [22].

In the rest of this chapter we assume that the paper documents to be reconstructed are
either manually torn apart or mechanically shredded using a shredding device. For the
latter case, there is a further classification into approaches trying to restore documents
cut into strips of arbitrary widths all having the same height as the original document
sheets—so called strip shredded documents—and documents cut into snippets all of equal
size but having heights not equal to the height of the original document pages—so called
cross cut shredded documents.

Anyhow, if not otherwise mentioned we assume that the given documents are consisting
of equally sized, rectangular sheets of paper of format DIN A4. The proposed methods
can, however, be easily adapted for paper documents with arbitrary formats. In addition
only one face of the sheets contains (valuable) information, i.e., the front face of each
snippet is known.

Obviously, for the reconstruction of destroyed documents the application of pattern
recognition and image processing methods is fundamental. Additionally, it is, however,
important to find a method exploiting this visual information. Therefore, the main
contribution of this section is the development of approaches focusing on the combinato-
rial optimization aspects of the reconstruction of destructed paper documents. Pattern
recognition approaches are deliberately omitted (as far as possible). Nevertheless, in the
final stage of extension any reconstruction system will incorporate both pattern recog-
nition methods and combinatorial approaches. For this reason we designed our methods
such that this combination is as easy as possible.

In the next section we will give a short overview on methods handling manually torn
paper documents. Afterwards we will concentrate on strip shredded as well as cross
cut shredded documents. Although the main focus of this chapter is the reconstruction
of destroyed documents by means of combinatorial optimization methods we will also
reference to works based on pattern recognition were appropriate and necessary. At
the end of this chapter we will give a short discussion on the impact of the presented
methods on data security and confidentiality.

66

4.1. Manually Torn Paper Documents

Figure 4.1.: Real world example of snippets produced by manually tearing one sheet of
paper.

(a) (b) (c)

Figure 4.2.: Exemplary progress of a typical paper document destruction: (a) the first
tear starts at a long edge and ends at the other long edge, (b) the two snippets are put
on top of each other and torn again, and (c) finally the two stacks are put on top of each
other again. The relative order of snippets is never shuffled.

4.1. Manually Torn Paper Documents

Although there are many imaginable variants of how to destruct paper most people
decide to tear it multiple times until the (confidential) information is destroyed. Based
on empirical experiments we observed that the applied pattern for tearing paper sheets
is in most cases the same, namely the first tear runs parallel to the shorter edges of the
document and the two resulting snippets are put on top of each other. These two steps
are then iterated several times which results in a set of snippets as shown in Fig. 4.1,
also cf. [27]. Therefore the following assumptions can be formulated for a “typical” case:

(P I) The sheets of paper are rectangular. (Each sheet has two long and two
short edges.)

67

Chapter 4. Reconstruction of Destructed Documents

Figure 4.3.: Schematic illustration of a typical tear pattern. The blue, green, and red
snippets are also called inner, border, and corner snippets, respectively.

(P II) The first tear starts at one long edge, runs roughly parallel to the short
edges and ends at the second long edge, cf. Fig. 4.2a.

(P III) The resulting snippets of a tearing operation are put on top of each
other. The next tear is again approximately parallel to the short edges,
cf. Fig. 4.2b. The relative order of snippets within the stack is not
shuffled during this operations, cf. Fig. 4.2c.

(P IV) Each tear cuts each snippet in half, i.e., each tear doubles the number
of snippets.

(P V) At least two tearing operations are performed, i.e., there are at least
four snippets.

Although the tearing process could be iterated for an arbitrarily chosen number of times,
it is normally ended after four or five tears. (This implies that there are 16 or 32 snip-
pets, respectively.) A typical tear pattern for four tears, i.e., the schematic shape and
alignment of the resulting snippets, is shown in Fig. 4.3. As can be seen, there are some
snippets at the border of the original document—the so called outer snippets—and some
in the inner regions—the so called inner snippets. The outer snippets can further be
divided into those snippets containing a document corner—they are called corner snip-
pets—and the rest which are called border snippets, cf. Fig. 4.3. To further standardize
the terminology to be used let us have a closer look at the snippets itself: It is conve-
nient to approximate arbitrarily shaped real world snippets by polygons. In most cases
quadrangles would be sufficient, cf. Fig. 4.4. This leads, however, to following properties

68

4.1. Manually Torn Paper Documents

(a) (b)

Figure 4.4.: Approximation of snippets by general polygons (a) and indication of snippet
features (b).

of the approximated snippets: Each border snippet has one border or outer edge which
corresponds to a part of a document edge. Obviously, corner snippets contain two outer
edges enclosing a right angle and inner snippets do not have any outer edge. All other
edges, i.e., those not being an outer edge, are called inner edges. The length of an outer
edge is simply denoted by edge length. In case of corner snippets we will also talk of the
first and the second edge length, whereas the concrete meaning of first and second will
derive from the context. In addition, each outer snippet has so called edge angles which
are the angles enclosed by an outer and an inner edge. Again, we sometimes distinguish
both angles by the words first and second, whereas the context will clarify ambiguities.

Based on the above presented assumptions it can be observed that there must be four
corner snippets for each document page. Furthermore, there is no snippet with three or
more border edges, i.e., edges being part of the original document edge.

At first glance, the reconstruction of manually torn paper documents is identical with
the well known (and universally loved) game named puzzle. For some works related to
solving jigsaw puzzles we refer to [5, 18, 21, 25, 48, 140]. On closer inspection one will
discover that there are small but crucial differences between these two problems. While
the shape of the jigsaw puzzle tiles are (in most cases) unique, this needs not to hold for
the reconstruction of documents—although it is very likely. More important is, however,
the fact that two matching puzzle tiles almost perfectly fit to each other, which means
that there are in particular no overlappings of two joined tiles. For paper snippets this
property does not hold. It is even very likely that two snippets do not perfectly fit each
other with respect to the shape: On a detailed view, this is caused by paper fibers, which
result in frayed edges, see Fig. 4.5a. On a coarser level, this is due to so called shearing
effects, which are caused by multiple layers of fibers that finally result in overlapping
regions of snippets, see Fig. 4.5b for an example.

69

Chapter 4. Reconstruction of Destructed Documents

(a) (b)

Figure 4.5.: Examples of shearing effects arising when tearing sheets of , typical office
paper: Frayed edges on a close inspection (a) and shearing effects, i.e., overlapping
regions (b).

Even more, there are some practical issues with respect to the reconstruction of (manu-
ally torn) paper documents: namely the digitalization of the snippets. Although this step
can be done using a standard scanning equipment (flatbed image scanner), the scanning
of a heap of snippets is rather time consuming. In addition, a background/foreground
extraction has to be applied and depending on the selected reconstruction approach
the approximation of the snippets by polygons has to be computed. In addition a
rotation vector has to be determined. During all these preprocessing steps plenty of
errors can be induced, e.g., by dust particles on the flatbed scanner resulting in addi-
tional black spots on the image(s), etc. such that the result might significantly differ
from the original input. Nevertheless, some of the indicated issues can be handled effi-
ciently by using specialized tools and/or approaches. In conjunction with this challenges
we refer to Sec. 4.1.5 as well as to literature dedicated to computer vision techniques,
e.g., [68, 133, 131, 134, 28, 29, 27].

As already mentioned we assume that the front face of the snippets can be easily detected
due to the fact that only one face of the remnants has printed text on them. However,
this is not always true. For example it might happen that no information is shown on
a snippet at all, i.e., it is blank on both faces. Further, the original document could
be printed using a duplex printer, i.e., there is information on both faces. In these
cases the complexity of the problem increases since beside the decision where to place
each snippet it also has to be decided whether or not a remnant should be flipped. It is,
however, possible to straightforward adapt the proposed methods to these more complex

70

4.1. Manually Torn Paper Documents

situations. Therefore, we will focus for the sake of simplicity on the reconstruction of
one sided documents.

In the rest of this section, we will first discuss the complexity of this problem and
continue with an overview of the—in our opinion—most important works related to
the reconstruction of manually torn paper documents. Sections 4.1.2 and 4.1.3 mainly
present the work done together with Peter Schüller and Franz Berger who were both
former master’s students at our institute. An in some aspects more detailed discussion
of the proposed approaches can be found in their master theses [123, 14]. The rest of this
section, i.e., Sec. 4.1.4 and 4.1.5, focuses on other promising and important approaches
for reconstructing manually torn paper documents recently published in literature.

4.1.1. Complexity Results

To be able to give a statement on the complexity of the reconstruction of manually torn
paper documents (Rmtpd), it is in a first step necessary to formalize the given problem.
For this purpose we define the following partitioning of the set S of all given snippets:

• C denotes the set of all corner snippets

• B is the set of all border snippets, i.e., all outer snippets except corner snippets,
and

• I contains all inner snippets.

Further, we introduce for each border snippet a function l : B → Z+ whose values corre-
spond to lengths of the snippets’ outer edges, cf. Fig. 4.4b. For the set of corner snippets
this function is defined as l : C × {1, 2} → Z+ assigning both border edges—numbered
counter clockwise—of each corner snippet a corresponding length value. Furthermore,
we are given four integers c0, c1, c2 and c3 corresponding to the lengths of the edges of
the original document page(s). (For rectangular document pages the equalities c0 = c2

and c1 = c3 must hold.)

Although a further formalization regarding the edge angles, the length of inner edges,
etc. could be done, we think that it would neither improve the proof on the complexity
of Rmtpd nor the understanding of this document.

When reconstructing manually torn documents it is among others necessary to correctly
reconstruct the border of the document. Under the assumption that the given snippets
belong all to the same document page, i.e., the original document to be reconstructed
consisted of only one sheet of paper, a solution to this subproblem would result in four
ordered sets E0, E1, E2 and E3, whereas the first and the second element of these sets

71

Chapter 4. Reconstruction of Destructed Documents

correspond to corner snippets and all other to border snippets. The following additional
properties must be fulfilled, whereas Ei(j) denotes the j-th element of Ei:

3⋃
i=0

Ei = B ∪ C (4.1)

Ei ⊂ B ∪ C, ∀i ∈ {0, 1, 2, 3} (4.2)
Ei(1) = E(i+1) mod 4(2) ∈ C (4.3)
|Ei ∩ E(i+2) mod 4| = 0 (4.4)∑
j∈Ei\C

l (j) + l (Ei (1) , 1) + l (Ei (2) , 2) = ci ∀i ∈ {0, 1, 2, 3} (4.5)

Basically these constraints state that all outer snippets must be used (4.1), only outer
snippets are allowed to be assigned to borders (4.2), two document edges connected
with each other must contain the same corner snippet (4.3), one snippet must not be
contained in two parallel edges (4.4), and the sum of the lengths of the corresponding
snippets must be equal to the length of the original document edge (4.5); see also Fig. 4.7
for an illustration.

Of course, for a practical solution of Rmtpd a solution must also propose an order
of snippets along an edge. It is, however, easy to show that an extension of the above
presented model respecting a concrete ordering of snippets along an edge does not change
the complexity of the problem. For simplicity and for facilitating comprehension of the
following proof, we disregard this extension.

The following proof ofNP-hardness is based on the reduction of Subset Sum toRmtpd.
For this purpose, we define Subset Sum as follows (see also [43]): Given are a finite set
A, a function s : A → Z+ and a positive integer b. An instance is answered with yes,
i.e., a valid solution is found, iff there is a subset A′ ⊆ A such that

∑
a∈A s(a) = b holds.

Now let us introduce a transformation from Subset Sum to Rmtpd which is polynomial
in the number of elements in A for a given instance of Subset Sum. Without loss of
generality, let us assume that b ≥

P
a∈A s(a)/2. In the case that b <

P
a∈A s(a)/2, it can be

easily shown that another instance of Subset Sum can be defined with the same set of
elements and an integer b′ such that b′ =

∑
a∈A s(a)− b. The set A \A′ is a solution to

this new instance of Subset Sum. Anyhow, the given instance of Subset Sum can be
transformed into an instance of Rmtpd using the following procedure:

1. Define four corner snippets with two outer edges, both with length 1. These four
snippets build set C.

2. For each element a ∈ A create a border snippet s ∈ B with l(s) = s(a).

72

4.1. Manually Torn Paper Documents

Figure 4.6.: Schematic visualization of the result obtained by transforming an instance
of Subset Sum to Rmtpd. Red snippets correspond to the artificially introduced corner
snippets. The green ones correspond to the elements in set A. The blue snippet is the
artificial one with edge length 2b−

∑
a∈A s(a).

3. If 2b −
∑

a∈A s(a) 6= 0 create an additional border snippet s ∈ B with l(s) =
2b−

∑
a∈A s(a).

4. Set I is the empty set.

5. Define c0 = c2 = b + 2 and c1 = c3 = 2.

Obviously, this procedure is linear in the number of elements of A. We refer to Fig. 4.6
of a schematic visualization of this transformation.

If there is a classification of the snippets into sets E0 to E3 for the derived instance
of Rmtpd such that all constraints are satisfied, then equalities

∑
e∈E0\C l(e) = b and∑

e∈E2\C l(e) = b hold. Since there is at most one element in B which is not derived from
an element in A, at least one of the two subsets E0 and E2 consists only of elements
derived from elements in A. Without loss of generality we can assume that this subset is
E2, cf. Fig. 4.6. Therefore an inverse transformation of the elements in E3 into elements of
A induce set A′ with the property that

∑
a∈A′ s(a) = b. Since the reconstruction of the

borders is a subproblem of Rmtpd, i.e., any algorithm solving Rmtpd also reconstructs
the document’s borders, Rmtpd is NP-hard. Obviously, Rmtpd is at the same time
member of the complexity class NP, since a solution to Rmtpd can be guessed and
validated in polynomial time. Therefore Rmtpd is NP-complete.

73

Chapter 4. Reconstruction of Destructed Documents

Figure 4.7.: Reconstruction of a document edge.

4.1.2. Reconstructing Edges of Paper Sheets

Analogously to the well known concept of solving the border of a jigsaw puzzle first, the
basic idea of this approach is to reconstruct the borders of the original document. For
this purpose, it is first necessary to approximate each physical snippet by a polygon,
e.g., a general tetragon which will be convenient in most cases, see Fig. 4.4. Now, it
can be discovered that the sum of two matching edge angles must be equal to 180◦, see
Fig. 4.7. In addition, the lengths of all outer edges assigned to the same document edge
must sum up to the document edge length, cf. Fig. 4.7 and Eq. (4.5). Obviously these
constraints must hold for all four document edges and all pairs of matched snippets
which directly leads to an integer linear programming (ILP) formulation for solving this
problem. Unfortunately, there will be errors made both in measuring the outer edge
lengths as well as in approximating the physical snippets by polygons and therefore in
calculating the edge angles. To overcome this imperfection of practical input data, it is
convenient to introduce an objective function trying to minimize the imposed error, i.e.,
minimizing the deviations of the matching edge angles from 180◦ and the variations in
the lengths of the reconstructed document edges to the lengths of the original document
edges.

The well-disposed reader will find the complete ILP formulation in [123]. In addition,
Schüller presents in that work a slightly modified ILP formulation taking only the lengths
of document edges into account while omitting the matching angles constraints. As well
documented in the test results section of his work, Schüller shows that this approach
can be utilized for reconstructing the borders of one single page with up to 32 snippets,
whereas 20 of those snippets are outer or corner snippets. The runtimes for these small
instances are approximately 0.05 seconds, while the correctness is up to 80%, i.e., in 80%
of all test runs the borders of the original document could be restored.

Unfortunately the runtimes dramatically increase while the output quality substantially
decreases when the number of pages to be concurrently reconstructed is extended. For

74

4.1. Manually Torn Paper Documents

(a) The two original document pages with tears indicated.

(b) The with respect to edge lengths correctly reconstructed document pages.

Figure 4.8.: An example for a perfect reconstruction with respect to document edges.
Those regions with overlapping snippets are marked red in (b).

even only five different document pages runtimes of almost 300 seconds are reached.
Obviously these results imply that, although this approach is promising for small sized
instances, the exact reconstruction of multiple document pages is not practicable at
this time. Furthermore, only the borders of the documents are reconstructed while the
most valuable information is in most documents not on the page margins but on the
inner regions. Nevertheless, for practical applications of an approach reconstructing only
the borders of documents one has to state that for documents torn three times under
properties (P I) to (P V) there are still only outer and no inner snippets. Even for four
tears there are only four inner snippets while the number of outer snippets increases to
twelve, cf. Fig. 4.3.

Furthermore, reconstructing the borders of document pages can on the one hand be used
during a preprocessing phase constraining the solution space for further reconstruction
steps focused on the inner regions of documents. On the other hand, a solution of a small
subproblem by means of ILP techniques might be useful in a more coarsened approach
as presented in the next section.

75

Chapter 4. Reconstruction of Destructed Documents

4.1.3. Exploiting Geometrical Information

While the approach presented in the previous section only concentrates on the recon-
struction of the borders of document pages, there are still two related problems to be
solved: On the one hand, this approach is limited to relatively small instances with only
a few (up to five) different document pages. On the other hand, only the information
about outer edges and edge angles are utilized such that at the worst infeasible solutions
as exemplary shown in Fig. 4.8b are produced.

Therefore, we developed a hybrid clustering approach in [14] which is based on the idea to
partition all available shreds according to geometric information like edge lengths, edge
angles and areas extracted from the snippets. For each page of a given format all of these
three properties are known, e.g., a DIN A4 page is 210mm×297mm large which results in
an area of 62 370mm2. (Trivially the sum of two matching edge angles is still 180◦.) Un-
fortunately, we cannot be sure that all pages of the original document(s) were torn using
the same number of tears. Therefore, we developed an estimation algorithm which tries
to guess the number of pages torn with two, three, four, and five tears, respectively. We
assumed that it is very unlikely that a page is destroyed with six or more tears, since in
this situation the size of snippets becomes relatively small while the height of the snippet
stack gets rather large, such that further tearing operations cannot be easily performed.

To achieve the requested partitioning of the available snippets we apply a variable neigh-
borhood search (VNS) based approach, which embeds a variable neighborhood descent
(VND) as local search procedure. As optimization criterion we decided again to minimize
the deviations from the desired document page characteristics. A detailed presentation
and description of the used objective function is given in [14].

In contrast to a standard VND approach we did not define multiple moves which are
then used to define multiple neighborhoods but only swap moves, i.e., the exchange
of two snippets from two different sets, are utilized. Different neighborhoods are then
built based on the characteristics of the snippets to be swapped, e.g., one neighborhood
consists of all solutions for which a predefined snippet is removed from its current page
while another neighborhood contains all solutions for which the characteristics of a pre-
defined page are improved. In addition for systematically changing between the defined
neighborhoods we also exchange in our VND variant the step functions to be used for
examining the neighborhoods. Namely we select that move which maximally improves
the solution with respect to the edge lengths, the edge angles, or the areas, respectively,
while all other features must not worsen below a given threshold.

So far this method follows the basic principles of a standard clustering approach. For
a second phase of the hybrid approach, we integrated the exact approach of Schüller
presented in the previous section in each iteration of the proposed VNS method. Due to

76

4.1. Manually Torn Paper Documents

Algorithm 9: HybridClustering
Input: Set S of snippets
Output: Assignment of snippets in S to pages, i.e., a clustering.
Data: (intermediate) solutions x, x′, x′′

/* guess right number of pages and compute initial solution */
x← initial solution;
/* apply standard VNS/VND based on simple swapping operations */
x′ ← standard VNS/VND on x;
/* apply hybrid VND using exact approach for selecting snippets to

be moved */
x′′ ← hybrid VND on x′;
return x′′;

the fact that the exact reconstruction of borders of single page instances can be done in
less then 0.05 seconds on average even for instances with five tears, we are able to solve
the given subproblems each time a swapping operation of snippets from one page to
another page was performed. Obviously, we favor those snippets as swapping candidates
for the next iteration which correct the largest error when reconstructing the document
borders. The concept of the complete approach is shown in Alg. 9.

With respect to the experimental tests we refer for a detailed listing to [14]. To sum-
marize the obtained results it can be seen that throughout the algorithm a constant
improvement in the solution quality, which is measured by the percentage of correctly
assigned snippets to pages, could be achieved. Nevertheless, this approach is again lim-
ited to relatively small instances with up to ten different original document pages. This
is, however, not only implied by increasing runtimes but by dramatically decreasing so-
lution qualities. Nevertheless, this approach is a first step towards the application of
automatic document reconstruction systems on (very) small real-world instances.

4.1.4. Fragment Stack Analysis

Under the assumption of properties (P III) and (P IV) it can be observed that as long
as the snippets are not shuffled a predefined relative order must exist within the resulting
stack of snippets, cf. [27]. Under this circumstance it is rather easy to precalculate which
pairs of snippets have to be matched with each other, see also Fig. 4.2. In fact, the only
problem that remains is computing the actual alignment of two remnants. For a solution
to this problem we refer to Sec. 4.1.5.

77

Chapter 4. Reconstruction of Destructed Documents

(a) (b) (c)

Figure 4.9.: Flipping of stacks during tearing. During both tearing operations the left
stack is flipped.

Nevertheless, there are still some further problems that arise in combination with this
approach: First of all, it has to be guaranteed that the relative order of the snippets
is never changed—neither during the tearing process, nor during the on-site recovery,
nor during transportation, etc. This implies that even the slightest unthoughtfulness
of any person involved in the reconstruction process leads to major difficulties. Even if
all participating persons take care, it cannot be guaranteed that the relative order of
the snippets was not randomly twisted during the tearing operations. In fact, it can be
observed that one human tears several paper documents using most likely always the
same strategy but this strategy can vary from person to person. For example, it might
occur that the two stacks resulting after a tearing operation are not put directly on each
other but one (or even both) is flipped, cf. Fig. 4.9.

In addition, the problem complicates when multiple pages are either torn at the same
time or the snippets of multiple pages are part of the current stack. Furthermore,
any missing snippet represents a major problem. De Smet discusses these and related
problems in [27]. In that work, he also suggests some algorithms and references for
handling some of the related problems. Nevertheless, approaches like this might be
interesting for small sized instances for which the on-site recovery is perfect, i.e., almost
no shuffling of snippets occurs, but in most cases there will be too many concurrently
arising issues.

4.1.5. Computer Vision Techniques

A complimentary approach to the above presented approaches is the somehow “natural”
method applied by humans when trying to reassemble a set of manually torn paper doc-
uments. Humans do not measure the lengths of edges to be put together or compute the
areas of the reconstructed document pages but they simply decide whether two snippets
match with each other based on the contours or—to be more precise—on parts of the
contours of the snippets. In addition, the rotation of the snippets is mainly derived

78

4.2. Strip Shredded Text Documents

based on the written text or other contextual information to be found on the snippets.
Mapping this human approach to (semi-)automatic computer aided reconstruction sys-
tems is, however, not easy. In [28], De Smet et al. present some basic methods to be
performed when trying the develop an approach based on computer vision techniques.

First of all it is necessary to preprocess the input data, i.e., the physical snippets, in such
a way that they are digitized. This can be done by placing the snippets on a flatbed
image scanner while using a uniformly colored background. Obviously, the background
color should not appear somewhere on the snippets to be scanned. After scanning,
the snippets have to be extracted from the background and their contours need to be
computed. While De Smet et al. did not try to rotate the snippets during this step
such that the final orientation is already determined it is imaginable that an orientation
detection procedure as presented in [8] or [89] is applied.

Based on the computed contours it is possible to detect corner snippets and border
snippets. In the next step, for each remnant specific features are computed which are
then stored clock-wise. The matching of two snippets is then done by finding among
all pairs of remnants that one which contains the best matching set of features for a
determined part of the contours. The global reconstruction is then based on the idea
to iteratively match a pair of snippets and continue this process by using this matched
pair as if it was only one shred.

Although no detailed results are given in [28], it is indicated that the results are promis-
ing but far from good. Therefore the integration of user feedback is proposed such that
the final decision(s) whether or not two snippets match are made by the human. Nev-
ertheless, this approach shows that especially the digitalization of the physical shreds is
manageable and useful information can be extracted which in turn can be utilized for
refining the objective function to be used in combinatorial optimization approaches.

In [68], Justino et al. propose a similar approach to that of De Smet. They present, how-
ever, also some performance figures indicating that the computation times dramatically
increase with the increasing number of shreds. Furthermore, even for ten snippets the
performance of their approach already drops below 80%, i.e., only 80% of all matchings
are correct.

4.2. Strip Shredded Text Documents

As indicated in Sec. 4.1 most people destruct paper documents by manually tearing
them. In offices with documents containing more sensible data it is, however, convenient
to use physical devices—so-called shredders. Such a machine consists of feed cylinders

79

Chapter 4. Reconstruction of Destructed Documents

and blades cutting the paper documents into rectangular snippets. Depending on the
concrete shredder model, the snippets are either strips, i.e., the rectangle’s height is
equal to the height of the original document, or rectangles with heights smaller than the
document’s page height. Within this section, we assume that strip shredding devices
were used for cutting the documents. With respect to the widths of the rectangles no
concrete assumptions are met. Even more, for the proposed approaches the width of the
strips is disregarded and can therefore be chosen arbitrarily. Nevertheless, due to the
concrete implementation of strip shredders all strip will in general have the same width.

These physical properties of strip shredders imply that—in contrast to the reconstruction
of manually torn documents—the shape of the remnants cannot be exploited when trying
to restore the original document(s). Therefore, other evaluation methods need to be
implemented which do not depend on the shape of the snippets but on the information
held on the snippets front and back faces.

The remainder of this section is structures as follows: We will first give an overview on
methods published in literature for tackling the reconstruction of strip shredded (text)
documents. Then we will present a formal definition of this problem including an NP-
hardness proof followed by the introduction of so called error estimation functions and
the concept of quality for being able to objectively evaluate the proposed methods. The
discussed approaches will include a reformulation of the reconstruction of strip shredded
text documents as traveling salesman problem, a variable neighborhood search based
method and an approach for computing lower bounds via Lagrangian relaxation. This
section is completed by a discussion of related issues.

4.2.1. Related Work

Although the reconstruction of strip shredded text documents (RSSTD) is of major inter-
est for intelligence agencies as well as forensics, there exists little (scientific) work related
to this topic. Obviously, the reconstruction of strip shredded documents differs from
other reconstruction fields like the reconstruction of manually torn paper documents
(see Sec. 4.1) or jigsaw puzzle solving (see for example [21]) mainly by the fact that the
shapes of the shreds cannot be exploited. Therefore, the most methods known so far
rely on pattern recognition and image processing techniques.

Skeoch [125] focuses on the reconstruction of strip shredded documents by mainly dis-
cussing issues related to the scanning process and properties caused by the structure of
paper (strips). She also presents a genetic algorithm including crossover and mutation
operators as well as heuristics for generating initial solutions to restore shredded images.
In contrast to text documents, a large amount of different colors usually exists in images
and soft color transitions dominate. This aspect can be efficiently exploited.

80

4.2. Strip Shredded Text Documents

In [133], Ukovich et al. try not to reconstruct the original document pages but to build
clusters of strips belonging to the same sheet of paper by using MPEG-7 descriptors for
this task. In [134] they introduce additional features like background and text color, line
spacing and the number of lines to be extracted and exploited when reconstructing strip
shredded text documents and finally discuss the potential of these clustering methods.
However, the original documents still need to be reconstructed by hand (or using other
methods).

De Smet et al. [29] discuss in their work mainly the principle design of (semi-)automatic
reconstruction systems. They also present some basic approaches for determining text
lines on shreds, top and bottom margins as well as empty or useless shreds. Furthermore
a method is proposed based on these features to join pairs of matching strips into larger
ones as well as a heuristic iterating this process until only one strip representing the
(reconstructed) document is left. However, no performance results are presented in this
work and only a basic outlook on future research is given.

In his thesis [95], Morandell, a former master’s student at our institute, summarizes
our work on metaheuristic methods based on the observation that RSSTD can be
(re-)formulated as combinatorial optimization problem. Beside the analysis of different
alternatives for the objective function, optimization approaches based on iterated local
search, variable neighborhood search and simulated annealing are presented. Results
documented are promising and represent the base of the approaches described in the
following.

4.2.2. Formulation as Combinatorial Optimization Problem

For the reconstruction of strip shredded text documents (RSSTD) we are given a fi-
nite set of rectangularly shaped and (almost) equally sized paper snippets—so-called
strips—which have been produced by shredding one or more sheets of paper. In this
thesis the widths of the strips are not further investigated since no information to be
exploited in our approaches can be extracted from them. Furthermore, the heights of all
strips are assumed to be the same. If this is not the case, then a preprocessing step using
clustering methods as proposed in [134] can be performed such that (smaller) subprob-
lems are generated consisting of (sub)sets of strips having all the same heights which are
then solved independently from each other.

Although many office printers are capable of duplex printing nowadays, most docu-
ments—especially in offices, one of the main application areas of shredders—are still
blank on the back face. Motivated by this observation and for simplicity our presented
model only regards the front face of the scanned strips. However, an extension to handle
two-sided documents is possible in a straightforward way.

81

Chapter 4. Reconstruction of Destructed Documents

Our methods to be presented in the following solely focus on the information held on
the borders of the strips, cf. Sec. 4.2.4. Therefore we neglect all strips with completely
blank faces as well as strips with blank borders but non-empty inner regions. Beside
the fact that the number of shreds to be regarded during the reconstruction process is
reduced this blank strip elimination procedure removes symmetries implied by arbitrarily
swapping blank strips, i.e., the search space is significantly reduced. For modeling the
circumstance that in general paper documents have white margins at their left and right
boundaries an additional virtual strip is added to the input of any instance which finally
results in a finite set S = {1, . . . , n} of (almost) equally sized, rectangular shreds forming
the output of a shredding process of one or more pages of paper documents. Whereas
shreds 1 to n− 1 are non-empty, we request that the virtual shred n is blank. The basic
idea of this modeling is that the first, i.e., the leftmost, (non-blank) shred is placed right
next to n while the last, i.e., the rightmost, shred is placed left to n yielding a cycle.
The virtual shred is therefore something like a connector between the first and last shred
marking the start and the end, i.e., the left and right edge, of a page.

A solution x = 〈π, o〉 to RSSTD consists of a permutation π : S \ {n} → {1, . . . , n− 1}
of the elements in set S as well as a vector o = 〈o1, . . . on〉 ∈ {0, 1}n = On which assigns
an orientation to each strip i ∈ S:

oi =

{
0 if strip i is to be placed in its original orientation,
1 if strip i is rotated by 180◦.

(4.6)

In the following πi, with i ∈ S \ {n}, denotes the position of strip i according to π and
πi = n. Additionally, by sk we denote the strip placed at position k, with 1 ≤ k ≤ n,
i.e., πi = k ⇔ sk = i, with i ∈ S and 1 ≤ k ≤ n. Possibly empty (sub-)sequences of
strips will be denoted by σ = 〈sk, . . . , sk′〉, with 1 ≤ k < k′ ≤ n. Please note that the
orientation of strip n is of no concrete impact since n is blank.

In the following we make use of a cost function c(i, j, ω) ≥ 0 to be defined later in detail
It provides an approximate measure for the possible error made when two strips i and j
appear side-by-side and are oriented according to ω = (oi, oj) ∈ O2 in the reconstructed
document. This implies that in case two shreds perfectly fit, the corresponding value of
c(i, j, ω) will be low while in cases of matching two rather different borders the value of
the error estimation function will be relatively high.

The overall objective of RSSTD is to find a solution, i.e., a permutation and a corre-
sponding orientation vector, such that the following total costs, i.e., the estimated error
made during reconstruction, are minimized:

obj(x) =
n−1∑
k=1

c(πk, πk+1, ω) + c(πn, π1, ω) (4.7)

82

4.2. Strip Shredded Text Documents

One crucial task in solving RSSTD as stated above is a proper definition of the cost
function c(i, j, ω). A detailed discussion on this topic is given in Sec. 4.2.4. In any case,
an error estimation function used for RSSTD must have the property that c(i, j, ω) =
c(j, i, ω), with i, j ∈ S, ω = (oi, oj) ∈ O2 and ω = (oC

j , oC
i), where oC

i = 1 − oi. This
means rotating two strips and then swapping their positions must lead to the same error
estimation.

4.2.3. Complexity Results

For this section we will define the decision variant of RSSTD (DRSSTD) as follows:
Given an RSSTD instance and a integer β. The instance is answered with yes, i.e., is
solved, if there is a permutation and orientation vector such that the arising costs are
less than or equal to β.

We will now show that DRSSTD is NP-complete by reducing the decision variant of the
(symmetric) traveling salesman problem (TSP) to DRSSTD. In addition, it is obvious
that DRSSTD is in NP since an instance can be solved in non-deterministic polyno-
mial time by guessing a permutation and orientation vector and then verifying them in
polynomial time.

We define an instance of the decision variant of TSP (also denoted by DTSP) as follows
(see also [43]): Given is a set C of n cities and distances d(ci, cj) ∈ Z+ for each pair of
cities ci, cj ∈ C. Furthermore, we are given a positive integer constant B. An instance
of this decision problem is answered with yes, i.e., is solved, if there is a tour of all cities
in C having length B or less, i.e., a permutation

〈
cπ(1), cπ(2), . . . , cπ(n)

〉
of C is searched,

with (
m−1∑
i=1

d(cπ(i), cπ(i+1))

)
+ d(cπ(m), cπ(1)) ≤ B (4.8)

and cπ(i) denoting the i-th city along the computed tour.

Such an instance of DTSP can now easily be transformed in polynomial time using the
following algorithm:

1. For each city ci ∈ C introduce a strip i ∈ S.

2. Without loss of generality assume the city cn corresponds to strip n.

3. Further, let us assume that the value of the error estimation function c(i, j, ω) is
set to d(ci, cj), for all ω ∈ O2, i, j ∈ S, ci, cj ∈ C.

4. Set β = B.

83

Chapter 4. Reconstruction of Destructed Documents

This transformation has an effort of O(n), i.e., linear in the number of cities of the
instance of DTSP. Obviously, any solution to a so generated DRSSTD instance can be
transformed into a solution to the original DTSP instance. Furthermore, the DRSSTD
instance is answered with yes, if and only if the corresponding DTSP instance is answered
with yes. Therefore, any algorithm for DRSSTD also solves DTSP. This implies that
DRSSTD is NP-complete. Based on the above transformation any TSP instance can
be transformed into it a RSSTD instance with same optimal value which implies that
RSSTD cannot be approximated by a constant factor unless P = NP, cf. [122].

4.2.4. Error Estimation Function

One crucial point in RSSTD is the definition of an appropriate cost function c(i, j, ω) for
estimating the error made when placing two strips i and j, with i, j ∈ S, next to each
other under their given orientations ω ∈ O2. There are several different ways on how
this can be done (see also [95] on this topic), and none will be perfect in every possible
situation. Nevertheless, there are some properties which can (and should) be demanded
when specifying such a cost function.

First of all it must be regarded that in the best case two shreds are correctly matched
with each other, i.e., no error is made at all. In that case we expect to associate a
cost value of zero. In all other cases, i.e., non-perfect matches, values greater than zero
should be assigned. That is,

c(i, j, ω) ≥ 0 ∀i, j ∈ S, ω ∈ O2 (4.9)

must hold. In addition, it must be guaranteed that equation (4.10) is satisfied:

c(i, j, ω) = c(j, i, ω) ∀i, j ∈ S, ω ∈ O2 (4.10)

This means that placing strip i left to strip j yields the same error as placing shred j
left to shred i but both rotated by 180◦.

In contrast to pattern recognition based approaches like presented in [133, 131, 134, 29]
we propose an evaluation function which does not rely on the information primarily
imposed by the inner regions and features of the strips but we solely want to exploit
(color) information on the borders of the strips. For this purpose we denote the number
of (image) pixels along the y-axis of a strip i ∈ S as hi. As it is unlikely that the images
of two strips i and j with the same physical height and scanned with the same resolution
will significantly differ in hi and hj . We therefore assume for this work hi = hj holds for
all strips i, j ∈ S and thus will omit the indices, i.e., write h for short.

To simplify the next definitions, we consider eventual rotations of strips in the following
as already performed; i.e., when speaking about the left side of a strip i ∈ S for which

84

4.2. Strip Shredded Text Documents

(a) (b)

Figure 4.10.: Two possible reconstructions of a document with four strips. Both of these
two solutions might be correct, but as a human reader one expects (a) to be correct.

oi = 1, we actually refer to its original right side. The pixels on the left or right edge
are those pixels which form the left or right border, respectively.

Since the majority of text documents are composed of black text on (almost) white
background and we mainly focus on the reconstruction of text documents, we only
consider black-and-white (B/W) image data as input here. In fact, preliminary tests
have shown that the usage of finer grained color or gray-scale information does not
significantly increase the quality of the solutions obtained by our approaches. We remark,
however, that in cases where documents contain a significant amount of different colors
or gray values, an extension of our model might be meaningful and can be achieved in
a more or less straightforward way.

Let vl(i, y, oi), vr(i, y, oi) ∈ {0, 1} be the B/W values of the y-th pixel, with 1 ≤ y ≤ h
at the left and right borders of strip i ∈ S under orientation oi, respectively. Then,
the first and most straightforward approach for defining a cost function c1(i, j, ω) is
by simply iterating over all pixels on the right border of strip i and compare them to
the corresponding pixels on the left border of strip j. Since we defined RSSTD as a
minimization problem the value of c1(i, j, ω) is increased by one if two corresponding
pixels do not have the same values:

c1(i, j, ω) =
h∑

y=1

∣∣vr(i, y, oi)− vl(j, y, oj)
∣∣ (4.11)

Although the evaluation of this cost function (4.11) can be efficiently done, there are some
special cases in which the human intuition would result in another preferred solution.
For an example see the case depicted in Fig. 4.10. Although both solutions shown might
be the correct one, it is intuitively more likely that the reconstruction in Fig. 4.10a
corresponds to the original document. Therefore, we want the alignment 4.10a to receive
a better error estimation, i.e., a lower value, than arrangement 4.10b. Hence, we adopt
the idea presented in [10] which additionally considers the values of two pixels above
and two pixels below the currently evaluated position. It is then the weighted average
of these five pixel values compared with the corresponding average value on the other

85

Chapter 4. Reconstruction of Destructed Documents

strip:

c2(i, j, ω) =
hs−2∑
y=3

p(i, j, ω, y) (4.12)

p(i, j, ω, y) =

{
1 if p′(i, j, ω, y) ≥ τ

0 otherwise
(4.13)

p′(i, j, ω, y) =
∣∣∣ 0.7 · vr(i, oi, y)− 0.7 · vl(j, oj , y)

+ 0.1 ·
(
vr(i, oi, y + 1)− vl(j, oj , y + 1)

)
+ 0.1 ·

(
vr(i, oi, y − 1) + vl(j, oj , y − 1)

)
+ 0.05 ·

(
vr(i, oi, y + 2) + vl(j, oj , y + 2)

)
+ 0.05 ·

(
vr(i, oi, y − 2) + vr(j, oj , y − 2)

)∣∣∣
(4.14)

Obviously the weighting factors and the threshold value τ used in the definition of
p(i, j, ω, y) and p′(i, j, ω, y) have to be chosen carefully. Preliminary tests revealed, how-
ever, that the proposed definition in addition of setting τ = 0.1 results in relatively high
quality solutions—in particular, the special case depicted in Fig. 4.10 is also handled by
this concrete parameter setting.

4.2.5. The Concept of Quality

As already shown in the previous section, there are different ways for defining an error
estimation function for RSSTD. For any objective function it is, however, possible to
create a worst case scenario which results in optimal solutions with respect to the objec-
tive value, i.e., in solutions having a minimal estimated error, but does not correspond
to the original document. For such a worst cases scenario we refer to Fig. 4.10. Obvi-
ously, an objective function is searched for which optimal solutions correspond to the
actually originally documents in as many situations as possible. Therefore, it is desirable
to directly compare two (different) objective functions with each other. This leads to
the concept of quality which should serve as a measure on how good a particular error
estimation function is (with respect to a given set of RSSTD instances).

For this purpose, we proposed in [105] a pseudometric Q(x) for any solution x of RSSTD.
The basic concept of Q(x) is to count the number of correctly reconstructed subsequences
of strips with respect to the original document. This implies that a value of 1 corresponds
to an entirely correctly restored document while values greater than 1 indicate that
some placements of strips with respect to their neighbors and/or rotations are wrong.
Obviously, 1 ≤ Q(x) ≤ n holds for any solution x, with n being the number of strips.

86

4.2. Strip Shredded Text Documents

Empirical tests based on the results obtained with the reconstruction methods proposed
in this thesis revealed that humans are most likely able to decode, i.e., read, docu-
ments with a quality of five or lower. Furthermore, it is easy to reconstruct the original
document by hand as soon as only five subsequences of strips have to be (correctly)
rearranged.

4.2.6. Solving RSSTD via Reformulation as a Traveling Salesman Problem

Motivated by the observation that TSP is strongly related to RSSTD one approach
for solving RSSTD is to apply well-known methods for solving TSP to transformed
RSSTD instances. For this purpose, we present a polynomial transformation procedure
translating any RSSTD instance into a TSP instance. Anyhow, although the reverse
transformation, i.e., from TSP to RSSTD, can be achieved directly, cf. Sec. 4.2.3, for
this procedure an intermediate step is necessary. Therefore, we first represent RSSTD
as an asymmetric generalized traveling salesman problem (AGTSP) which can then be
transformed to TSP. We will, however, show that in contrast to the standard trans-
formation from AGTSP to TSP in our case it is not necessary to introduce additional
nodes which is caused by the special structure implied by the error estimation function,
cf. Sec. 4.2.4.

Formulation as Asymmetric Generalized Traveling Salesman Problem

In the asymmetric generalized traveling salesman problem (AGTSP) a directed graph
G = (V,A), with V being the set of nodes and A being the set of arcs, as well as a parti-
tioning of V into m disjoint, non-empty clusters Ci, i = 1, . . . , m, is given. Furthermore,
a weight wa ≥ 0 is associated with each a ∈ A. An optimal solution to AGTSP is a tour
T ⊆ A that visits exactly one node of each cluster Ci while minimizing the objective
function

∑
a∈T wa, cf. [54].

The following steps have to be performed for representing RSSTD as AGTSP:

1. For each strip i ∈ S \ {n}, introduce a cluster Ci consisting of two vertices vU
i and

vD
i representing the possible orientations of the corresponding strip i.

2. Introduce a cluster Cn for the (virtual) blank strip n and insert one vertex vn into
this cluster. Since n is blank no orientation information is necessary for this strip.

3. Each pair (i, j) of strips, with i, j ∈ S \{n} and i 6= j, induces eight arcs represent-
ing the possible placements of i and j in relation to each other, see also Fig. 4.11a.
For example, arc (vD

i , vU
j) represents the case that strip i is placed right to strip

j. While strip i is rotated by 180◦, strip j is positioned upright. Since any strip

87

Chapter 4. Reconstruction of Destructed Documents

(a) (b) (c)

Figure 4.11.: In (a) a subgraph representing two strips s and s′ in an AGTSP instance
is depicted while in (b) the same subgraph after performing the transformation to TSP
is shown. The bold lines indicate two corresponding tours.

i ∈ S cannot be placed left (or right) to itself, it is obvious that there are no arcs
between two nodes representing the same strip.

4. Additionally, vertex vn is connected via two oppositely directed arcs with each
other node representing a strip.

5. The weights of the arcs are chosen such that for any arc a = (voi
i , v

oj

j), with
i, j ∈ S \ {n}, wa = c(i, j, ω), with ω = (oi, oj). The weights for arcs leaving or
entering vn are chosen according to c(n, i, ω) or c(i, n, ω), respectively.

Obviously, an optimal solution to the AGTSP instance derived using this algorithm also
forms a solution to the original RSSTD instance with equal costs when starting the tour
at the virtual strip represented by vn.

There are several methods for solving AGTSP directly, e.g., see [39] for a branch-and-cut
algorithm or [124, 65, 54] for various heuristic approaches based on genetic algorithms,
memetic algorithms or variable neighborhood search combined with dynamic program-
ming techniques. Beside applying one of those algorithms specifically designed for solving
AGTSP another possibility is to further transform an AGTSP instance into a classical
TSP instance and solve the latter with one of the many existing methods. In the next
section we concentrate on such an approach.

Further Reformulation as TSP

The classical, i.e., symmetric, TSP consists of finding the shortest tour in a weighted
undirected graph G = (V, E) such that each vertex in V is visited exactly once. Let
we ≥ 0 be the weight associated with each edge e ∈ E. The length of a tour in TSP is
computed as the sum of the tour’s edge weights.

88

4.2. Strip Shredded Text Documents

Based on the presented transformation of RSSTD to AGTSP, RSSTD can be further
translated into a TSP by first applying the polynomial time transformation into an
asymmetric traveling salesman problem (ATSP) proposed in [12] and finally applying
the polynomial transformation of ATSP into TSP described in [82]. Taking a closer look
at these works, two major drawbacks can be identified. On one hand, the maximum
costs for edges are dramatically increased by a value in O(m ·

∑
e∈E we) during the

transformation from AGTSP into ATSP, which might lead to practical problems when
trying to solve such transformed instances. On the other hand, the number of nodes
in G is doubled during the translation from the asymmetric TSP to the symmetric
case. Due to the nature of TSP this has a substantial impact on the running times
when computationally solving these TSP instances. Fortunately, both drawbacks can be
avoided or at least reduced when applying the following transformation method which
adopts the idea of first introducing directed cycles of zero costs within each cluster while
modifying the (costs of the) outgoing arcs presented in [12]:

1. Add two additional arcs—one in each direction—between nodes vD
i and vU

i for each
strip i ∈ S \ {n}.

2. Set the weights of these new arcs equal to zero.

3. In a next step, swap the weights for (vD
i , vD

j) and (vU
i , vD

j) as well as (vD
i , vU

j) and
(vU

i , vU
j), with i, j ∈ S \ {n} and i 6= j. After swapping two arcs we add a constant

M > 0 to the associated arc weights.

4. Since the cluster Cn consists of only one node, no transformation needs to be done
for this cluster.

In Fig. 4.11b the adjacency matrix of a subgraph of an AGTSP instance for RSSTD is
presented. Fig. 4.11c depicts the adjacency of this subgraph after applying the transfor-
mation to TSP. It can be easily checked that the resulting graph is undirected.

Theorem 2. Any weight-minimal Hamiltonian tour on a graph obtained by the presented
transformation from RSSTD can be re-transformed into an optimal placement of strips
with respect to objective function (4.7).

Proof. Due to the fact, that the costs for arcs connecting the nodes within a cluster
are zero, any optimal tour will visit both nodes in a cluster consecutively. Assuming
that there is one cluster Ck whose nodes are not visited consecutively, the tour has to
enter cluster Ck at least two times. Since the costs for all arcs except for those within
a cluster are equal to or greater than M , the costs of such a tour have to be greater
than (m + 1) ·M , with m being the number of clusters. Therefore, if M is chosen large
enough, any tour, entering each cluster only once is cheaper. An appropriate value for
M is 1+m ·max(i,j)∈S2 c(i, j, ω), with i, j ∈ S. Since each cluster is entered only once, we

89

Chapter 4. Reconstruction of Destructed Documents

can decode the Hamiltonian tour as a permutation of the clusters which are representing
the strips in RSSTD. Cluster Cn marks the beginning and the end of the strips’ permu-
tation. The orientation of each strip is set according to the node the cluster is entered
by. If the first node visited in a cluster corresponds to the orientation 0 then the strip is
oriented according to its original orientation in the corresponding solution. Analogously,
orientation 1 is decoded. Furthermore, any optimal permutation π of strips can be trans-
formed into an optimal tour T using the relationship described above. Assuming that
there exists a tour T ′ with lower costs than T , we can transform T ′ into a permutation
π′ with lower costs than π, which contradicts the assumption that π is minimal.

Using this transformation of RSSTD to TSP it is now possible to apply any method
for solving TSP. However, since the number of vertices is always twice the number of
strips which on the other hand can be quite large, it cannot be expected that (current)
exact algorithms will be applicable for (large sized) real-world instances of RSSTD. In
addition, any error estimation function suffers from the fact that one cannot guarantee
that all special cases are handled correctly. Therefore, we decided to use the implemen-
tation of the Chained Lin-Kernighan heuristic [7] by Applegate et al. [6] for solving the
transformed RSSTD.

Experimental Results

To investigate the performance of such an approach we executed some computational
tests. For this purpose, we shredded ten different pages using various strip widths, such
that in total 50 instances were generated. The shredding process itself was done virtu-
ally, i.e., the strips are all sharp-cut. Although this approach is somehow idealistic it
is also used by others, e.g., cf. [134]. Any comparison is therefore fair. Somehow more
problematic is the selection of a set of pages to be used as (original) documents. We
tried to choose ten pages with different characteristics. They contain among others,
plain text, plain text with (multiple) headings, table of contents, figures and tables (in-
cluding horizontal and vertical lines), and two-columned text. We refer to these pages
as p01 to p10. For a pictorial illustration of the instances used we refer to App. A. For
having the opportunity to compare with already published results found in literature
we also used the data set provided by Ukovich et al. in [134]. This set consists of ten
pages containing mainly type writer written text with hand written notes (in a different
color). In contrast to the tests performed on p01 to p10, we adopted the settings of
Ukovich et al. and tried to reconstruct all pages at the same time, i.e., instances based
on this set contain multiple pages.

Detailed results of the test runs based on the transformation of RSSTD to TSP are shown
in Tab. 4.1. The shown numbers represent averages over 30 runs, each, with standard

90

4.2. Strip Shredded Text Documents

Table 4.1.: Average qualities of final solutions from the TSP solver comparing cost
functions c1 and c2. Standard deviations are given in parentheses.

pa
ge

tim
e 30 strips 50 strips 100 strips 150 strips 300 strips

c1 c2 c1 c2 c1 c2 c1 c2 c1 c2

p0
1 5 s 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 23.0 (0.0) 1.0 (0.0)

50 s 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 4.0 (0.0) 1.0 (0.0) 23.0 (0.0) 1.0 (0.0)

p0
2 5 s 2.9 (1.5) 1.0 (0.0) 7.6 (0.5) 8.9 (0.5) 16.3 (0.7) 14.8 (1.4) 38.1 (0.9) 34.3 (0.7) 105.7 (0.5) 80.2 (1.1)

50 s 4.0 (0.0) 1.0 (0.0) 8.0 (0.0) 10.0 (0.0) 16.0 (0.0) 16.0 (0.0) 39.0 (0.0) 33.0 (0.0) 104.0 (0.0) 71.0 (0.0)

p0
3 5 s 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 16.0 (0.0) 1.0 (0.0)

50 s 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 14.0 (0.0) 1.0 (0.0)

p0
4 5 s 1.0 (0.0) 1.0 (0.0) 5.0 (0.0) 1.0 (0.0) 19.9 (0.6) 4.0 (0.0) 28.5 (0.7) 20.0 (0.0) 68.9 (0.6) 42.0 (0.0)

50 s 1.0 (0.0) 1.0 (0.0) 5.0 (0.0) 1.0 (0.0) 20.0 (0.0) 4.0 (0.0) 29.0 (0.0) 20.0 (0.0) 66.0 (0.0) 43.0 (0.0)

p0
5 5 s 1.0 (0.0) 1.0 (0.0) 4.3 (0.4) 1.0 (0.0) 12.0 (0.0) 6.0 (0.0) 45.0 (0.0) 8.0 (0.0) 83.2 (0.5) 30.0 (0.0)

50 s 1.0 (0.0) 1.0 (0.0) 4.0 (0.0) 1.0 (0.0) 12.0 (0.0) 6.0 (0.0) 39.0 (0.0) 8.0 (0.0) 84.0 (0.0) 25.0 (0.0)

p0
6 5 s 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

50 s 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 4.0 (0.0) 1.0 (0.0)

p0
7 5 s 16.9 (0.8) 17.0 (1.2) 34.3 (0.9) 33.1 (1.0) 76.5 (1.1) 68.5 (0.8) 126.8 (0.8) 116.3 (1.4) 258.2 (0.8) 244.8 (0.9)

50 s 15.0 (0.0) 17.0 (0.0) 35.0 (0.0) 34.0 (0.0) 76.0 (0.0) 67.0 (0.0) 127.0 (0.0) 121.0 (0.0) 258.0 (0.0) 241.0 (0.0)

p0
8 5 s 1.9 (0.3) 2.0 (0.2) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.0 (0.2) 1.4 (0.5) 1.4 (0.5) 3.0 (0.0) 3.0 (0.0)

50 s 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 1.0 (0.0) 3.0 (0.0) 3.0 (0.0)

p0
9 5 s 2.0 (0.2) 2.0 (0.2) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.0 (0.2) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0)

50 s 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0)

p1
0 5 s 1.0 (0.0) 1.0 (0.0) 4.0 (0.0) 4.0 (0.0) 8.0 (0.0) 10.0 (0.0) 12.0 (0.0) 8.0 (0.0) 33.2 (0.4) 39.0 (0.0)

50 s 1.0 (0.0) 1.0 (0.0) 4.0 (0.0) 4.0 (0.0) 8.0 (0.0) 10.0 (0.0) 12.0 (0.0) 8.0 (0.0) 33.0 (0.0) 40.0 (0.0)

m
00 5 s 11.8 (1.1) 14.4 (1.0) 9.6 (0.7) 9.7 (0.4) 9.4 (0.7) 10.9 (0.3) 15.4 (0.6) 16.9 (0.4) 35.5 (0.9) 28.1 (1.3)

50 s 11.0 (0.0) 13.0 (0.0) 9.0 (0.0) 10.0 (0.0) 8.0 (0.0) 11.0 (0.0) 15.0 (0.0) 17.0 (0.0) 34.9 (0.8) 31.3 (1.0)

deviations shown in parentheses. The code was primarily implemented in Java 6 using
JNI (Java Native Interface) for calling the C implementation of the Concorde Chained
Lin-Kernighan heuristic1. The results were obtained on a single core of an Intelr Core™2
Quad CPU with 8GB RAM and 2.83GHz.

The values presented in Tab. 4.1 should be read as follows: The first two columns indicate
the page and the time provided to the Chained Lin-Kernighan heuristic for solving the
corresponding TSP instance. Columns labeled with c1 represent the qualities achieved
while optimizing with respect to objective function c1 (see Eq. (4.11) in Sec. 4.2.4)
while the columns labeled c2 correspond to the outputs obtained with respect to c2 (cf.
Eq. (4.12) in Sec. 4.2.4). Finally, always two columns—one labeled with c1 the other with
c2—are superscribed with the number of strips the original document page was cut into.
Rows labeled with m00 correspond to the instance set provided by Ukovich et al. [134].

It can be seen that the obtained results differ dramatically from instance to instance. For
example, page p01 could always be solved to optimality in even five seconds using error
estimation function c2 while the smallest instance of page p07, i.e., with 30 strips, was

1Code available at http://www.tsp.gatech.edu/concorde/.

91

Chapter 4. Reconstruction of Destructed Documents

only solved to an average quality of 15 in 50 seconds using c1. Obviously, this is motivated
by the fact that, for instance, page p07 consists of a colorful image which is transformed
into a B/W image. Choosing the wrong threshold value results in a document almost
completely black. Nevertheless, with respect to those instances containing almost only
text it can, for example, be observed that the average qualities obtained using c2 are in
most cases better or at least equal to the qualities obtained with respect to c1. Even
more, for instance p01 cut into 300 strips the second error estimation function led to the
original document in all 30 runs (even in five seconds) while the runs based on c1 only
achieved an average quality of 23.

Please note that in some cases the qualities after five seconds are better than those
obtained after 50 seconds. This is caused by the fact that due to the imperfectness
of any error estimation function these instances are “overoptimized”, i.e., the original
solution does not correspond to the solution having the best objective value. Altogether,
the results lead to the conclusion the assumption that error estimation function c2 suits
better for B/W text documents than c1.

Further, we want to discuss another interesting observation related to the results ob-
tained for page p09 containing two-columned text. It seems that instances based on this
page could (almost) never be solved to optimality. Actually, p09 was always completely
restored but the order of the two columns was not correctly identified, i.e., the left text
column was placed right next to the (originally) right column. The same observation
also applies to page p02 which consists of a table of contents with horizontal lines of
dots. Therefore, there are some strips having only dots printed on them. Symmetries
are introduced by these strips and many with respect to any error estimation func-
tion optimal solutions (with different qualities) exist. Although in most cases humans
might decide the correct order due to the information contained in the text, there are
some cases for which even a human cannot make this decision—so neither an automatic
system should be expected to correctly guess the alignment of these columns. Never-
theless, this implies that in some situations the integration of human intelligence into a
(semi-)automatic reconstruction system might not only be valuable but even required.

Finally, we want to focus on the results obtained for the page set m00. For this set,
the column labeled with “30 strips” indicates that each of the ten pages was cut into
30 strips, i.e., a total of 300 strips were realigned, which also relativizes the (rather
bad) results in comparison to the other instances shown in the same column. A closer
inspection of the result files shows that although a value of, for example, 14.4 for c2

and 30 strips is obtained the single pages were reconstructed with qualities less than
or equal to three. Please note, that with respect to the running times of five or 50
seconds, respectively, the results obtained for 300 strips, i.e., a total of 3000 strips,
are particularly good. To be able to directly compare this approach with the results
obtained by Ukovich et al. presented in [134], we also performed tests with 34 strips

92

4.2. Strip Shredded Text Documents

(not listed in the table), a time limit of five seconds and optimizing with respect to
error estimation function c2. The results obtained showed that in 16 of 30 runs all
pages were optimally reconstructed, whereas in the remaining 14 runs only one page
was reconstructed to quality 2 while all others were correctly restored. Considering the
time limit of five seconds for the execution of the Chained Lin-Kernighan heuristic and
additional ten seconds used for computing the error estimation function our method
clearly outperforms that from Ukovich et al. presented in [134]—especially under the
consideration of the fact that the approach by Ukovich et al. only identifies strips to
be very likely on the same original document page while no concrete alignment of these
strips is obtained.

4.2.7. Solving RSSTD via Variable Neighborhood Search and Human
Interaction

As already indicated in the previous section, even the “most precise” cost function and
an exact solution of our RSSTD model will not always yield a correct arrangement fully
representing the original document before destruction. The reason is that the cost func-
tion only is an (approximate) indicator for the likelihood of two strips appearing next
to each other. However, documents also may contain unlikely scenarios. Furthermore,
text may be arranged in columns with empty parts in between. It is then impossible to
find the correct order of the separated text blocks without having more specific knowl-
edge of the documents content. Additionally applying heavier pattern recognition and
knowledge extraction techniques might be feasible for certain applications but will also
dramatically increase running times.

Instead, we leverage here the power of human knowledge, experience, and intuition in
combination with a variable neighborhood search metaheuristic. When confronted with
a candidate solution, a human often can decide quite easily which parts are most likely
correctly arranged, which strips should definitely not be placed side-by-side, or which
parts have a wrong orientation.

The idea of systematically integrating human interaction in an optimization process
is not new. Klau et al. [79, 77, 78] give a survey on such approaches and present a
framework called Human Guided Search (HuGS). The implementation is primarily based
on tabu search, and the success of this human/metaheuristic integration is demonstrated
on several applications.

93

Chapter 4. Reconstruction of Destructed Documents

Variable Neighborhood Search in HuGS

Since preliminary tests for solving RSSTD with tabu search as implemented in the
HuGS framework [77] did not convince, we considered also other metaheuristics and
finally decided to use a (general) variable neighborhood search (VNS) with embedded
variable neighborhood descent (VND) for local improvement. In addition to a standard
VND/VNS approach we incorporated user actions into the search procedure such that
the final decision on the quality of an obtained solution is made by humans.

For this approach, we represent a solution to RSSTD by three arrays corresponding to the
strips permutation π, a vector p storing the position for each strip, and the orientation
vector o. Note that π and p are redundant, but the evaluation of the neighborhoods to be
discussed in the following can be more efficiently implemented when both are available.

Neighborhoods for VNS and VND

Several different move types are used within VND and VNS. The most intuitive move
is called shifting (SH) and simply shifts one strip by a given amount to the right or left.
More formally it can be written as

SH(σ1 · 〈i〉 · σ2 · 〈j〉 · σ3, i, j) = σ1 · 〈j〉 · 〈i〉 · σ2 · σ3 (4.15)
or

SH(σ1 · 〈j〉 · σ2 · 〈i〉 · σ3, i, j) = σ1 · σ2 · 〈i〉 · 〈j〉 · σ3 (4.16)

with i, j ∈ S \ {n}. In this (and the following) context σk denotes a possibly empty
subsequence of strips. A second move, called swapping (SW), is defined by swapping
two arbitrary elements with each other. In a formal matter, this can be written as

SW(σ1 · 〈sk〉 · σ2 · 〈sk′〉 · σ3, k, k′) = σ1 · 〈sk′〉 · σ2 · 〈sk〉 · σ3 (4.17)

with 1 ≤ k < k′ ≤ n− 1. Both moves, shifting and swapping, can be extended to block
moves. In the latter case, called block swapping (BS), this results in a move swapping
two arbitrarily long, non-overlapping subsequences of strips with each other. The other
block move, namely block shifting, is equivalent to swapping two adjacent blocks with
each other. Therefore, it is not explicitly defined in our environment. A block swap
move can be formally written as

BS(σ1 · 〈sk, .., sk+m〉 · σ2 · 〈sk′ , .., sk′+m′〉 · σ3, k, m, k′,m′) =
σ1 · 〈sk′ , .., sk′+m′〉 · σ2 · 〈sk, .., sk+m〉 · σ3 (4.18)

with 1 ≤ k < k + m < k′ < k′ + m′ ≤ n− 1. In addition to this four move types related
to the assignment of strips to positions, two further moves for changing the orientation

94

4.2. Strip Shredded Text Documents

Table 4.2.: Neighborhood structures defined for VND.
neighborhood structure N1 N2 N3 N4 N5

move type R SH SW BR BS
size of Nx O(n) O(n2) O(n2) O(n2) O(n4)

of a strip or a block of strips, called rotating (R) and block rotating (BR), respectively,
are defined. Rotating simply rotates one strip by 180◦, while block rotating executed
on positions k to k′, with 1 ≤ k < k′ ≤ n− 1 first rotates all strips in this interval and
in a second step swaps strips at positions k and k′, k + 1 and k′ − 1, and so on. Using
incremental evaluation schemes each presented move can be evaluated in constant time.

In our VND, the five neighborhood structures induced by our moves are considered in the
order shown in Table 4.2, thus, sorted by their sizes. As step function best improvement
as well as next improvement have been implemented. For shaking in VNS, k random
swap moves, with 1 ≤ k ≤ 5, are performed. As initial solution either a random solution
or a solution provided by the Lin-Kernighan based approach is used (details are given
in the experimental results section).

User Interactions

For the integration of user interaction into the optimization process a set of valid user
moves has to be defined. All previously described move types are contained in this set
of allowed user actions. Additionally, the user can

• forbid “wrong” neighborhood relations between pairs of strips;

• lock “correct” subsequences of strips, which are concatenated and in the further
optimization process considered as atomic meta-strips;

• lock the orientation of strips.

All of these actions also can be reverted, should the user reconsider his earlier made
decisions. Our extensions of the HuGS framework provide an easy and intuitive way to
visualize candidate solutions, perform the mentioned user actions, or to let VNS or the
Lin-Kernighan based approach continue for a while.

A main advantage of integrating human power into the search procedure is in fact that
with each additional lock of strips or forbidden neighborhood relation the solution space
is pruned. For example, locking two neighboring strips into a meta-strip reduces the
number of valid solutions to 1/m, where m is the number of yet unmerged strips.

95

Chapter 4. Reconstruction of Destructed Documents

Table 4.3.: Average qualities of final solutions from the TSP solver comparing cost
functions c1 and c2. Standard deviations are given in parentheses.

pa
ge

st
ep 30 strips 50 strips 100 strips 150 strips 300 strips

c1 c2 c1 c2 c1 c2 c1 c2 c1 c2

p0
1 next 6.7 (6.5) 3.9 (5.9) 22.5 (13.5) 12.1 (13.5) 66.0 (5.6) 53.8 (19.5) 105.9 (2.1) 102.5 (5.3) 216.0 (1.5) 214.4 (2.3)

best 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.1 (0.4) 1.0 (0.0) 59.3 (10.6) 34.2 (11.6) 160.0 (20.1) 96.5 (38.7)

p0
2 next 8.2 (4.5) 5.3 (4.9) 29.8 (3.7) 27.8 (5.1) 64.8 (2.3) 64.1 (2.3) 97.6 (1.4) 97.4 (1.5) 192.3 (1.7) 192.3 (1.1)

best 3.6 (2.1) 1.4 (0.7) 13.7 (3.5) 11.8 (2.7) 36.6 (5.1) 31.1 (6.4) 64.5 (5.6) 56.5 (7.1) 177.7 (4.6) 171.7 (7.8)

p0
3 next 3.8 (5.1) 1.9 (3.2) 11.7 (12.7) 11.5 (13.0) 61.6 (15.1) 44.0 (29.2) 100.5 (10.6) 94.8 (19.3) 215.0 (1.8) 203.6 (17.4)

best 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 2.4 (5.2) 1.0 (0.0) 64.3 (22.7) 42.7 (23.1) 169.0 (40.7) 104.9 (58.2)

p0
4 next 3.7 (3.7) 1.8 (2.4) 19.7 (6.8) 16.8 (7.1) 53.9 (4.3) 52.4 (5.7) 84.5 (2.2) 85.1 (1.4) 173.5 (1.2) 173.1 (1.0)

best 1.1 (0.6) 1.2 (1.3) 7.5 (2.5) 1.7 (1.7) 25.3 (5.9) 13.1 (5.6) 54.2 (6.1) 36.5 (8.3) 157.9 (6.6) 151.6 (7.6)

p0
5 next 1.6 (3.1) 3.1 (4.1) 12.0 (11.1) 10.6 (14.0) 40.7 (26.4) 41.3 (28.4) 104.9 (10.7) 93.0 (24.5) 216.5 (3.8) 215.2 (4.2)

best 1.0 (0.0) 1.0 (0.0) 5.4 (2.8) 1.0 (0.0) 17.3 (6.9) 6.0 (0.2) 102.9 (3.4) 91.0 (15.0) 207.6 (7.9) 199.2 (7.9)

p0
6 next 9.0 (8.5) 8.7 (8.5) 24.7 (15.1) 25.9 (14.9) 84.6 (12.6) 83.9 (13.5) 139.9 (2.0) 138.6 (3.9) 282.6 (1.2) 281.6 (4.4)

best 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.5 (2.6) 110.6 (20.5) 87.0 (33.1) 247.6 (11.6) 248.0 (9.7)

p0
7 next 21.8 (5.6) 19.2 (4.1) 47.3 (2.2) 46.0 (4.4) 98.2 (1.8) 97.3 (1.9) 149.1 (0.9) 148.4 (1.4) 298.6 (1.3) 298.7 (1.1)

best 17.0 (1.2) 17.2 (0.9) 39.7 (2.9) 36.4 (3.0) 88.5 (4.2) 86.1 (4.9) 145.5 (2.5) 142.9 (3.8) 294.8 (2.5) 290.3 (4.6)

p0
8 next 19.7 (4.5) 19.5 (3.9) 40.8 (3.5) 40.5 (3.6) 87.1 (2.9) 88.0 (2.3) 138.0 (3.0) 137.8 (1.9) 280.4 (1.5) 279.7 (1.4)

best 2.0 (0.8) 1.8 (0.6) 1.8 (0.8) 1.8 (0.6) 2.3 (2.6) 2.3 (1.6) 68.5 (8.9) 68.9 (12.9) 180.6 (14.6) 155.2 (22.2)

p0
9 next 13.7 (7.0) 12.0 (7.0) 31.7 (7.9) 33.5 (5.6) 75.9 (4.6) 77.6 (4.2) 121.4 (1.8) 120.9 (1.9) 243.9 (1.5) 243.6 (2.1)

best 1.7 (0.4) 1.7 (0.4) 1.6 (0.5) 1.6 (0.5) 1.6 (0.5) 2.1 (1.4) 57.1 (14.9) 42.6 (16.1) 154.5 (26.4) 132.9 (28.7)

p1
0 next 12.0 (9.0) 11.1 (8.7) 37.2 (6.8) 37.4 (5.8) 81.8 (2.4) 81.6 (2.4) 126.5 (1.7) 125.9 (1.9) 255.1 (1.3) 254.9 (1.4)

best 1.6 (1.9) 1.1 (0.7) 5.0 (1.0) 4.0 (0.0) 8.2 (5.6) 12.9 (6.8) 98.3 (12.0) 88.2 (18.4) 211.2 (21.3) 201.7 (19.5)

m
00 next 243.1 (1.4) 243.1 (1.3) 390.2 (1.2) 390.3 (1.4) 781.8 (1.2) 780.9 (1.6)

best 128.0 (30.2) 148.9 (35.7) 225.9 (35.5) 269.6 (46.7) 457.4 (51.6) 509.8 (122.1)

A usual approach for a semi-automatic reconstruction of strip shredded text documents
would be to first execute the TSP solver to obtain a good initial solution. Then, assuming
that this solution is not already perfect, either some user moves are applied or, if there
is no obvious correct subsequence of strips to be concatenated or wrongly rotated strips,
VNS would be executed. Afterwards, a human inspection combined with user moves
is performed. The last two steps will be repeated until either no improvement can be
achieved or a solution of desired quality is obtained.

Experimental Results

For testing the VNS based approach we used the same sets of data and CPU as for the
experiments presented in the previous section, i.e., ten pages named p01 to p10 and one
data set consisting ten document pages denoted by m00. Detailed results obtained using
VNS only, i.e., by initializing VNS to a random solution, are shown in Tab. 4.3. Again,
the numbers shown represent average results over 30 runs and standard deviations are
presented in parentheses. In contrast to the previous test settings, the running times
were not limited, i.e., after five consecutive shaking iterations without improvement
during VNS the algorithm was terminated. Anyhow, we performed tests using next
improvement and best improvement strategy as step function. Accordingly, the results
are shown in the corresponding rows of the result table. Analogously to the results for the

96

4.2. Strip Shredded Text Documents

Lin-Kernighan based approach, each column represents results according to the number
of strips and error estimation function used. Due to the size of neighborhood structure
N5, we decided to omit its exploration whenever more than 100 strips are to be realigned.

Although the results are worse than those obtained incorporating the transformation of
RSSTD to TSP at a first glance, some relevant information can be gathered from these
tests. At first, it is obvious that best improvement suits better for these runs than next
improvement. At the same time, it can be observed that with increasing number of shreds
the performance with respect to the obtained quality rapidly decreases. Nevertheless,
having a closer look at the running times (not shown in Tab. 4.3) it can be seen that
especially for small instances with 30 or 50 strips the total computation time for the
VNS approach is in most cases below one second. Unfortunately, it can clearly be seen
that for instances with 150 strips (or more) the absence of N5, i.e., block swapping, has
severe consequences on the solution quality.

With respect to data set m00 it can be seen that the results obtained are rather bad.
Please consider, that again the block swapping neighborhood is missing due to the large
number of shreds. For the instances with 150 and 300 strips it was not possible to obtain
meaningful results—neither with respect to the used computation time nor with respect
to the achieved qualities.

Within a third test setting we initialized our VNS based approach using the Lin-Kernighan
based method. The results obtained for this setting are shown in Tab. 4.4. As can be
seen, the numbers are very similar to those presented in Tab. 4.1. Nevertheless, for
some instances improvements could be achieved, e.g., p05 with 300 strips or p08 with
30 to 150 strips. Unfortunately, there are also a few instances for which worsenings
occurred. Having a closer look at these results, it can be observed that although the
quality decreased the corresponding objective value with respect to the error estimation
function improved. Even for those instances with no improvement with respect to the
quality measure, improvements with respect to the objective values could be achieved.
Therefore, it can be concluded that the VNS approach could contribute to the final
solution. With respect to the multiple pages instances, it can be seen that using the
combination of the TSP transformation based approach and the VNS method even the
very large instances with up to 9000 strips could be solved. It also should be mentioned
that the standard deviations are very low for all instances.

Finally, we performed a few tests with our semi-automatic system as it would be used in
practice for reconstructing strip shredded text documents. For this purpose we initialized
the VNS using the Lin-Kernighan based approach and performed some user moves as
soon as VNS reached a local optimum. Within only a few user interactions we were able
to quickly restore all original documents by exploiting the benefits of the hybridization
of machine and human power.

97

Chapter 4. Reconstruction of Destructed Documents

Table 4.4.: Average qualities of final solutions from the TSP solver comparing cost
functions c1 and c2. Standard deviations are given in parentheses.

pa
ge

st
ep 30 strips 50 strips 100 strips 150 strips 300 strips

c1 c2 c1 c2 c1 c2 c1 c2 c1 c2

p0
1 next 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 23.0 (0.0) 1.0 (0.0)

best 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 23.0 (0.0) 1.0 (0.0)

p0
2 next 2.3 (1.5) 1.0 (0.0) 7.7 (0.8) 9.3 (0.5) 16.3 (0.7) 14.5 (1.4) 39.5 (0.7) 34.0 (1.0) 105.9 (0.6) 80.2 (1.3)

best 2.5 (1.5) 1.0 (0.0) 7.8 (0.9) 9.5 (0.6) 16.3 (0.7) 14.7 (1.5) 39.6 (1.0) 34.1 (1.2) 106.1 (0.5) 80.5 (1.4)

p0
3 next 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 16.0 (0.0) 1.0 (0.0)

best 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 16.0 (0.0) 1.0 (0.0)

p0
4 next 1.0 (0.0) 1.0 (0.0) 5.0 (0.0) 1.0 (0.0) 19.9 (0.5) 4.0 (0.0) 29.6 (0.7) 20.0 (0.0) 66.3 (0.6) 42.0 (0.0)

best 1.0 (0.0) 1.0 (0.0) 5.0 (0.0) 1.0 (0.0) 19.6 (0.9) 4.0 (0.0) 29.6 (0.5) 19.9 (0.3) 66.3 (0.6) 42.0 (0.3)

p0
5 next 1.0 (0.0) 1.0 (0.0) 4.4 (0.5) 1.0 (0.0) 12.0 (0.2) 6.0 (0.0) 43.6 (0.7) 8.0 (0.0) 84.4 (1.3) 27.4 (0.8)

best 1.0 (0.0) 1.0 (0.0) 4.3 (0.4) 1.0 (0.0) 12.0 (0.0) 6.0 (0.0) 43.6 (0.6) 8.0 (0.0) 84.8 (1.5) 27.5 (1.0)

p0
6 next 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 2.5 (1.5) 1.0 (0.0)

best 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 2.5 (1.5) 1.0 (0.0)

p0
7 next 16.6 (0.8) 16.9 (1.1) 34.3 (1.0) 33.0 (0.9) 76.7 (1.0) 66.7 (1.8) 128.0 (1.1) 120.6 (0.9) 258.4 (1.3) 245.6 (0.7)

best 17.0 (1.0) 17.3 (1.0) 34.4 (0.8) 32.9 (0.9) 76.0 (1.1) 67.0 (2.0) 127.6 (1.0) 120.6 (1.0) 258.6 (1.6) 245.4 (0.8)

p0
8 next 2.0 (0.2) 2.0 (0.0) 2.0 (0.0) 1.9 (0.3) 2.0 (0.0) 2.0 (0.2) 1.4 (0.5) 1.4 (0.5) 3.0 (0.0) 3.0 (0.0)

best 2.0 (0.2) 1.9 (0.3) 1.9 (0.3) 2.0 (0.0) 1.9 (0.3) 2.0 (0.2) 1.3 (0.5) 1.3 (0.4) 3.0 (0.0) 3.0 (0.0)

p0
9 next 2.0 (0.2) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.0 (0.2) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0)

best 1.9 (0.3) 1.9 (0.3) 2.0 (0.2) 2.0 (0.0) 2.0 (0.0) 1.9 (0.3) 2.0 (0.0) 2.0 (0.2) 2.0 (0.0) 2.0 (0.0)

p1
0 next 1.0 (0.0) 1.0 (0.0) 4.0 (0.0) 4.0 (0.0) 7.0 (1.0) 8.3 (2.7) 12.0 (0.0) 8.0 (0.0) 33.9 (0.3) 39.0 (0.0)

best 1.0 (0.0) 1.0 (0.0) 4.0 (0.0) 4.0 (0.0) 7.0 (1.0) 9.9 (0.8) 12.0 (0.0) 8.0 (0.0) 33.8 (0.4) 39.0 (0.0)

m
00 next 10.7 (0.8) 13.5 (0.9) 8.3 (0.9) 8.8 (0.4) 8.4 (0.8) 9.9 (0.3) 19.9 (1.1) 15.4 (0.6) 33.8 (0.9) 29.9 (1.2)

best 10.9 (0.5) 13.3 (0.9) 8.1 (0.8) 8.9 (0.3) 7.7 (1.1) 10.0 (0.2) 19.9 (1.1) 15.6 (0.7) 33.8 (0.9) 29.9 (1.3)

Although the results for the pure user independent VNS approach are rather discour-
aging, it should be emphasized that the VNS was especially designed for integrating
user actions. Therefore, the approach was implemented in such a way that “forbidding”
or “enforcing” certain neighborhood relations of strips is possible and can be done ef-
ficiently. Extending the Lin-Kernighan based approach to this concept would include
the adaption of the values provided by the error estimation function such that “user-
forbidden” strip alignments cannot occur. Due to the fact that additional edges with
costs dependent on all other edges were introduced during the transformation of RSSTD
to TSP this adaption also effects other edges in the derived instance which results in
long runtimes on the one hand and impractical large edge weights on the other hand.

4.2.8. Computing Bounds for RSSTD via Lagrangian Relaxation

All approaches presented so far suffer from one main drawback: at no time, a lower
bound on the solution is given, i.e., non of these methods indicates how to evaluate
the improvement potential for a given solution provided by the automatic system. To
overcome this drawback, we propose a new method for computing lower bounds via

98

4.2. Strip Shredded Text Documents

Lagrangian relaxation (LR). For this approach it is necessary to first introduce an integer
linear programming (ILP) formulation which is then used as a base for the LR approach.
In addition, we present another method for computing lower bounds related to ILP
formulation(s) for the TSP.

Core ILP Formulation

Let us assume that variable sω
jj′ ∈ {0, 1}, with 1 ≤ j, j′ ≤ n and ω ∈ O2, is equal to 1

iff strip j′ is the right neighbor of strip j and both are oriented according to ω. For the
artificial strip n we define snj′ = 1, iff strip j′ is placed at position 1, i.e., the artificial
strip is considered to be followed by the first strip. Using this variable definition the
following model can be expressed, which provides a basis for the later proposed ILP
formulations (for short we write d instead of 1 ∈ O and u instead of 0 ∈ O):

min
∑
j∈S

∑
j′∈S

∑
ω∈O2

sω
jj′ · c(j, j′, ω) (4.19.1)

∑
j′∈S

∑
ω∈O2

sω
jj′ = 1, ∀j ∈ S (4.19.2)

∑
j∈S

∑
ω∈O2

sω
jj′ = 1, ∀j′ ∈ S (4.19.3)

∑
j′∈S

s
(d,u)
jj′ + s

(d,d)
jj′ =

∑
j′∈S

s
(u,d)
j′j + s

(d,d)
j′j , ∀j ∈ S (4.19.4)

∑
j′∈S

s
(u,d)
jj′ + s

(u,u)
jj′ =

∑
j′∈S

s
(d,u)
j′j + s

(u,u)
j′j , ∀j ∈ S (4.19.5)

∑
ω∈O

sω
jj′ +

∑
ω∈O

sω
j′j ≤ 1, ∀j, j′ ∈ S (4.19.6)

sω
jj = 0, ∀j ∈ S, ω ∈ O2 (4.19.7)

sω
jj′ ∈ {0, 1}, ∀ω ∈ O2, j, j′ ∈ S (4.19.8)

While the total costs for an assignment of strips to each other should be minimized
according to expression (4.19.1), constraints (4.19.2) and (4.19.3) state that each strip
j, with 1 ≤ j ≤ n, has to be followed and preceded by exactly one strip, i.e., exactly
one strip has to be assigned to the position right to strip j and one left to j. If a strip j
precedes strip j′ it is obvious that strip j follows another strip. Anyhow, the orientation
of strip j has to be the same for both relations, see Eq. (4.19.4) and (4.19.5). As soon
as one strip j is preceding another strip j′ strip j cannot be placed right next to j′, cf.
Eq. (4.19.6).

99

Chapter 4. Reconstruction of Destructed Documents

Cycle Elimination Cuts

Due to the strong relationship of RSSTD to (A)TSP it is obvious that optimal solutions
with respect to formulation (4.19) can in general contain subtours, which are not valid
for RSSTD. Therefore, we decided to implement and compare two different approaches
for preventing subtours. The first one is based on cycle elimination constraints, which
can be expressed as follows:∑

k∈C

∑
ω∈O2

sω
kk+1 ≤ |C| − 1, ∀∅ 6= C ⊂ S, for |C| is a cycle, (4.20)

whereas C corresponds to cycles of length less than |S| and k+1 denotes the strip placed
right to strip k on this cycles.

Since the number of constraints specified by expression (4.20) is exponential in the
number of strips, an efficient dynamic separation of these constraints as cutting planes
is necessary for computing practical results. This is done by first building a complete
graph G(V, E) whose nodes v ∈ V correspond to strips. The weights of the edges
(i, j) ∈ E are set to 1 −

∑
ω∈O2 sω,LP

ij , where sω,LP
ij are the current values of the LP

solution. Any cycle ∅ 6= C ⊂ E in this graph, whose length is less than 1 corresponds to
a violated cut. Therefore, these cuts can be separated by computing shortest paths from
i to j after removing the corresponding edge (i, j) ∈ E from the graph, with i, j ∈ V .

Although, from a theoretical point of view, cycle elimination cuts are in general weaker
than subtour elimination cuts (4.21)∑

k∈C

∑
k′∈C

∑
ω∈O2

sω
kk′ ≤ |C| − 1 ∀∅ 6= C ⊂ S, (4.21)

i.e., every cycle elimination cut is satisfied in a model including subtour elimination cuts,
the separation of the latter is more complex and in most cases more time demanding [99].
We therefore decided to use the more efficient cut separation method to be able to obtain
as fast as possible lower bounds on RSSTD, although slightly better bounds might be
achieved by considering subtour elimination cuts.

Compact ILP Formulation

The second approach for eliminating cycles is based on the introduction of additional
variables pij ∈ {0, 1}, with 1 ≤ i, j ≤ n, whereas pij is equal to 1 iff strip j is assigned
to position i and otherwise 0. Then the following constraints can be defined:

n∑
i=1

pij = 1, ∀j ∈ S (4.22.1)

100

4.2. Strip Shredded Text Documents

∑
j∈S

pij = 1, ∀i = 1, . . . , n (4.22.2)

p1j′ =
∑

ω∈O2

sω
nj′ , ∀j′ ∈ S (4.22.3)

pn−1j =
∑

ω∈O2

sω
jn, ∀j ∈ S (4.22.4)

pij + pi+1j′ − 1 ≤
∑

ω∈O2

sω
jj′ , ∀

{
i = 1, . . . , n− 2,

j, j′ ∈ S
(4.22.5)

pnn = 1 (4.22.6)
pij ∈ {0, 1}, ∀i = 1, . . . , n, j ∈ S (4.22.7)

Due to constraints (4.22.1) and (4.22.2) it is assured that each strip is assigned to exactly
one position and vice versa. Anyhow, a connection between variables p and s has to be
established. This is done by Eq. (4.22.3), (4.22.4) and (4.22.5). If strip j is assigned to
position i and strip j′ to position i + 1 then the according variables sω

jj′ , with ω ∈ O2,
have to be set to one. Finally, constraint (4.22.6) ensures that the artificial strip is
assigned to position n.

In contrast to a formulation based on cycle elimination cuts the number of constraints
(and variables) is polynomially bounded for a model based on Eq. (4.22.1) to (4.22.7).
Obviously this comes with the advantage that all constraints can be included in the
model from the beginning and therefore a time demanding separation procedure is not
needed.

In the further context, we will denote the two above presented formulations by cycle
elimination based formulation (CEF) and position assignment based formulation (PAF),
whereas CEF corresponds to the core formulation (4.19) amended by constraints (4.20)
and PAF refers to formulation (4.19) together with expressions (4.22). For practical
results regarding the direct solution of these two formulations by using CPLEX we refer
to the results presented at the end of this section.

An obviously interesting question now is, whether the bounds obtained from the LP
relaxations of CEF or PAF are better, i.e., which of the two formulations are tighter [139].
It can be shown by an example that there exists at a fractional solution which is valid
with respect to the relaxed version of PAF but contains subcycles, i.e., for which at least
one constraint contained in expression (4.20) is violated. For a pictorial presentation
of this example see Fig. 4.12, whereas circles represent strips and squares correspond
to positions. Accordingly, the arrows from circles to square represent variables pij and
variables sjj′ are represented by arrows between circles. Only variables with values
greater than zero are shown. The concrete values of the variables are as follows: Let

101

Chapter 4. Reconstruction of Destructed Documents

Figure 4.12.: A schematic presentation of a solution valid with respect to PAF. Strips
are presented by circles and positions by rectangles.

us assume that n = 6, then the following assignment of values to the variables forms a
valid PAF solution: p21 = p22 = p23 = 1/3, p31 = p32 = p33 = 1/3, p41 = p42 = p43 = 1/3,
p14 = p15 = 1/2, p54 = p55 = 1/2 and p66 = 1. All other p-variables are set to 0.
For the sequence variables we set the values sω

12 = sω
23 = sω

31 = 1 and sω
45 = sω

54 =
sω
56 = sω

65 = sω
46 = sω

64 = 1/2, with ω = (0, 0). Since pij ≤ 1/2, for i = 1, . . . , 5 and
j ∈ S, pij + pi+1j′ − 1 ≤ 0, for i = 1, . . . , 4 and j, j′ ∈ S, holds. Since 0 ≤ sω

jj′ , for
j, j′ ∈ S, ω ∈ O2, constraints (4.22.5) are fulfilled. It can be easily checked that all other
constraints (4.22.1), (4.22.2), (4.22.3), (4.22.4) and (4.22.6) are fulfilled, too. However,
constraint (4.20) is violated by setting C = {1, 2, 3}. Although by this example it is
shown that PAF is not stronger than CEF the reverse, i.e., whether CEF is stronger
than PAF, remains an open question.

Lagrangian Relaxation for RSSTD

Preliminary tests revealed that the application of exact approaches to RSSTD, e.g., a di-
rect solution of CEF and PAF using general purpose ILP solvers, is limited to relatively
small instances. Therefore, heuristic methods are of great importance when trying to
solve real-world instances. Anyhow, one main drawback of many heuristics is the lack of
providing (tight) bounds on the solution quality. To overcome this problem one could
solve the linear programming (LP) relaxation of CEF or PAF; see the end of this section
for computational results. In addition, we developed a Lagrangian relaxation (LR) ap-
proach based on PAF. The main idea of LR is to substitute complicating constraints by
corresponding penalty terms in the objective function. For this purpose, each relaxed
constraint is associated with a so called Lagrangian multiplier. Subsequently, one tries
to find a set of Lagrangian multipliers that maximizes the associated lower bound for
the original minimization problem.

For this purpose we relax the linking constraints (4.22.3)–(4.22.5) of PAF resulting in

102

4.2. Strip Shredded Text Documents

the following new objective function:

min
∑
j∈S

∑
j′∈S

∑
ω∈O2

sω
jj′ · c(j, j′, ω)+

∑
j′∈S

λ1
j′ ·

p1j′ −
∑

ω∈O2

sω
nj′

+

∑
j∈S

λ2
j ·

pn−1j −
∑

ω∈O2

sω
jn

+

n−2∑
i=1

∑
j∈S

∑
j′∈S

λ3
i,j,j′ ·

pij + pi+1j′ − 1−
∑

ω∈O2

sω
jj′



(4.23)

After applying some basic transformations and substituting constant expressions by
(newly introduced) coefficients ρij , σω

jj′ and δ, with 1 ≤ i, j, j′ ≤ n and ω ∈ O2, the LR
approach can be reformulated as follows:

min
∑
j∈S

n−1∑
i=1

(ρij · pij)︸ ︷︷ ︸
SP I

+
∑
j∈S

∑
j′∈S

∑
ω∈O2

(
σω

jj′ · sω
jj′
)

︸ ︷︷ ︸
SP II

+ δ (4.24)

subject to Eq. (4.19.2)–(4.19.8), (4.22.1), (4.22.2), (4.22.6), and (4.22.7)

with

ρ1j = λ1
j +

n∑
j′=1

λ3
i,j,j′ +

n∑
j′=1

λ3
i,j′,j , ∀j ∈ S (4.25)

ρij = λ2
j +

n∑
j′=1

λ3
i,j,j′ +

n∑
j′=1

λ3
i,j′,j , ∀

{
i = 2, . . . , n− 2
j ∈ S

(4.26)

ρn−1j = λ2
j +

n∑
j′=1

λ3
n−1,j′,j , ∀j ∈ S (4.27)

σω
j,j′ = c(j, j′, ω)−

n−2∑
i=1

λ3
i,j,n, ∀

{
ω ∈ O2

j, j′ ∈ S \ {n}
(4.28)

σω
n,j = c(n, j, ω)− λ1

j −
n−2∑
i=1

λ3
i,n,j , ∀

{
ω ∈ O2

j ∈ S \ {n}
(4.29)

103

Chapter 4. Reconstruction of Destructed Documents

σω
j,n = c(j, n, ω)− λ2

j −
n−2∑
i=1

λ3
i,j,n, ∀

{
ω ∈ O2

j ∈ S \ {n}
(4.30)

σω
n,n = c(n, n, ω)− λ1

n − λ2
n −

n−2∑
i=1

λ3
i,n,n, ∀ω ∈ O2 (4.31)

δ = −
∑
j∈S

∑
j′∈S

n−2∑
i=1

λ3
i,j,j′ (4.32)

Based on the fact, that the coefficients ρ, σ and δ are composed of linear combinations
of λ1, λ2, λ3 and the cost function c, see Eq. (4.25)–(4.32), it can be observed that
the above formulation decomposes into two independent subproblems only linked by the
objective function (4.24). The first subproblem SP I formulated via variables pij , with
1 ≤ i ≤ n− 1 and j ∈ S, corresponds to a linear assignment problem. It is well known
that this problem can be efficiently solved. The second subproblem SP II formulated
via variables sω

jj′ , with j, j′ ∈ S and ω ∈ O2, corresponds to the generalized version of
the so-called cycle cover problem which is polynomially solvable in the non-generalized
variant [67]. In our case it was, however, shown that this problem is NP-hard [55].
Consequently, it can be easily shown that the integrality property does not hold for
SP II, which implies that bounds provided by our LR approach might be better than
those provided by an LP relaxation of PAF [11].

For computing lower bounds by means of LR, we implemented a standard subgradient
method as described in [11] by initializing all Lagrangian multipliers to 0 and setting the
strategic parameter π = 2. The value of π is halved as soon as 30 subgradient iterations
without improvement on the lower bound were performed. In contrast, π is doubled when
an improvement could be achieved and π ≤ 1 holds. This iterative process is terminated
once π falls below 0.001 or the lower bound provided by this method corresponds to the
best known upper bound, which is iteratively updated based on the solutions generated
by the Lagrangian heuristic presented within the next section. For solving subproblems
SP I and SP II we directly applied the general purpose ILP solver CPLEX 11.2. Again,
we refer to results presented at the end of this section for a detailed listing including a
comparison of bounds obtained via LP relaxations and those obtained via LR.

A Lagrangian Heuristic

Based on the LR presented in the previous section, we further developed a Lagrangian
heuristic (LH) which provides feasible solutions to the original problem based on the
values of the relaxed ILP. The main idea is to decode the neighborhood relations and
orientations of strips such that a feasible solution is generated. Since the absolute po-
sitions of strips, i.e., the values of variables pij , are not necessarily consistent with the

104

4.2. Strip Shredded Text Documents

relative positions, i.e., the values of variables sω
jj′ , we decided to neglect the informa-

tion about the absolute position within this decoding step and derive a feasible solution
from the relative positions only, which also primarily contribute to the objective func-
tion. Since the virtual strip n is placed at the last position (see Eq. (4.22.6)), we start
the decoding by placing this strip at position n. According to the values of sω

jn, with
1 ≤ j ≤ n − 1 and ω ∈ O2, we place that strip j at position n − 1 which has a corre-
sponding variable sω

jn
equal to 1. Of course, the orientation of the strip is also regarded.

This method is applied iteratively as long as not already positioned strips are concerned.
In the case of a cycle, we restart the method by placing a randomly chosen and so far
not positioned strip at the last yet free position.

Since any permutation of strips with the artificial strip placed at the last position forms
a valid solution, this method always provides feasible solutions. Further, by using ap-
propriate datastructures the runtime of this approach is in O(n2) as for each position at
most 4n variables have to be evaluated.

Experimental Results

To evaluate the performances and the contributions of the above presented approaches,
we applied them to instances of RSSTD. For generating instances, we used those docu-
ments introduced by Ukovich et al. in [134], which were then converted into B/W images
and were (virtually) cut into 80 to 135 strips, each. These settings correspond to strip
widths of 2.6mm to 1.5mm. The test results presented within this section were obtained
on a single core of an Intelr Core™2 Quad CPU with 8GB RAM and 2.83GHz and
ILOG CPLEX 11.2 has been used as general purpose (I)LP solver.

For computing lower bounds by means of LR we implemented the standard subgradient
method, whereas the upper bound is updated based on the solutions provided by the
proposed LH. The Lagrangian multipliers were all initialized to 0. Obviously, the exe-
cution of the subgradient method is aborted as soon as the lower and upper bound are
identical. We analyzed the bounds provided by LR and the LP relaxation of CEF and
PAF on 560 instances in total and the main result is that in most cases, i.e., in 517 out of
560, the obtained bounds are equal. Only for 43 instances of which all where generated
based on the first document page of the test set introduced by Ukovich et al. a difference
in the quality of the bounds could be identified. The corresponding results are shown
in Tab. 4.5, whereas the first column indicates the number of strips the page was cut
into and the second column lists the absolute objective values of the original document
pages. The columns labeled with UB represent the lower bound obtained via LR, CEF
and PAF, respectively. These numbers represent the relative values in relation to the
objective value of the original document. The column labeled with LB represents the
upper bound provided by LH during LR. The number of iterations performed during LR

105

Chapter 4. Reconstruction of Destructed Documents

Table 4.5.: Results comparing the bounds obtained by the proposed LR and the LP
relaxation of CEF in relation to the original document page (orig.). In addition the
number of LR iterations until LR was terminated are provided.

LR CEF PAF
strips orig. LB UB iter. time [s] LB time [s] LB time [s]
80 29408 99.8232% 99.8232% 1.0 2.2 (0.3) 99.5103% 0.1 99.5103% 86.8
81 29408 99.8232% 99.8232% 1.0 2.3 (0.4) 99.5103% 0.1 99.5103% 129.2
86 31494 99.6444% 99.6444% 1.0 1.3 (0.2) 99.4253% 0.1 99.4253% 24.7
87 31494 99.6444% 99.6444% 1.0 1.3 (0.3) 99.4253% 0.1 99.4253% 20.6
88 31494 99.6444% 99.6444% 1.0 1.3 (0.2) 99.4253% 0.1 99.4253% 14.0
89 32774 99.8047% 99.8047% 1.0 2.4 (0.5) 99.6217% 0.1 99.6217% 14.3
90 32774 99.8047% 99.8047% 1.0 2.5 (0.4) 99.6217% 0.1 99.6217% 28.2
91 32440 100.0000% 100.0000% 1.0 2.8 (0.4) 99.7534% 0.1 99.7534% 148.6
92 32440 100.0000% 100.0000% 1.0 2.8 (0.5) 99.7534% 0.1 99.7534% 235.3
93 32440 100.0000% 100.0000% 1.0 2.5 (0.4) 99.7534% 0.1 99.7534% 115.7
96 36256 100.0000% 100.0000% 1.0 4.7 (0.6) 99.7269% 0.1 99.7269% 192.1
97 36256 100.0000% 100.0000% 1.0 4.8 (0.8) 99.7269% 0.1 99.7269% 430.3
98 36256 100.0000% 100.0000% 1.0 4.1 (0.7) 99.7269% 0.1 99.7269% 302.6
106 37122 99.9407% 99.9407% 1.0 5.1 (0.9) 99.6875% 0.1 99.6875% 345.9
107 37122 99.9407% 99.9407% 1.0 4.7 (0.8) 99.6875% 0.2 99.6875% 504.8
108 37122 99.9407% 99.9407% 1.0 4.7 (0.9) 99.6875% 0.1 99.6875% 237.0
109 38694 99.8346% 103.9565% 331.0 1612.6 (83.8) 99.6614% 0.2 99.6614% 377.2
110 38694 99.8346% 104.2399% 331.0 1637.4 (105.0) 99.6614% 0.2 99.6614% 254.1
111 38694 99.8346% 104.5810% 331.0 1601.1 (93.7) 99.6614% 0.1 99.6614% 302.4
112 38694 99.8346% 103.0356% 331.0 1606.8 (86.6) 99.6614% 0.1 99.6614% 367.5
113 39836 99.9699% 99.9699% 1.0 4.2 (0.7) 99.6034% 0.1 99.6034% 473.5
114 39836 96.6375% 96.6375% 1.0 4.1 (0.8) 99.6034% 0.1 99.6034% 380.0
115 39836 99.9699% 99.9699% 1.0 4.0 (0.8) 99.6034% 0.1 99.6034% 458.9
116 39836 93.3052% 93.3052% 1.0 4.0 (0.8) 99.6034% 0.2 99.6034% 425.7
117 39926 99.8397% 104.2131% 331.0 2195.9 (167.0) 99.6569% 0.1 99.6569% 449.3
118 39926 99.8397% 104.3895% 331.0 2157.3 (134.1) 99.6569% 0.2 99.6569% 426.0
119 39926 99.8397% 103.6462% 331.0 2137.8 (151.1) 99.6569% 0.1 99.6569% 508.1
120 39962 99.8398% 103.9471% 331.0 2387.2 (282.4) 99.6572% 0.3 99.6572% 313.9
121 42422 99.7737% 99.7737% 1.0 7.4 (0.7) 99.5780% 0.2 99.5780% 554.6
122 42422 99.7737% 99.7737% 1.0 6.2 (1.0) 99.5780% 0.2 99.5780% 516.6
123 42422 99.7737% 99.7737% 1.0 7.1 (1.0) 99.5780% 0.2 99.5780% 629.1
124 42422 99.7737% 99.7737% 1.0 6.9 (1.2) 99.5780% 0.3 99.5780% 610.2
125 42454 96.4481% 96.4481% 1.0 8.4 (1.6) 99.5784% 0.3 99.5784% 629.1
126 44682 93.2247% 93.2247% 1.0 7.7 (1.7) 99.6598% 0.2 99.6598% 626.5
127 44682 96.5542% 96.5542% 1.0 7.8 (1.5) 99.6598% 0.2 99.6598% 597.9
128 44682 96.5542% 96.5542% 1.0 7.7 (1.6) 99.6598% 0.3 99.6598% 677.3
129 44728 96.5543% 96.5543% 2.0 12.1 (2.4) 99.6602% 0.3 99.6602% 829.8
130 44728 99.8837% 99.8837% 2.0 12.6 (2.1) 99.6602% 0.3 99.6602% 851.7
131 45698 99.9912% 99.9912% 1.0 9.3 (1.9) 99.7505% 0.2 99.7505% 705.8
132 45698 96.6582% 96.6582% 1.0 10.1 (2.0) 99.7505% 0.3 99.7505% 678.9
133 45698 99.9912% 99.9912% 1.0 9.8 (1.6) 99.7505% 0.3 99.7505% 656.5
134 45698 99.9912% 99.9912% 1.0 10.4 (1.2) 99.7505% 0.2 99.7505% 694.0
135 45698 96.6582% 96.6582% 1.0 10.2 (1.7) 99.7505% 0.3 99.7505% 809.1

106

4.2. Strip Shredded Text Documents

Figure 4.13.: If this set of strips has to be reconstructed, not all Lagrangian multipliers
are set to zero in the set of optimal multipliers when using the LR approach.

is shown in column iter and obviously, the column labeled with time represents the time
used for computing the lower bounds. The values for the LR approach are averages over
30 iterations. The standard deviations for the times are shown in the parentheses. For
the lower and upper bounds as well as the number of iterations the standard deviation
is equal to 0 and therefore omitted. In case the number of iterations is equal to 1 the
solution derived by our LH approach by setting all Lagrangian multipliers to 0, i.e.,
solving the core formulation (4.19) solely, is proven optimal.

The following two observations can be made based on the test results: first of all the
bounds obtained by our LR approach are typically equal or better than the bounds pro-
vided by an LP formulation using cycle elimination constraints. We assume, however,
that this behavior is mainly based on the objective function used for estimating the
likelihood of placing two strips next to each other. Furthermore we expect to empha-
size this positive property of our cost function when considering more problem specific
information by calculating the concrete cost values, e.g., by considering the character ori-
entations, applying optical character recognition (OCR), or incorporating the likelihood
that two patterns identified on the corresponding strip edges match with each other. In
that case we assume that the error made by the cost function is even further minimized.

The second conclusion which can be drawn from the results is that the number of iter-
ations until our LR approach terminates is typically low (even for those instances not
listed in this table). In most cases there is even only one iteration. For some instances,
however, it was not possible to improve the bound obtained during the first iteration of
LR, but at the same time LH was not able to provide a primal feasible solution with
identical objective value. Again, we expect to improve on this issue by adapting the cost
function as already indicated above.

When comparing the CPU times, it can be seen that the CEF approach was clearly the
fastest one. Especially the results for PAF are extremely bad (with respect to the CPU
times). The LR performed worst for those instances where the optimal bound could not
be found within few iterations.

Based on this observation the initialization of the Lagrangian multipliers to zero seems
not only to be valuable but to be the only reasonable approach for providing good bounds

107

Chapter 4. Reconstruction of Destructed Documents

Table 4.6.: Comparison of computation times and solution qualities of PAF and CEF
when directly solved using CPLEX 11.2. Numbers without parentheses indicate CPU
times in seconds until the optimal solution was obtained (including optimality proof)
whereas numbers in parentheses indicate the relative gap of current best integer and
best dual bounds after 1200 seconds of computation time.
strips 20 30 40 50 60 70 80 90 100
inst. PAF/CEF PAF/CEF PAF/ CEF PAF/ CEF PAF/ CEF PAF/ CEF PAF/ CEF PAF/CEF PAF/ CEF
m01 0.3/ 0.3 2.0/ 0.6 (0.04)/(0.07) (0.50)/(0.02) (0.01)/(0.10) (0.80)/(0.01) (0.80)/(0.01) 1200.2/ 42.5 (0.81)/ 68.2
m02 0.5/ 0.1 7.9/ 0.3 311.1/ 0.7 (0.52)/ 1.2 (0.83)/ 7.8 (0.84)/ 4.0 (0.84)/ 6.8 (0.83)/ 19.8 (0.83)/ 149.1
m03 0.2/ 0.1 72.2/ 0.6 1.3/ 0.3 30.7/ 0.6 (0.44)/ 1.1 (0.77)/ 2.4 102.6/ 2.7 (0.80)/ 4.1 (0.80)/ 4.2
m04 0.1/ 0.1 7.3/ 0.2 18.7/ 0.2 117.5/ 0.6 (0.77)/ 1.3 (0.12)/ 0.9 (0.16)/ 2.8 (0.11)/ 28.1 (0.80)/ 5.6
m05 0.1/ 0.1 0.5/ 0.1 1.2/ 0.5 101.8/ 0.2 (0.18)/ 2.4 249.9/ 1.2 290.4/ 0.7 (0.56)/ 7.1 (0.71)/(0.06)
m06 1.1/ 0.0 67.0/ 0.2 1.1/ 0.4 (0.18)/ 0.7 (0.29)/ 0.7 (0.09)/ 1.9 148.9/ 5.2 813.1/ 23.2 720.5/ 4.7
m07 0.1/ 0.1 0.4/ 0.1 4.0/ 0.5 281.9/ 0.2 (0.34)/ 1.8 (0.20)/ 1.1 (0.41)/ 0.8 (0.69)/ 2.4 (0.77)/ 17.3
m08 0.2/ 0.1 0.8/ 0.1 108.4/ 0.8 7.7/ 0.2 (0.42)/ 0.8 (0.20)/ 1.0 (0.75)/ 0.8 (0.76)/ 4.4 174.1/ 2.5
m09 0.2/ 0.1 0.8/ 0.3 147.3/ 0.7 (0.24)/ 1.0 (0.21)/ 0.9 676.7/ 0.5 (0.64)/ 1.6 150.8/ 2.5 (0.76)/ 2.5
m10 0.5/ 0.1 1.8/ 0.3 306.6/ 0.3 (0.78)/ 1.1 637.1/ 2.0 (0.78)/ 2.6 (0.79)/ 4.7 (0.78)/ 14.4 (0.78)/ 6.2

as well as solving RSSTD. Nevertheless, not for all instances all Lagrangian multipliers
are set to zero in the optimal set of multipliers. See for example the document shown
in Fig. 4.13. When realigning these strips some multipliers have to be set to values not
equal to zero for eliminating the cycles implied by the first two strips as well as the third
and the fourth strip.

In addition to the experiments listed in Tab. 4.5 we tested to directly solve the above
presented ILP formulations via CPLEX. The corresponding results are listed in Tab. 4.6.
For this test setting we used again the document pages introduced by Ukovich et al. This
time, however, they were cut into 20 to at most 100 strips each, since preliminary tests
revealed that the direct application of the general purpose ILP solver CPLEX to the
above presented ILP formulations can be very time-consuming and for more than 110
strips the computation times did in most cases exceed a given time limit of 1200 seconds.

The numbers presented in Tab. 4.6 should be interpreted as follows: We present for each
document page (m01–m10) and number of strips (20–80) the time (in seconds) until the
optimal solution was found (and its optimality was proven). In case the optimal solution
was either not reached or was not proven to be optimal within 1200 seconds of available
computation time we present the relative gap of the so far best found integer solution
and the dual bound computed by CPLEX in parentheses.

As can be seen, the numbers in Tab. 4.6 show that by directly applying CPLEX to the
two ILP formulations, CEF leads to far better results than PAF. More specifically, for
almost all instances with 50 or more strips optimal solutions could be obtained via CEF
in some seconds of computation time. For only a few instances of that sizes even CEF
could not lead to proven optimal solutions. Furthermore, for those instances with less
than 50 strips, CEF provided more often the optimal solution and even in case both

108

4.2. Strip Shredded Text Documents

formulations could achieve optimality the computation times for the approach based on
CEF where in most cases shorter.

Although Tab. 4.6 implies that solving a model based on CEF via CPLEX is much more
efficient, the bounds obtained via the LR/LH approach are a little bit more promising
than the results computed by the LP relaxation of CEF. Since the runtimes until the
bounds were achieved did relatively strongly vary for both approaches no clear state-
ment can be given which of the two different approaches for computing dual bounds is in
the given case faster. Nevertheless, both the LR/LH approach and the computations of
LP relaxations provide a good toolkit for producing valuable (lower) bounds. Further-
more, the LH often provides the optimal solution within a few iterations of the LR/LH
approach.

4.2.9. Discussion of Related and Arising Problems

Based on the results presented in the above sections, it can be seen that reconstructing
strip shredded text documents involving few pages can be done quite effective—at least
from the algorithmic point of view. However, there are some issues which should be
discussed a little bit more in detail.

Issues Related to the Error Estimation Function

The most crucial part of the above presented methods is the error estimation function.
Although many (preliminary) tests with different definitions of error estimation functions
revealed that the two used within this thesis are the most promising ones, it is very
easy to find examples of documents for which the error estimation completely fails.
Nevertheless, as already discussed previously, there exists no generally “perfect” error
estimation function since in some cases even humans are not able to decide which of
two possible strip alignments is the correct one. In many situations the intuition of
humans is, however, reliable and user can provide valuable information such that the
reconstruction process can be optimally performed. Therefore, any automatic document
recovery system must finally rely on the input of users indicating whether or not the
reconstructed pages are sound.

Another point of critique which might be formulated in relation to the methods presented
in this chapter is the fact that all test instances were automatically generated, i.e.,
especially the cutting process was not performed using real shredders but by doing it
virtually. As shown by Ukovich et al. [132] the extraction of features from “real” shredded
documents performs equally good as from virtually shredded documents. Based on this
observation we performed some experiments using a standard shredder as found in our

109

Chapter 4. Reconstruction of Destructed Documents

(a) (b) (c) (d)

Figure 4.14.: A scan of shreds indicating that the amount of information lost along the
edges is minimal.

office as well as a flatbed scanner. For an exemplary scan of two matching shreds see
Fig. 4.14. In addition the reconstructing of virtually shredded documents were performed
for testing the applicability of the proposed approaches and methods. Clearly, for any
real-world reconstruction system it is necessary that an automatic device is developed
for scanning, extracting and rotating strips which in the following can be evaluated using
an error estimation function respecting noise induced during the cutting and scanning
process. For example, the error estimation function could be advanced in such a way that
not the pixels directly located at the strip’s edges are used for extracting edge information
but those pixels being located two or three layers away from the edge, cf. [10].

However, it turned out that for the reliability of the error estimation function the reso-
lution used for scanning the images is much more impact then the “perfectness” of the
cuts. When using higher resolutions, the number of pixels and therefore the information
along the edge is obviously higher. Let us remark that on the one hand the appropri-
ate resolution can be chosen by the user of the automatic reconstruction system since in
most cases the data acquisition process will be part of such a system. On the other hand,
tests showed that using a “standard” resolution of 150dpi is in most cases adequate.

To further enhance the results obtained by our methods we additionally tried a set of
more “advanced” error estimation functions trying the incorporate the complexity of the
pattern shown along the edges. For example, we defined a relative error estimation which
is simply the normalization of the absolute value obtained by Eq. (4.12) to values in the
interval [0; 1]. Additionally, we tried methods for counting (and matching) larger blocks
of black pixels to blocks of black pixels on the corresponding edge of the second shred. A
third approach tried to compute a indicator on how good a matching between two shreds
is based on the number of (other) shreds having a similar absolute error estimation value
with respect to Eq. (4.12). However, it turned out that all of the approaches increased the
obtained results for some instances but simultaneously worsened the results for other in-
stances. On average error estimation function c2, see Eq. (4.12), yielded the best results.

Obviously, for any recovery system to be used for real-world documents during forensic
investigations it is necessary that the error estimation function respects information
gathered from the strips using pattern recognition and/or image processing methods
like line spacings, top and bottom margins, text color, background color and many

110

4.2. Strip Shredded Text Documents

others. Obviously, the times for computing any such error estimation function will raise
but at the same time the robustness of the method should increase too.

Finally, it was mentioned in the beginning of this section that we assume that the back
face of the strips is blank. It is, however, relatively easy to extend the presented error
estimation functions such that the information on the back face is regarded too. Never-
theless one should keep in mind that, obviously, beside the decision on the orientation
of the strips it would also be necessary to decide which of the two faces is the front of
the strip. Therefore, the search space is enlarged and obviously the one expects the run-
ning times to increase too. At the same time, this extension should positively effect the
correctness of the error estimation function since the information included is doubled.

Multilevel Refinement Strategy

While the methods proposed so far, mainly focus on the relative alignment of strips to
each other, i.e., the neighborhood relations, it would also be imaginable that absolute
position information is computed for individual strips. This would be of high interest,
especially for shredders with either various strip widths or if some of the knives are blunt
or even missing and therefore the properties of certain strips are significantly different
from other shreds, e.g., sharp versus frayed cuts or even twice as broad strips.

Another, from the algorithmic point of view, interesting extension would be the appli-
cation of so called multilevel refinement strategies [136, 137]. The basic idea of such a
heuristic is to iteratively solve a given problem instance on different levels of abstraction
whereas representations on higher levels normally correspond to easier to solve instances,
e.g., due to smaller instance size. Using the concepts of coarsening and refinement the
different entities of the instance can be transformed into each other such that solutions
on a higher level can be “extended” to solutions on a lower level and vice versa. Obvi-
ously, this process can be iterated in both directions until no further improvements can
be achieved. For a survey on multilevel refinement strategies including successful ap-
plications to several combinatorial optimization problems, including graph partitioning
and the traveling salesman problem we refer to [136, 137].

In our case, the coarsening step would include the building of blocks or meta-strips which
consist of two or more matched strips. It is therefore easy to generate instances of smaller
size, i.e., with less strips, which can then be solved using the above presented methods.
During the refinement the meta-strips are then loosened such that previously fix matched
strips can be separated and moved independently of each other. While the building of
meta-strips can be done based on heuristics using the error estimation function, this
step can also be performed based on the input of humans using an user guided search
as proposed in Sec. 4.2.7.

111

Chapter 4. Reconstruction of Destructed Documents

(a) (b)

Figure 4.15.: Two different possible cutting patterns.

4.3. Cross Cut Shredded Text Documents

Beside the option to cut documents into strips there is also the possibility to use so-
called cross cut shredders which cut the document along both the x- and the y-axis into
small rectangular shreds whose heights and widths differ from the height and width of
the original document, respectively. While the vertical cutting is done in a similar way
as for strip shredders, i.e., each cut starts at the top of the page and continues until the
end of the page, the horizontal cut is either also running from one document edge to the
other or the cuts are much shorter, i.e., reaching only from one vertical cut to the next,
and vertically shifted, see for an illustration Fig. 4.15.

In this section, we focus on cutting patterns like the one shown in Fig. 4.15a only, i.e.,
we are given a set of strips all having (almost) the same rectangular shape with equal
widths and heights. Analogously to the reconstruction of strip shredded text documents
we assume that the back face of the shreds is blank and completely empty shreds are
supposed to be removed from the input. Furthermore, to simplify the problem we assume
that the orientation of the shreds is known. An extension of the model based on the
ideas already presented in the previous section is, however, straightforward possible.

While there is already a multitude of different approaches for the reconstruction of strip
shredded or manually riped up (text) documents, there is, to our best knowledge, no
work published focusing on the reconstruction of cross cut shredded text documents
(RCCSTD). However, some of the methods originally designed for the reconstruction of
strip shredded documents can be performed as preprocessing step, e.g., we refer to the
cluster methods presented in [134].

In the next section, we give a formal model for this problem, which also describes how
candidate solutions are represented in our approach. For quickly obtaining reasonable

112

4.3. Cross Cut Shredded Text Documents

initial solutions, different construction heuristics are described afterwards. Then, a gen-
eral variable neighborhood search (VNS) metaheuristic that utilizes several different
neighborhood structures within an embedded variable neighborhood descent local im-
provement procedure is described. As an alternative, an ant colony optimization (ACO)
approach that makes use of the same local improvement as VNS is proposed. Finally,
experimental results conclude this section documenting that the ACO usually obtains
better results than the VNS at the costs of longer running times.

4.3.1. Formal Problem Definition

We assume that a set S = {1, . . . , n} of rectangular, geometrically identical shreds is
given, which represent the output of a shredding device. Let shreds 1, . . . , n − 1 be
the shreds on which (parts of) the original document’s text is printed, while all blank
shreds are replaced by the single special shred n for modeling reasons. For simplicity,
we assume here that the orientation of all the shreds is known or is identified during a
preprocessing step based on pattern recognition techniques, see for example [16].

In addition, two error estimation functions (or cost functions) c(i, j) ≥ 0 and c(i, j) ≥ 0
are given. They estimate the potential error introduced when placing shred j right next
to shred i or by placing shred i on top of shred j, with i, j ∈ S, respectively. For this
section we assume that the error estimation function c2 represented by Eq. (4.12) is
straightforward adapted for representing c(i, j) and c(i, j), respectively. Unfortunately,
preliminary tests revealed that the performance of the above presented error estimation
functions suffer from the fact that due to the shorter edges of the shreds to be aligned
the information content is considerably reduced. Therefore, we extended the image data
from B/W images to grayscale images. Although this extension did not significantly
improve the results for the reconstruction of strip shredded text documents, it enhanced
the output of RCCSTD.

The goal of RCCSTD is to find an assignment of shreds to positions within a solution
such that the total costs induced by all realized neighborhoods are minimized. For
this purpose, we define a solution of RCCSTD as an injection Π : S \ {n} → D2 of
shreds to positions p = (x, y) in the two-dimensional (Euclidean) space, with x, y ∈ D =
{1, . . . , n− 1}, i.e., to each position is at most one shred assigned.

Furthermore, let

s(p) =

{
i if there exists a shred i ∈ S such that Π(i) = p

n otherwise
, ∀p ∈ D0

2, (4.33)

with D0 = {0, . . . , n}. I.e., if a shred is placed at position p, it is returned by s(p);
otherwise the position is assumed to be filled with the special empty shred n. Let

113

Chapter 4. Reconstruction of Destructed Documents

y = 1

y = 2

y = 3

y = n− 1

x
=

n
−

1

x
=

1

x
=

2

x
=

3

x
=

4

x
=

5

x
=

6

x
=

7

x
=

8

x
=

9

x
=

10

x
=

11

x
=

12

x
=

n
−

2

Figure 4.16.: Sketch of a solution. Any of the (n − 1) · (n − 1) available positions may
be occupied (dark shaded); all others are left free (light shaded).

us denote by sl(p), sr(p), st(p) and sb(p), with p = (x, y) ∈ D2, shreds s((x − 1, y)),
s((x+1, y)), s((x, y−1)) and s((x, y +1)), respectively, such that the costs of a solution,
i.e., the total potential error, can be defined as

c(Π) =
∑

p∈{1,...,n}2

c(sl(p), s(p)) + c(st(p), s(p)). (4.34)

A sketch of a solution is shown in Fig. 4.16. Note that rows and columns of the solution
may contain multiple entries of the virtual shred n, whereas all other shreds may not be
contained more than once.

Although this solution representation might look unhandy and many positions p ∈ D2

are empty, i.e., s(p) = n, this representation allows that well matching sequences of
shreds are not frequently forced to be wrapped at the end of a row or column due to a
limited number of rows or columns. Anyhow, an efficient implementation must always
bear in mind that there are large regions of the potential solution space D2 containing
no assigned shreds in S \{n}. If the dimensions of the original document are known, the
solution space may be defined smaller. Here, however, we want to stay more general.

Remark on Complexity

The problem as considered in this paper is obviously a generalization of the reconstruc-
tion of strip shredded text documents (RSSTD) since any RSSTD instance can also be
solved by any algorithm for RCCSTD. This can be achieved by requesting c(i, j) = ∞

114

4.3. Cross Cut Shredded Text Documents

for i, j ∈ S \ {n}. Obviously, any (optimal) solution to this so derived instance consists
of only one row having all shreds placed next to each other. Due to the NP-hardness
of RSSTD RCCSTD is NP-hard, too.

4.3.2. Construction Heuristics

For quickly creating reasonable initial solutions to be used by a VNS as well as an
ACO, we propose five different construction heuristics based on different ideas and ob-
servations. They mainly try to achieve good neighborhood relationships according to
function c(i, j) only, with i, j ∈ S, since function c(i, j) is merely conditionally mean-
ingful due to the observation that the width of a shred is in comparison to its height
typically relatively small in practice, see also Fig. 4.16. Furthermore, if a horizontal cut
occurred between two lines of written text, i.e., no letters or other printed characters
were cut, the corresponding edges are blank and therefore no reliable conclusion on the
shreds vertical placement can be drawn.

Greedy Matching Heuristic

In the greedy matching heuristic (GMH) a first intermediate solution is generated by
grouping the shreds into pairs. In each iteration, the pair of shreds that is most likely
placed side by side in horizontal direction, i.e., the pair (i, j) that minimizes function
c(i, j), with i, j ∈ S \ {n}, is chosen. These two shreds are then removed from further
consideration and the search for pairs is continued until all shreds got assigned partners.
In the case of an odd number of snippets, a remaining one is not matched. Now, the
whole process is iterated, trying to find best matchings of larger and larger sequences,
until one long sequence of shreds is obtained. Finally, this single sequence is broken apart
into multiple lines such that the end of each row except the last one, which contains all
remaining shreds, is a shred having a blank right edge.

Perfect Matching Heuristic

Similarly to GMH the perfect matching heuristic (PMH) tries to iteratively find match-
ings of shreds in S \{n}. In contrast to GMH, this is not done using a greedy procedure
but by finding a perfect minimum costs matching in each iteration. Obviously, a nearly
perfect matching is computed if |S \ {n} | is odd. The resulting single row of snippets
is, analogously to GMH, split into multiple lines. The matching is obtained via directly
solving the following integer linear programming (ILP) formulation (4.35) by applying

115

Chapter 4. Reconstruction of Destructed Documents

manThe
Figure 4.17.: An example for a cutting such that a blank edge and a non-blank edge
have to be matched in a perfect solution.

the general purpose ILP solver CPLEX 11.2:

min
∑

i∈S\{n}

∑
j∈S\{n}

xi,j · c(i, j) (4.35.1)

s.t.
∑

i∈S\{n}

xi,j ≤ 1, ∀j ∈ S \ {n} (4.35.2)

∑
i∈S\{n}

∑
j∈S\{n}

xi,j ≥
|S \ {n}|

2
(4.35.3)

xi,j ∈ {0, 1} , ∀i, j ∈ S \ {n} (4.35.4)

Obviously, the goal is to minimize the costs with respect to the matched strips, cf.
Eq. (4.35.1), while computing a nearly perfect matching, see constraints (4.35.2) and (4.35.3).
The domain of the variables is specified by expression (4.35.4), whereas xi,j = 1 corre-
sponds to matching strip i and j, with i, j ∈ S \ {n}.

Row Building Heuristic

The row building heuristic (RBH) is based on the observation that in a perfect solution
(under the assumption that all shreds are available) each reconstructed row of shreds
starts with a shred having a blank left edge and ends with a shred having a blank right
edge. Therefore, RBH places a randomly chosen blank-left-edge snippet at the first
position of the current row and continues by placing the best fitting shred with respect
to c(i, j) next to it. This greedy best fit procedure is repeated until a snippet is reached
with a blank right edge, which constitutes the end of the current row. Unfortunately,
two special cases can occur: Firstly, it may happen that not all shreds are utilized when
constructing a solution according to this procedure. In this case, the remaining shreds
are purely randomly placed at the bottom of the constructed solution. Secondly, the
number of shreds having a blank left edge needs not to be equal to the number of shreds

116

4.3. Cross Cut Shredded Text Documents

having a blank right edge; for an example see Fig. 4.17. Additionally, more than one
shred having a blank left edge might be used during the construction of the current row.
If no more blank-left-edge shreds are available, the situation results in the first case. If
no more blank-right-edge shreds are available, all other shreds have been used (including
all blank left edge shreds). Therefore, no further actions have to be performed and the
resulting solution is returned.

Multiple Paths Heuristic

Based on the same idea as RBH, the multiple paths heuristic (MPH) tries to find a set
of rows to be aligned with each other such that the original document is reconstructed.
In contrast to RBH, the rows are not built greedily but a solution is searched which is
globally optimal with respect to cost function c(i, j). In addition, it is assured that each
available shred is assigned to exactly one row, i.e., there are no shreds to be positioned
randomly in the last row. For this purpose, the following integer linear programming
(ILP) formulation is used:

min
n∑

i=1

n∑
j=1

c(i, j) · xij (4.36.1)

s.t.
n∑

j=1

xij = 1, ∀i ∈ S \ {n} (4.36.2)

n∑
i=1

xij = 1, ∀j ∈ S \ {n} (4.36.3)

xii = 0, ∀i ∈ S (4.36.4)
xij + xji ≤ 1, ∀i, j ∈ S \ {n} (4.36.5)
n−1∑
j=1

xnj ≥ 1 (4.36.6)

n−1∑
i=1

xin ≥ 1 (4.36.7)∑
i∈S′

∑
j∈S′

xij ≤ |S′| − 1, ∀S′ ⊆ S \ {n} (4.36.8)

xij ∈ {0, 1} , ∀i, j ∈ S (4.36.9)

Within this model, the binary variable xij , with i, j ∈ S, is set to one iff the right edge of
shred i is matched with the left edge of shred j. While the objective (4.36.1) is to mini-
mize the (potential) error introduced by these matchings, a solution is searched such that

117

Chapter 4. Reconstruction of Destructed Documents

Figure 4.18.: Prim iteration. Potential placements (dark shaded) of the next shred for
expanding the current solution (light shaded).

each shred except the special shred n has exactly one shred assigned to its left and exactly
one to its right edge (Eqs. (4.36.2) and (4.36.3)). By constraints (4.36.4) and (4.36.5) it
is assured that no loops and cycles of length two occur, respectively. Equations (4.36.6)
and (4.36.7) ensure that at least one row is built. Finally, expression (4.36.8) avoids
arbitrary length cycles not including the virtual shred n.

For obtaining solutions based on this ILP formulation, we apply the general purpose
ILP solver CPLEX 11.2. Due to the fact that the number of constraints represented by
Eq. (4.36.8) is not polynomially bounded, we add only violated constraints during the
Branch&Bound process by first checking the solution on validity, i.e., checking whether
there are cycles not containing the virtual shred n, and adding the corresponding violated
constraint. The check whether or not a solution is valid can be performed during the
decoding of the solution in complexity O(n). When decoding the obtained solution, the
rows are randomly arranged since no information with respect to this order is given by
the above presented model.

Prim-Based Heuristic

In contrast to the so far presented construction heuristics the Prim-Based Heuristic
(PBH) follows the idea exploited by the algorithm of Prim [108] for finding minimum
spanning trees. Analogously to this well-known greedy algorithm, the solution is con-
structed by starting with an arbitrarily chosen shred that is placed at position p = (1, 1).
During the next steps, the intermediate solution is extended by adding one shred at a
time which currently is the best matching one, i.e., which minimizes the additional error

118

4.3. Cross Cut Shredded Text Documents

introduced by assigning it. Anyhow, possible positions for the next shred to be placed
are just those positions having at least one of its four neighbors, i.e., the positions di-
rectly left, right, on top or at bottom, occupied, see also Fig. 4.18. In case that the best
position for the next shred would be either p = (0, y) or p = (x, 0), with 1 ≤ x, y ≤ n−1,
all shreds of the current intermediate solution are shifted one position to the right or
to the bottom, respectively. Of course, the finally obtained solution can be of arbitrary
shape, i.e., any placement of shreds can be obtained, as long as all shreds are connected
to one component.

Experimental Results

Within this section a comparison of the proposed construction heuristics is done. All
were implemented in Java and the computational tests were performed on a single core
of an Intelr Core™2 Quad CPU with 8GB RAM and 2.83GHz. The input instances
were generated as follows: As a foundation for the instances we used the first five of the
document pages already used for the experiments on the reconstruction of strip shredded
documents, i.e., p01 to p05, also cf. Appx. A. This time, however, the documents were
transformed into grayscale images and then shredded into nine instances with 9×9 to
15×15 snippets each, which results in a total of 45 different input instances. The adapted
error estimation function as described above was used for evaluating solutions.

Table 4.7 shows the results obtained using RBH, PBH, GMH and MPH for all of these
instances. Since preliminary tests revealed that PMH performs in most cases worse than
GMH and in all cases worse than any other construction heuristic, no detailed results
are presented for this method.

The first three columns (x and y) indicate characteristics of the corresponding instance,
i.e., the page and the number of shreds along the x- and y-axis, respectively. The fourth
column shows the objective value of the perfectly reconstructed document page, i.e.,
the original sheet of paper. In the following columns the mean percentage gaps over 20
runs with respect to the objective value of the original document page as well as the
standard deviations in parentheses are presented for each construction heuristic, i.e.,
a value of 100% indicates that the found solution is twice as bad as the arrangement
of shreds representing the original document. We can observe that MPH often yields
the best, i.e., lowest, objective value. Wilcoxon rank sum tests have been performed to
check in which cases MPH actually yields statistically better solutions than RBH, PBH
and GMH, respectively. The results are given in the corresponding columns labeled p,
whereas an entry of > indicates that MPH is significantly better with an error level of
5% and < states that the other heuristic performed better. If none of these two cases
holds, then ≈ is shown in the corresponding field.

119

Chapter 4. Reconstruction of Destructed Documents

Table 4.7.: Average percentage gaps and corresponding standard deviations for the four
construction heuristics are listed. Results of Wilcoxon rank sum tests for the hypothesis
that MPH performs better than each of the other construction heuristics are given in
columns p (using a 5% error level).

RBH PBH GMH MPH
x y orig mean dev p mean dev p mean dev p mean dev
9 9 2977 147.7% (27.9) ≈ 172.2% (9.0) > 201.6% (0.0) > 131.9% (31.6)
9 12 4051 152.3% (15.0) ≈ 142.3% (10.6) ≈ 149.3% (0.0) ≈ 151.1% (28.2)
9 15 4215 169.0% (29.0) > 160.8% (8.0) > 194.9% (0.0) > 147.2% (22.4)
12 9 4125 115.6% (18.1) ≈ 140.2% (9.8) > 123.2% (0.0) > 109.1% (25.1)
12 12 4937 145.4% (13.0) > 123.6% (8.1) ≈ 155.4% (0.0) > 129.8% (19.5)
12 15 5147 172.8% (17.4) ≈ 130.7% (8.0) < 167.7% (0.0) < 179.7% (20.5)
15 9 4099 166.9% (21.1) > 161.1% (8.7) > 113.1% (0.0) > 101.2% (24.2)
15 12 4922 150.2% (20.0) > 142.6% (8.6) > 156.9% (0.0) > 113.3% (15.2)

in
st
an
ce
p0
1

15 15 5142 150.5% (17.6) > 135.7% (6.6) ≈ 158.9% (0.0) > 138.0% (14.2)
9 9 1786 229.2% (15.5) > 186.6% (28.1) > 159.8% (0.0) > 141.7% (11.2)
9 12 1538 335.2% (22.3) > 235.6% (32.6) > 191.4% (0.0) > 190.0% (15.7)
9 15 2462 249.4% (10.6) > 144.6% (21.5) ≈ 132.0% (0.0) < 145.6% (12.3)
12 9 1757 175.2% (24.5) > 228.3% (38.5) > 173.6% (0.0) > 132.8% (14.8)
12 12 1568 251.2% (15.7) > 273.5% (28.6) > 199.0% (0.0) > 181.3% (7.4)
12 15 2398 200.6% (12.5) > 168.3% (18.8) > 123.4% (0.0) < 134.2% (11.9)
15 9 2116 129.5% (11.1) > 243.7% (22.6) > 139.1% (0.0) > 109.6% (24.8)
15 12 2075 150.8% (11.1) > 255.5% (18.6) > 150.7% (0.0) > 129.0% (12.4)

in
st
an
ce
p0
2

15 15 2864 118.2% (13.8) > 183.4% (13.1) > 123.9% (0.0) > 108.9% (9.5)
9 9 3245 128.9% (17.3) ≈ 130.6% (13.4) ≈ 172.4% (0.0) > 123.3% (25.4)
9 12 3398 164.6% (18.0) ≈ 153.0% (12.3) < 175.3% (0.0) ≈ 169.2% (34.3)
9 15 3294 169.9% (25.0) ≈ 171.5% (16.4) ≈ 153.9% (0.0) ≈ 159.2% (36.7)
12 9 4049 96.8% (15.8) ≈ 137.3% (9.6) > 129.7% (0.0) > 105.7% (18.7)
12 12 4330 146.7% (16.7) ≈ 129.8% (13.0) < 135.1% (0.0) < 147.5% (15.9)
12 15 4264 143.3% (16.4) > 136.2% (10.4) ≈ 142.3% (0.0) > 129.4% (20.1)
15 9 4195 120.4% (16.6) > 140.0% (7.9) > 102.6% (0.0) > 89.1% (24.1)
15 12 4242 200.5% (10.3) > 149.5% (11.6) ≈ 110.9% (0.0) < 142.0% (15.5)

in
st
an
ce
p0
3

15 15 4270 182.5% (11.3) > 140.1% (11.7) ≈ 142.1% (0.0) ≈ 138.6% (16.7)
9 9 1411 184.4% (39.5) ≈ 207.6% (21.0) > 229.6% (0.0) > 182.7% (24.3)
9 12 1892 221.9% (27.3) > 176.9% (19.9) ≈ 220.7% (0.0) > 184.5% (26.5)
9 15 1979 157.8% (19.4) > 150.9% (20.8) ≈ 171.0% (0.0) > 142.7% (18.2)
12 9 2037 188.6% (23.2) > 194.0% (16.2) > 152.8% (0.0) ≈ 149.4% (16.7)
12 12 2689 139.1% (14.5) > 143.5% (14.1) > 159.1% (0.0) > 121.8% (17.1)
12 15 2734 119.2% (9.8) > 122.9% (10.0) > 122.9% (0.0) > 107.2% (3.4)
15 9 2193 164.3% (12.5) > 206.5% (19.1) > 140.4% (0.0) > 113.7% (23.9)
15 12 2481 135.3% (13.9) ≈ 184.9% (13.8) > 145.7% (0.0) ≈ 144.3% (24.4)

in
st
an
ce
p0
4

15 15 2719 106.2% (18.6) ≈ 138.6% (14.3) > 122.8% (0.0) > 107.6% (17.3)
9 9 923 211.0% (36.3) ≈ 343.0% (50.7) > 245.3% (0.0) > 197.3% (38.0)
9 12 1293 325.6% (40.5) ≈ 302.6% (34.6) ≈ 333.9% (0.0) > 316.8% (33.5)
9 15 2123 264.7% (19.8) > 245.8% (16.9) ≈ 265.7% (0.0) > 243.4% (27.6)
12 9 1365 177.8% (15.8) > 251.8% (28.4) > 171.5% (0.0) > 154.4% (17.6)
12 12 1841 236.7% (30.0) > 258.7% (21.1) > 222.9% (0.0) > 204.8% (26.7)
12 15 2588 219.8% (15.0) ≈ 204.1% (15.0) < 214.5% (0.0) < 216.6% (17.1)
15 9 1317 175.6% (21.1) > 304.5% (41.1) > 193.5% (0.0) > 117.0% (27.8)
15 12 1634 304.6% (21.6) > 299.0% (24.6) > 260.4% (0.0) > 233.5% (34.9)

in
st
an
ce
p0
5

15 15 2460 253.3% (14.1) > 225.7% (17.8) > 197.1% (0.0) < 205.1% (13.0)

120

4.3. Cross Cut Shredded Text Documents

Regarding the mean values—the best obtained are printed bold—MPH yielded 30 times
the best average value while PBH obtained only seven times the best result. GMH
and RBH achieved the best value in five and two cases, respectively. Nevertheless, the
page could never be perfectly reconstructed. MPH obtained for 32, 30 and 28 instances
statistically better results than GMH, RBH and PBH, respectively.

Since GMH is completely deterministic, the standard deviations are zero. Since the
standard deviations seem to be rather high for the other three construction heuristics, it
has to be mentioned that according to the cost function used, even the swapping of two
shreds can significantly increase (or decrease) the objective function. Therefore, these
high values have to be relativized. Nevertheless, they show that certain fluctuations are
existent.

4.3.3. Variable Neighborhood Search based Approach

As already indicated the construction heuristics presented in the previous section are
not intended to be used as stand-alone reconstruction approaches but as initialization
methods for more elaborated optimization approaches. Within this section, we propose
a variable neighborhood search (VNS) with variable neighborhood descent (VND) as
embedded local improvement procedure.

Naturally, it is therefore convenient to first introduce a set of moves which will then be
used for defining neighborhood structures to be systematically examined during a local
improvement phase of VNS. The neighborhood structures used within the shaking step
of VNS are analogously defined.

Definition of Neighborhood Structures

The underlying move types are on the one hand inspired by the natural behavior of
humans when trying to reconstruct cross cut shredded text documents. Namely, the
insertion of shreds to specific positions while considering the direct neighborhood of
the affected position(s). This results in movements either horizontally and/or vertically
shifting one shred to another position or by swapping two shreds with each other. On the
other hand, it is tried to keep the moves as simple as possible since more complex opera-
tions also induce long and inefficient evaluation and reorganization steps which obviously
negatively influences especially the runtime performance of the developed approach(es).
Therefore, the following two move types can be defined:

SwapMove(i, j): When applying a swap move, two shreds i and j, with i, j ∈ S and
i 6= j, are swapped with each other.

121

Chapter 4. Reconstruction of Destructed Documents

ShiftMove(p, w, h, d, a): In a first step, a rectangular region of snippets to be moved
is defined. Parameter p = (x, y) ∈ D2 corresponds to the position of the top-left
shred to be moved. The integer values w ≥ 1 and h ≥ 1 define the number of
shreds along the x-axis and along the y-axis to be shifted. The direction, i.e.,
horizontally or vertically, is declared by d and the shift amount is given by a ≥ 1.
Therefore, after the application of the shift move all shreds contained within the
specified region are moved according to d and a. Previously adjacent shreds are
suitably shifted.

This definition leads straightforward to the following seven neighborhood structures:

N1: Within this neighborhood structure one single swap move is applied to the current
solution.

N2: Neighborhood N2(Π) of a solution Π consists of all solutions obtained from Π by
arbitrarily shifting one single shred in either x or y direction.

N3: All solutions generated by applying a shift move with at least one of the parameters
w and h set to one are part of this neighborhood structure.

N4: Within neighborhood structure N4 one shift move is applied, whereas the width
and the height of the rectangular region of shreds to be shifted can be chosen
arbitrarily.

N5: Two consecutive moves are applied to a single shred, whereas the first move shifts
along the x-axis and the second one shifts along the y-axis.

N6: Neighborhood N6(Π) consists of all solutions obtained by shifting a given rectangle
of either width or height one first along the x-axis and then along the y-axis.

N7: This last neighborhood structure is defined analogously to N6, but this time the
width and the height of the rectangular region can be both arbitrarily chosen.

As can be easily seen, neighborhood structure Ni contains Ni−1 for i = 2, 3, 4, 6, 7. Thus,
the number of candidate solutions within Ni(Π) is in general greater than the number of
solutions contained in Ni−1(Π) for a given solution Π. Therefore, it is obvious to order
the neighborhood structures according to their increasing size such that the smallest one
is examined first.

Variable Neighborhood Descent

To efficiently implement a VND, the following two practical improvements are made:
Firstly, all neighbors are evaluated using an incremental update function, i.e., only the

122

4.3. Cross Cut Shredded Text Documents

changes in function (4.34) are computed. Secondly, and more importantly, two properties
have to be fulfilled for a feasible move to be part of a neighborhood structure: At least
one position p ∈ D2 with a shred assigned to p, i.e., s(p) 6= n, has to be affected by this
move and in case of shift moves the dimensions of the rectangle to be shifted as well
as the shift amount (and direction) have to be chosen such that each row and column
of the region to be shifted is not empty, i.e., at least one non-empty shred is part of
the row/column, and s((x + w + a− 1, y)) 6= n holds, if a horizontal shift is performed;
otherwise s((x, y + h + a− 1)) 6= n must hold. In our VND approach all neighborhoods
are examined using a next improvement strategy since preliminary tests revealed that in
this case this strategy outperforms best improvement.

Variable Neighborhood Search

While the above presented VND is used as local improvement procedure we define the
neighborhood structures Ni, with 1 ≤ i ≤ 5, used during the shaking phase of VNS
as follows: in the i-th neighborhood structure i2 randomly chosen shift moves of single
shreds are performed. For computational results we refer to Sec. 4.3.5.

4.3.4. Ant Colony Optimization Based Approach

While in nature ants are guided along paths between food locations and their home by
pheromone trails laid by other ants in most computer system inspired by this ant be-
havior additional locally available knowledge is incorporated in the solution construction
process. For our ant colony optimization (ACO) approach, two pheromone matrices τ
and τ exist, whereas values τij and τ ij correspond to the amount of pheromone laid for
placing shred j right next to shred i and placing shred i on top of shred j, respectively.
Both matrices are initialized within two steps, whereas during the first step five solutions
Π1, . . . ,Π5 are computed with the construction heuristics presented in Sec. 4.3.2, i.e.,
GMH, PMH, RBH, MPH and PBH. Based on the best obtained solution within this
first step, an initial value τ0 is computed by

τ0 =
m

mini=1,...,5 c(Πi)
, (4.37)

whereas m denotes the number of ants being used within the ACO. Subsequently, all
values τij and τ ij , with i, j ∈ S, are set to τ0. In the second step, a regular pheromone
update (see the corresponding section in the following) is performed using initial solutions
Π1 to Π5.

123

Chapter 4. Reconstruction of Destructed Documents

Table 4.8.: Results obtained by VNS and ACO. The mean percentage gaps over 20 runs
and standard deviations are presented for two independent test sets of VNS initialized
using PBH and MPH as well as the mean gaps (over 20 runs) and standard deviations
of 4 different ACO variants incorporating RPBH, RGMH, RRBH and all three of them,
respectively. Values in columns p correspond to the results of Wilcoxon rank sum tests
using a 5% error level.

VNS-PBH VNS-MPH ACO ACO-RPBH ACO-RGMH ACO-RRBH
x y orig. mean dev p mean dev p mean dev p mean dev p mean dev p mean dev
9 9 2977 40.8% (12.5) > 10.0% (12.7) > 4.0% (5.9) > 23.8% (8.1) > 29.1% (9.5) > 0.0% (0.0)
9 12 4051 28.7% (11.6) > 20.8% (8.8) ≈ 14.6% (5.1) > 27.0% (4.9) > 27.8% (3.7) > 21.0% (4.8)
9 15 4215 34.7% (8.0) > 28.6% (7.7) ≈ 31.7% (3.6) > 34.8% (2.8) > 35.6% (2.7) > 30.7% (2.1)
12 9 4125 26.4% (5.9) ≈ 28.4% (9.3) > 27.6% (3.3) > 27.2% (4.0) > 27.0% (3.0) > 25.2% (3.2)
12 12 4937 26.5% (6.1) ≈ 24.8% (5.9) ≈ 29.6% (2.2) > 34.5% (4.0) > 30.9% (3.0) > 27.5% (2.9)
12 15 5147 30.4% (6.6) ≈ 31.0% (10.6) ≈ 34.0% (2.7) ≈ 33.1% (2.9) ≈ 34.7% (2.8) > 32.7% (3.2)
15 9 4099 37.5% (11.2) > 30.1% (7.8) ≈ 32.8% (3.7) > 32.8% (4.7) > 33.7% (3.6) > 29.1% (4.1)
15 12 4922 32.0% (5.8) > 28.2% (7.6) < 31.9% (3.6) ≈ 34.9% (2.7) > 31.4% (3.1) ≈ 32.5% (2.6)

in
st
an
ce
p0
1

15 15 5142 32.3% (5.2) ≈ 32.3% (5.8) ≈ 35.3% (3.1) > 36.5% (2.3) > 36.6% (3.9) > 33.2% (3.2)
9 9 1786 2.1% (9.0) ≈ 3.2% (12.5) ≈ 0.2% (3.7) < -4.1% (5.7) < -2.5% (5.1) < 4.8% (4.6)
9 12 1538 23.0% (9.6) < 34.6% (14.1) ≈ 17.0% (3.7) < 16.9% (4.5) < 17.6% (3.9) < 35.3% (5.1)
9 15 2462 8.4% (4.4) < 15.6% (6.2) < 8.0% (2.5) < 6.9% (2.6) < 14.0% (2.5) < 21.7% (3.6)
12 9 1757 6.0% (9.7) ≈ 9.6% (11.1) ≈ 9.0% (6.3) < 3.3% (6.3) < 11.3% (7.1) ≈ 13.4% (4.2)
12 12 1568 22.6% (9.1) < 29.4% (9.8) ≈ 24.8% (4.7) < 21.9% (4.1) < 25.7% (4.1) ≈ 27.7% (5.0)
12 15 2398 9.4% (6.0) < 19.0% (10.9) ≈ 14.4% (3.1) < 12.4% (2.4) < 20.4% (3.1) ≈ 19.7% (3.5)
15 9 2116 19.8% (10.1) > 14.0% (10.7) ≈ 16.3% (3.5) > 25.6% (3.4) > 16.8% (3.6) ≈ 13.8% (4.0)
15 12 2075 27.3% (11.4) ≈ 24.6% (9.0) > 17.2% (3.4) < 34.3% (5.4) > 15.9% (3.8) < 19.8% (3.3)

in
st
an
ce
p0
2

15 15 2864 16.2% (5.0) ≈ 17.5% (8.1) > 13.8% (1.9) > 22.2% (2.8) > 17.1% (2.9) > 12.6% (1.7)
9 9 3245 25.2% (8.2) > 21.3% (8.0) > 11.5% (4.3) > 18.9% (3.4) > 18.5% (4.0) > 6.7% (4.8)
9 12 3398 34.1% (4.1) ≈ 34.4% (11.0) > 29.9% (3.6) ≈ 37.4% (3.5) > 32.0% (4.5) ≈ 30.0% (3.6)
9 15 3294 25.4% (14.3) > 11.6% (6.7) < 21.7% (5.3) > 31.1% (6.4) > 24.3% (2.2) > 18.0% (2.6)
12 9 4049 23.4% (7.3) > 16.4% (6.1) > 14.7% (2.0) > 23.6% (3.1) > 17.4% (2.6) > 11.6% (2.9)
12 12 4330 25.1% (4.6) > 19.9% (6.1) < 24.5% (3.3) > 39.1% (3.4) > 25.7% (3.3) > 23.3% (2.5)
12 15 4264 20.9% (6.9) ≈ 23.2% (6.2) > 17.4% (2.4) > 33.0% (4.9) > 18.5% (2.5) > 16.3% (2.1)
15 9 4195 20.6% (6.2) ≈ 21.8% (10.0) > 16.1% (3.1) > 31.1% (5.0) > 24.2% (2.2) > 13.6% (2.3)
15 12 4242 33.1% (6.4) ≈ 35.7% (8.1) ≈ 37.5% (3.2) ≈ 55.7% (5.2) > 38.9% (3.5) > 36.3% (2.1)

in
st
an
ce
p0
3

15 15 4270 27.3% (4.7) ≈ 30.0% (5.1) > 26.3% (2.2) ≈ 35.8% (4.0) > 25.7% (2.4) < 27.0% (1.4)
9 9 1411 28.7% (16.5) ≈ 35.8% (11.5) > 21.5% (6.4) ≈ 18.3% (7.8) ≈ 20.7% (9.4) ≈ 18.4% (7.2)
9 12 1892 21.7% (9.9) < 28.0% (10.1) > 15.0% (4.8) ≈ 14.5% (5.0) ≈ 14.2% (3.4) ≈ 15.6% (4.5)
9 15 1979 9.4% (8.5) < 16.0% (6.3) > 3.9% (3.8) ≈ 2.4% (3.3) ≈ 5.8% (2.8) > 3.8% (3.3)
12 9 2037 36.6% (10.4) ≈ 38.3% (11.0) > 29.1% (4.5) > 35.7% (6.8) < 38.4% (5.8) > 26.3% (5.3)
12 12 2689 20.8% (5.1) < 28.5% (5.0) > 19.2% (2.4) < 15.9% (2.6) < 21.9% (2.4) ≈ 20.6% (1.9)
12 15 2734 6.1% (3.6) < 12.2% (5.7) > 6.8% (2.8) ≈ 7.1% (1.6) ≈ 10.4% (1.7) > 7.6% (1.8)
15 9 2193 41.4% (13.4) > 26.6% (12.8) > 18.2% (3.5) > 43.5% (5.2) > 26.0% (3.5) > 12.5% (4.1)
15 12 2481 36.9% (10.5) ≈ 38.0% (9.7) > 29.4% (2.7) > 41.7% (5.0) > 30.7% (3.4) > 27.0% (2.6)

in
st
an
ce
p0
4

15 15 2719 15.7% (6.6) ≈ 14.4% (5.4) > 5.1% (2.6) > 20.8% (3.7) > 6.3% (1.8) > 3.9% (1.6)
9 9 923 57.1% (20.6) ≈ 54.7% (23.6) > 21.1% (8.9) > 66.7% (11.2) > 36.5% (12.0) > 13.6% (8.2)
9 12 1293 82.0% (20.3) ≈ 82.1% (21.9) > 70.4% (9.5) ≈ 72.5% (6.9) ≈ 78.9% (8.7) > 69.0% (7.4)
9 15 2123 48.4% (9.1) ≈ 51.8% (8.7) > 39.3% (6.6) ≈ 45.8% (4.6) > 44.2% (5.1) > 36.2% (4.5)
12 9 1365 43.5% (8.7) ≈ 42.4% (16.3) > 27.5% (4.2) > 75.4% (8.1) > 29.7% (3.7) > 23.4% (4.5)
12 12 1841 47.1% (14.4) ≈ 51.4% (13.6) > 40.0% (5.1) > 54.3% (7.6) > 44.5% (5.7) > 36.6% (3.1)
12 15 2588 45.9% (6.0) ≈ 44.1% (7.9) > 35.9% (3.1) > 45.4% (2.9) > 37.6% (3.6) > 34.5% (2.6)
15 9 1317 35.5% (29.9) > 12.8% (15.0) > -4.3% (4.2) > 43.7% (13.2) > -1.2% (3.2) > -9.4% (1.4)
15 12 1634 53.9% (11.0) ≈ 58.7% (15.9) > 55.4% (4.7) > 67.6% (7.1) > 59.0% (5.2) > 51.5% (3.9)

in
st
an
ce
p0
5

15 15 2460 42.2% (6.4) ≈ 42.9% (8.3) > 39.5% (3.4) ≈ 44.9% (4.7) > 41.0% (3.5) > 38.5% (3.7)

124

4.3. Cross Cut Shredded Text Documents

Solution Construction

New candidate solutions are constructed within the ACO by one of the following alter-
native methods, which are based on the construction heuristics GMH, RBH, and PBH
presented in Sec. 4.3.2. Each candidate solution created in such a way is then also locally
improved by applying a restricted version of the above presented VND (see Sec. 4.3.3)
using only neighborhood structures N1 to N3 with a CPU-time limit of 500ms.

Randomized Greedy Matching Heuristic Analogously to GMH, the randomized greedy
matching heuristic (RGMH) greedily matches shreds such that finally one long sequence
of snippets is produced, which is then split into multiple rows. But instead of always
fixing that pair of shreds which matches best within each iteration, we now perform this
selection in a probabilistic way in dependence of pheromone values and the cost function
c(i, j). The probability pij of a match for pair (i, j), with i, j ∈ S ′, whereas S ′ denotes
the set of shreds not yet matched, is equal to

pij =
τα
ij ·
(

1
c(i,j)

)β

∑
k∈S′

∑
k′∈S′ τα

kk′ ·
(

1
c(k,k′)

)β
, ∀i ∈ S \ S ′, j ∈ S ′ (4.38)

In case of c(i, j) ≤ ɛ = 0.25 for any i, j ∈ S ′, c(i, j) is assumed to be equal to ɛ. As usual
within an ACO, parameters α and β are controlling the influence of pheromones versus
the influence of heuristic information.

Randomized Row Building Heuristic The randomized version of RBH—called ran-
domized row building heuristic (RRBH)—tries to reconstruct a set of rows based on the
following probability distribution, i.e., the next matching shred is not selected solely
relying on the values of c(i, j), with i being the last placed shred and j being any shred
currently not placed, but using the probability values pij :

pij =
τα
ij ·
(

1
c(i,j)

)β

∑
k∈S′ τα

ik ·
(

1
c(i,k)

)β
, ∀i ∈ S \ S ′, j ∈ S ′ (4.39)

Again, set S ′ is defined as the set of all shreds not used within the current intermediate
solution.

Randomized Prim Based Heuristic The Randomized Prim based heuristic (RPBH) is
the non-deterministic variant of PBH. The decision at which position the next (randomly

125

Chapter 4. Reconstruction of Destructed Documents

chosen) shred is placed is based on the following definition of probability values pi
p for

placing shred i ∈ S ′ to position p, with set S ′ being the set of shreds not yet used:

pi
p =

δ(i, p)∑
p′∈D0

2

∑
k∈S′ δ(k, p′)

, ∀i ∈ S ′, p ∈ D0
2 (4.40)

Function δ(i, p), with i ∈ S ′, p ∈ D0
2 computes the additionally introduced error when

placing shred i to position p. The value of δ(i, p) is equal to zero if p is either already
used by another shred k ∈ S \ S ′ or all neighbor positions of p are free, i.e., no shred
k ∈ S \S ′ is positioned on them (see also Fig. 4.18). Analogously to PBH, all shreds are
shifted one position to the right or to the bottom if the next shred should be assigned
to any position outside of D2.

Pheromone Update

The pheromone update is done according to the following expressions, whereas we assume
that k, with 1 ≤ k ≤ m, refers to the solution obtained by ant k during the last iteration
of ACO and Π0 represents the best so far found solution:

τij = (1− ρ) · τij +
m∑

k=1

Δk
ij + Δ0

ij , ∀i, j ∈ S, i 6= j (4.41)

τ ij = (1− ρ) · τ ij +
m∑

k=1

Δk
ij + Δ0

ij , ∀i, j ∈ S, i 6= j (4.42)

Δk
ij =


1

c(Πk)

if j is placed right next to i in
the k-th solution

0 otherwise

∀i, j ∈ S
∀k = 0, . . . , m

(4.43)

Δk
ij =


1

c(Πk)

if j is placed on top of i in the
k-th solution

0 otherwise

∀i, j ∈ S
∀k = 0, . . . , m

(4.44)

The idea behind these definitions is that the placing of two shreds next to each other
should be emphasized when the costs of this placement are low.

4.3.5. Experimental Results

Results obtained using the VNS based approach are presented in Tab. 4.8 together
with results obtained using an ACO approach to be discussed in detail in the next
section. The first four columns of this table correspond to the first four columns of

126

4.3. Cross Cut Shredded Text Documents

Tab. 4.7. The next two columns labeled with VNS-PBH and VNS-MPH correspond
to the experiments performed with VNS initialized using PBH and MPH, respectively.
Again, the values represent average gaps to the original document over 20 runs with
respect to the objective function. They were obtained on the same hardware as the
results presented in the previous section. The column labeled p for VNS-PBH lists the
return of Wilcoxon rank sum tests comparing the two VNS variants with each other,
i.e., < indicates that VNS-PBH performed significantly better with an error level of 5%
on the corresponding instance while > indicates that VNS-MPH performed better; ≈
implies that no statement can be given for the corresponding instance. For each instance
the better of the two average gaps is printed bold.

Although we performed tests initializing VNS with all previously presented construction
heuristics, it turned out that only the variants using PBH and MPH were successful. The
performance of the others was not that good and we therefore omit here the detailed
results. However, it can be observed that the initial solutions could be significantly
improved by the VNS approach. Nevertheless, it is not easy to decide which of these
two variants performs better. Interestingly, the performance of both variants seems to
be strongly dependent on the underlying page. Whereas, VNS-MPH is clearly better
for page p01, VNS-PBH outperforms VNS-MPH on page p02. Unfortunately, it is not
possible to select the appropriate variant based on the (then reconstructed) document
in advance.

In addition, Tab. 4.8 shows test results obtained by the ACO for instances based on pages
p01 to p05 are presented together with the results obtained using the VNS approach.
The results obtained for different ACO settings are presented in the columns labeled with
ACO, ACO-RPBH, ACO-RRBH and ACO-RGMH. The concrete settings were chosen
as follows: For each variant of ACO we set the number of ants m = 18. The construction
heuristics used by the ants were RPBH, RRBH and RGMH, respectively. The fourth
setting corresponding to the column labeled with ACO was chosen such that six of the
18 ants used RPBH, another six RRBH and the last six RGMH. The value of parameter
m was chosen based on preliminary tests, which also revealed that the fixing of α and
β to 1 and 5, respectively, is reasonable for our ACO variants. The values presented in
Tab. 4.8 are again mean percentage gaps over 20 runs, and the conclusions of selected
Wilcoxon tests are given in columns labeled with p, whereas VNS-MPH, ACO, ACO-
RPBH and ACO-RGMH were compared to ACO-RRBH. The corresponding p columns
indicate again whether the first (<) or the second heuristic (>) yielded statistically better
results on an error level of 5%. If none of these two cases occur, a ≈ sign is printed in the
according field. In addition the best mean values of the four ACO variants is emphasized.

For the ACO variants a clear conclusion can be drawn: ACO-RRBH performs best on
the considered test instances. Therefore, we decided to compare VNS-MPH with ACO-
RRBH and observed that the results obtained by the latter one were for 28 instances

127

Chapter 4. Reconstruction of Destructed Documents

significantly better. When comparing VNS and ACO in general, the two VNS variants
achieved best mean results only on 11 instances whereas the ACO variant reached 35
times the best mean value (29 times this value was provided by ACO-RRBH).

Taking a closer look at the values in Tab. 4.8 it can be seen that for instance p01 with
9×9 shreds ACO-RRBH could always reconstruct the original document page. For some
runs, the percentage gap is even negative, which can be explained by the fact that for
any error estimation function it is not assured that the original document is evaluated
best, see also Sec. 4.2.4 and Sec. 4.2.9 for a discussion related to this topic.

Regarding running times, we can summarize that the construction heuristics performed
within hundreds of milliseconds. The VNS approaches needed between one and 100
seconds computation time until termination, and the computation times for ACO lie
between approximately 100 seconds and 800 seconds. It can be concluded that although
the results obtained by ACO are better in most cases, the computation times needed
are significantly higher.

In general further improvements are necessary to address large practical instances espe-
cially also involving multiple pages. However, considering the complexity of the problem,
the achieved results on small and medium sized instances are remarkable. Especially for
those pages containing mainly text, large parts of the documents could be reconstructed.

4.3.6. Concluding Remarks

Within this section we presented five different construction heuristics, a VNS as well as
an ACO. Altogether it can be concluded that these approaches are promising especially
for moderately sized instances. Nevertheless, there are several questions open, which
should be further investigated in future research. For example, as already indicated in
Sec. 4.2.9 an integration of pattern recognition and image processing methods should be
done for a more reliable definition of the error estimation function.

Misleading Cuts and Integration of User Actions

Anyhow, another even more severe problem arises in connection to the reconstruction of
cross cut shredded text documents. Unfortunately it very often happens that horizontal
cuts are placed such that they run between two lines of text. Then there are multiple
shreds having blank top or bottom edges, respectively. Obviously, no useful information
can be extracted from such cuts. Therefore, a robust reconstruction of cross cut shredded
text documents becomes very unlikely. It is, however, possible to reliably reconstruct
(large) parts of the original documents, whereas the final and complete reconstruction
can then only be done exploiting the context of the contained text. Therefore, it is highly

128

4.4. Impact on Confidentiality

Figure 4.19.: Two arbitrarily shaped meta-shreds. A meaningful alignment of them is
not straightforward.

meaningful to integrate user interaction as already proposed for the reconstruction of
strip shredded text documents, cf. Sec. 4.2.7. Even more, such a human guided search
approach can generally improve the performance of any reconstruction system.

Multilevel Refinement Strategies

Similar as proposed in the discussion for the reconstruction of strip shredded text doc-
uments, an extension of the above approaches to incorporate coarsening and refine-
ment operations could be very promising. In this case, the building of larger blocks or
meta-shreds might, however, be not as straightforward as for strips. Arbitrarily shaped
meta-shreds introduce extreme complex situation when trying to combine them, see
also Fig. 4.19. Therefore, it would be more convenient to demand that meta-shreds are
rectangular. Then, however, the possibilities for combining shreds are rather restricted.

4.4. Impact on Confidentiality

Based on the results presented in the previous section, it can be concluded that when-
ever paper documents should be destroyed, it is extremely important that an appropriate
method of destruction is chosen. Although the methods for reconstructing manually torn
or mechanically shredded documents are not yet so far developed that fully automatic re-
construction can be achieved for larger documents, the approaches are advanced enough
that even documents supposed to be destroyed, e.g., by cutting them into about 300
strips which—for a DIN A4 page—corresponds to strips of 0.7mm width, could be re-
constructed with the help of computer systems in an interactive way. Of course, the
data acquisition process, i.e., the scanning of the strips, still needs to be improved, e.g.,
by developing methods for automatically scanning a large amount of shreds. It is there-
fore important that especially offices containing confident data think about the methods
used for destructing (paper) documents.

129

Chapter 4. Reconstruction of Destructed Documents

In fact, there are methods for which it can be guaranteed that no reconstruction is
possible. For example, paper documents could be burned or destroyed using chemical
methods, e.g., some acid. However, it can be observed that e.g. newspapers burned in
the fire place can still be read as long as the ashes is not stirred.

130

Chapter 5

Conclusions and Future Work

Within this work selected combinatorial optimization problems arising in dif-
ferent two domains were investigated: On the one hand a storage location
assignment problem as well as a tour planning problem related to “classical”

warehouses, i.e., warehouse consisting of aisles orthogonal to each other. On the other
hand, we presented methods for reconstructing destructed paper documents.

The applications were formulated as combinatorial optimization problems and it was
shown that they are NP-hard and also very difficult to solve in practice. Various dif-
ferent solution approaches were developed including greedy heuristics, applications of
variable neighborhood search (VNS) and variable neighborhood descent (VND), ant
colony optimization (ACO), integer linear programming based techniques including a
Lagrangian relaxation and a Lagrangian heuristic, dynamic programming methods and
hybridizations of these techniques as well as with human guided search.

For the computation of concrete tours through the warehouse an exact algorithms with
polynomially bounded running times was presented exploiting the specialized structure
of the warehouse. This algorithm was then applied in a larger framework incorporating
a variable neighborhood search approach for making decisions which articles to collect
along the next tour. Within the embedded variable neighborhood descent (VND) an
adaption of the self-adaptive neighborhood ordering presented in [65] was applied. It
could be shown that this dynamic rearrangement of the neighborhoods could improve
the overall solution process since the number of examinations of two neighborhood struc-
tures highly promising during the start of the search but loosing ground during the later
iterations of VND was dramatically reduced. Obviously, this concept can be easily
adopted for other applications where the characteristics of solutions significantly change

131

Chapter 5. Conclusions and Future Work

depending on the region of the search space currently examined. It is further imaginable
to apply similar methods to the selection of the step function to be used for the exami-
nation of neighborhoods. For example one could switch from random neighbor via first
improvement to best improvement based on the observation that improvements will be
very likely during the beginning of the search while the improvement rate is decreasing
with longer running times. Therefore, random neighbor will get inefficient as well as
next neighbor will in the worst case almost completely explore the neighbor.

Another, more static but still changing neighborhood ordering was applied during the
computation of paper roll rearrangements for warehouses applying a Last-In, First-Out
strategy to their storage locations. However, the more demanding challenge for this
application area was the uncertainty of the production and shipping dates. Nevertheless,
it could be shown during tests in a real-world environment, i.e., in the warehouse of a
partner company, that the proposed approaches were robust enough to endure sudden
worsenings in the objective function due to abrupt changes of the production sequence
and/or late (or early) arriving customers. Even more, the warehouse states could be
repaired in the sense that during (ad hoc) relocations optimal storage locations could be
found.

It would, however, be highly interesting whether the results obtained could be further
improved by solving both problems, the storage location assignment as well as the order
picking tour, at the same time, i.e., possibly accepting slightly worsenings in the ob-
jective with respect to the storage location assignment but at the same time increasing
the solution quality for the routes through the warehouse. Even more, it should be
investigated whether further improvements could be achieved by using different storage
location strategies, e.g., First-In, First-Out policy. Independently of this, it is, however,
necessary to incorporate knowledge of the production process into the storage locations
assignment.

For the application of combinatorial optimization techniques to the reconstruction of de-
stroyed paper documents it can be summarized that, although only small sized instances
with respect to the number of document pages could be solved, the results are neverthe-
less promising since the applied (and adapted) methods could exploit certain features
of the problem instances. Especially the incorporation of user actions into the search
procedure was not only effective but in fact necessary since only a human can decide
whether (or not) a document was correctly reconstructed. Due to the fact a human user
could “forbid” or “enforce” certain solutions features the search space could dramatically
reduced, e.g., by setting the rotations of the strips. Obviously, this basic concept of hu-
man guided search can be extended to other areas where human intelligence is much
more powerful then (current) computers, e.g., in packing irregularly shaped items into
containers human knowledge and expertise should be exploited. Furthermore, it was
shown that using a user integrated approach even combinatorial optimization problems

132

with imperfect objective functions can be (semi-)automatically solved since only in the
final phase of the optimization process the integration of human knowledge is necessary.

One interesting point is the fact that the computation of tours in “classical” warehouses
forms a polynomially solvable case of the traveling salesman problem (TSP) while the
reconstruction of strip shredded text documents corresponds to a generalization of TSP.
So although the this two applications areas have not much in common on a first sight,
it turns out that in fact one is a special case of the other.

Within this work two major hybridizations were examined: For the computation of
routes through the warehouse an exact approach based on dynamic programming was
integrated into a VNS/VND approach for computing sets of articles to be picked on the
tours. It should, however, be mentioned that the objective function of the assignment of
articles to tours is directly dependent on the actual tour lengths. This means that for an
evaluation of an solution generated by the outer framework a set of subproblems needs to
be solved. Thus the efficiency of the tour computation is of high relevance. The second
hybridization addressed the incorporation of user actions into VNS based approach.
As already mentioned above, on the one hand the search space could dramatically be
reduced for some instances and on the other hand the final evaluation with respect to
the quality of the solution could only be done by humans. Therefore, any reconstruction
system disregarding input from users cannot be complete.

Finally, it should be mentioned that there is a lot of work to be done in the future for both
application areas. Related to warehouse logistics further improvements could be achieved
by regarding more information during the optimization, e.g., the production order of
paper rolls. For the reconstruction of shredded text documents multilevel refinement
strategies [136] should be developed for the reconstruction of shredded text documents.
In addition, there is one major point which should be done in future works: Within
this work, it was possible to show that combinatorial optimization techniques can be
successfully applied to the reconstruction of shredded text documents. But in fact, not
all problem specific information is currently exploited by the methods. Using pattern
recognition and image processing methods more reliable and robust error estimation
functions should be defined such that the number of instances for which the original
document does not correspond to the solution having a minimum objective value (with
respect to the error estimation function) is significantly reduced. However, in that
domain the integration of user interactions into the search process is vital.

133

Bibliography

[1] A. A.-A. Abdel-Hamid and R. Borndörfer. On the complexity of storage assign-
ment problems. Technical Report SC-94-14, Konrad-Zuse-Zentrum für Informa-
tionstechnik Berlin, Berlin, Germany, 1994.

[2] R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very large-scale
neighborhood search techniques. Discrete Applied Mathematics, 123(1–3):75–102,
2002.

[3] S. Albers. Better bounds for online scheduling. SICOMP: SIAM Journal on
Computing, 29(2):459–473, 1999.

[4] S. Albers. Online algorithms: a survey. Mathematical Programming, 97(1):3–26,
2003.

[5] T. Altman. Solving the jigsaw puzzle problem in linear time. Applied Artificial
Intelligence, 3(4):453–462, 1989.

[6] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Finding tours in the TSP.
Technical Report Number 99885, Research Institute for Discrete Mathematics,
Universität Bonn, 1999.

[7] D. Applegate, W. Cook, and A. Rohe. Chained Lin-Kernighan for large traveling
salesman problems. INFORMS Journal on Computing, 15(1):82–92, 2003.

[8] B. T. Ávila and R. D. Lins. A fast orientation and skew detection algorithm for
monochromatic document images. In DocEng ’05: Proceedings of the 2005 ACM
symposium on Document Engineering, pages 118–126, New York, NY, USA, 2005.
ACM.

135

Bibliography

[9] T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University
Press, 1996.

[10] J. Balme. Reconstruction of shredded documents in the absence of shape informa-
tion. Technical report, Yale University, USA, 2007.

[11] J. E. Beasley. Lagrangian relaxation. In C. R. Reeves, editor, Modern heuristic
techniques in combinatorial problems, chapter 6, pages 243–303. John Wiley &
Sons, Inc., 1993.

[12] A. Behzad and M. Modarres. A new efficient transformation of the generalized
traveling salesman problem into traveling salesman problem. In Proceedings of the
15th International Conference of Systems Engineering, pages 6–8, 2002.

[13] R. E. Bellman. Dynamic Programming. Dover Publications Inc., 2003.

[14] F. Berger. Ein hybrides Verfahren zur automatischen Rekonstruktion von handzer-
rissenen Dokumentenseiten mittels geometrischer Informationen. Master’s thesis,
Vienna University of Technology, Institute of Computer Graphics and Algorithms,
Austria, September 2008. supervised by G. Raidl and M. Prandtstetter.

[15] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys, 35(3):268–308, 2003.

[16] P. Bose, J.-D. Caron, and K. Ghoudi. Detection of text-line orientation. In Proceed-
ings of the 10th Canadian Conference on Computational Geometry (CCCG’98),
1998.

[17] H. Brynzér and M. I. Johansson. Storage location assignment: Using the prod-
uct structure to reduce order picking times. International Journal of Production
Economics, 46–47:595–603, 1996. Proceedings of the 8th International Working
Seminar on Production Economics.

[18] H. Bunke and G. Kaufmann. Jigsaw puzzle solving using approximate string
matching and best-first search. In D. Chetverikov and W. G. Kropatsch, editors,
Computer Analysis of Images and Patterns, volume 719 of LNCS, pages 299–308.
Springer, 1993.

[19] M. Caserta and S. Voß. A corridor method-based algorithm for the pre-marshalling
problem. In M. Giacobini et al., editors, EvoWorkshops ’09: Proceedings of the
EvoWorkshops 2009 on Applications of Evolutionary Computing, pages 788–797,
Berlin, Heidelberg, 2009. Springer.

[20] M. Caserta, S. Voß, and M. Sniedovich. Applying the corridor method to a blocks
relocation problem. OR Spectrum, 2006. doi:10.1007/s00291-009-0176-5.

136

Bibliography

[21] M. G. Chung, M. Fleck, and D. Forsyth. Jigsaw puzzle solver using shape and
color. In Fourth International Conference on Signal Processing Proceedings 1998,
ICSP’98, volume 2 of Signal Processing Proceedings, pages 877–880, October 1998.

[22] K. Connolly. “Puzzlers” reassemble shredded Stasi files, bit by bit. Los Angeles
Times, November 1, 2009.

[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, second edition, 2001.

[24] D. Corne, M. Dorigo, F. Glover, D. Dasgupta, P. Moscato, R. Poli, and K. V.
Price, editors. New ideas in optimization. McGraw-Hill Ltd., UK, 1999.

[25] J. De Bock, P. De Smet, W. Philips, and J. D’Haeyer. Constructing the topological
solution of jigsaw puzzles. In IEEE International Conference on Image Processing
– ICIP ’04, volume 3, pages 2127–2130, 2004.

[26] R. de Koster, T. Le-Duc, and K. J. Roodbergen. Design and control of warehouse
order picking: A literature review. European Journal of Operational Research,
182(2):481–501, 2007.

[27] P. De Smet. Reconstruction of ripped-up documents using fragment stack analysis
procedures. Forensic science international, 176(2):124–136, April 2008.

[28] P. De Smet, J. De Bock, and E. Corluy. Computer vision techniques for semi-
automatic reconstruction of ripped-up documents. In AeroSense Conference Pro-
ceedings 2108B, SPIE, Orlando, 2003. SPIE.

[29] P. De Smet, J. De Bock, and W. Philips. Semiautomatic reconstruction of strip-
shredded documents. In A. Said and J. G. Apostolopoulos, editors, Image and
Video Communications and Processing 2005, volume 5685 of Proceedings of SPIE,
pages 239–248, San Jose, CA, USA, 2005. SPIE.

[30] Sichere Vernichtung von vertraulichen Unterlagen – Verfahrensregeln; Deutsche
Fassung EN 15713:2009, August 2009.

[31] J. Dongarra and F. Sullivan. The top 10 algorithms. Computing in Science and
Engineering, 2(1):33–50, 2000.

[32] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: An autocatalytic ap-
proach to the traveling salesman problem. Technical Report 91-016, Dipartimento
di Elettronica, Politecnico di Milano, Italy, 1991.

[33] M. Dorigo and T. Stützle. The ant colony optimization metaheuristic: Algorithms,
applications, and advances. In Glover and Kochenberger [46], pages 251–285.

137

Bibliography

[34] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge, MA,
2004.

[35] M. Dror, G. Laporte, and P. Trudeau. Vehicle routing with split deliveries. Discrete
Applied Mathematics, 50(3):239–254, 1994.

[36] O. Eggenhofer. Optimales Lager-Layout: Kommissionierung, Material- und
Verkehrsfluss im Fokus. Getränkegrosshandel, (5):30–34, 2007.

[37] Ö. Ergun and J. B. Orlin. A dynamic programming methodology in very large
scale neighborhood search applied to the traveling salesman problem. Discrete
Optimization, 3(1):78–85, 2006.

[38] C. Feremans, M. Labbe, and G. Laporte. Generalized network design problems.
European Journal of Operational Research, 148(1):1–13, 2003.

[39] M. Fischetti, J. J. S. González, and P. Toth. A branch-and-cut algorithm for
the symmetric generalized traveling salesman problem. Operations Research,
45:378–394, 1997.

[40] P. W. Frizzell and J. W. Giffin. The split delivery vehicle scheduling problem with
time windows and grid network distances. Computers & Operations Research,
22(6):655–667, 1995.

[41] L. M. Gambardella, È. D. Taillard, and G. Agazzi. Macs-vrptw: a multiple ant
colony system for vehicle routing problems with time windows. In Corne et al.
[24], pages 63–76.

[42] J. Gao, L. Sun, and M. Gen. A hybrid genetic and variable neighborhood descent
algorithm for flexible job shop scheduling problems. Computers & Operations
Research, 35(9):2892–2907, 2008.

[43] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, New York, 1979.

[44] M. Gendreau. An introduction to tabu search. In Glover and Kochenberger [46],
pages 37–54.

[45] F. Glover. Future paths for integer programming and links to artificial intelligence.
Decision Sciences, 8:156–166, 1977.

[46] F. W. Glover and G. A. Kochenberger, editors. Handbook of Metaheuristics, vol-
ume 57 of International Series in Operations Research & Management Science.
Kluwer Academic Publishers, New York, 2003.

138

Bibliography

[47] F. W. Glover, M. Laguna, and R. Marti. Scatter search and path relinking: Ad-
vances and applications. In Glover and Kochenberger [46], pages 1–35.

[48] D. Goldberg, C. Malon, and M. Bern. A global approach to automatic solution of
jigsaw puzzles. Computational Geometry, 28(2–3):165–174, 2004.

[49] R. L. Graham. Bounds for certain multiprocessing anomalies. The Bell System
Technical Journal, XLV(9):1563–1581, November 1966.

[50] J. Grefenstette. Proportional selection and sampling algorithms. In T. Bäck,
D. B. Fogel, and Z. Michalewicz, editors, Evolutionary Computation 1: Basic
Algorithms and Operators, pages 172–180. Institute of Physics Publishing, Bristol
and Philadelphia, 2000.

[51] M. Gruber. Exact and Heuristic Approaches for Solving the Bounded Diameter
Minimum Spanning Tree Problem. PhD thesis, Vienna University of Technology,
Institute of Computer Graphics and Algorithms, May 2009. supervised by G. Raidl.

[52] M. Gruber, J. van Hemert, and G. R. Raidl. Neighborhood searches for the
bounded diameter minimum spanning tree problem embedded in a VNS, EA, and
ACO. In M. Keijzer et al., editors, Proceedings of the Genetic and Evolutionary
Computation Conference – GECCO 2006, volume 2, pages 1187–1194. ACM, 2006.

[53] N. Gupta and D. S. Nau. On the complexity of blocks-world planning. Artificial
Intelligence, 56(2-3):223–254, 1992.

[54] G. Gutin, D. Karapetyan, and N. Krasnogor. Memetic algorithm for the gen-
eralized asymmetric traveling salesman problem. In N. Krasnogor, G. Nicosia,
M. Pavone, and D. Pelta, editors, Nature Inspired Cooperative Strategies for Op-
timization (NICSO 2007), volume 129 of Studies in Computational Intelligence,
pages 199–210. Springer Berlin / Heidelberg, 2008.

[55] G. Gutin and A. Yeo. Assignment problem based algorithms are impractical for
the generalized TSP. Australasian Journal of Combinatorics, 27:149–153, 2003.

[56] P. Hansen and N. Mladenović. Variable neighborhood search: Principles and
applications. European Journal of Operational Research, 130(3):449–467, 2001.

[57] P. Hansen and N. Mladenović. A tutorial on variable neighborhood search. Tech-
nical Report G-2003-46, Les Cahiers du GERAD, HEC Montréal and GERAD,
Canada, 2003.

[58] P. Hansen and N. Mladenović. Variable neighborhood search. In Glover and
Kochenberger [46], pages 145–184.

139

Bibliography

[59] E. Hassini and R. G. Vickson. A two-carousel storage location problem. Computers
& Operations Research, 30(4):527–539, 2003.

[60] V. C. Hemmelmayr, K. F. Doerner, and R. F. Hartl. A variable neighborhood
search heuristic for periodic routing problems. European Journal of Operational
Research, 2007. In Press. doi:10.1016/j.ejor.2007.08.048.

[61] D. Henderson, S. H. Jacobson, and A. W. Johnson. The theory and practice of
simulated annealing. In Glover and Kochenberger [46], pages 287–319.

[62] H. H. Hoos and T. Stützle. Stochastic Local Search : Foundations & Applications.
The Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann, 2004.

[63] B. Hu, M. Leitner, and G. R. Raidl. Combining variable neighborhood search with
integer linear programming for the generalized minimum spanning tree problem.
Journal of Heuristics, 14(5):473–499, 2008.

[64] B. Hu and G. R. Raidl. Variable neighborhood descent with self-adaptive
neighborhood-ordering. In C. Cotta et al., editors, Proceedings of the 7th
EU/MEeting on Adaptive, Self-Adaptive, and Multi-Level Metaheuristics, 2006.

[65] B. Hu and G. R. Raidl. Effective neighborhood structures for the generalized
traveling salesman problem. In J. van Hemert and C. Cotta, editors, Evolutionary
Computation in Combinatorial Optimisation – EvoCOP 2008, volume 4972 of
LNCS, pages 36–47, Naples, Italy, 2008. Springer.

[66] C. C. Jane. Storage location assignment in a distribution center. International
Journal of Physical Distribution & Logistics Management, 30(1):55–71, 2000.

[67] D. S. Johnson, G. Gutin, L. A. McGeoch, A. Yeo, W. Zhang, and A. Zverovich.
Experimental analysis of heuristics for the atsp. In G. Gutin and A. Punnen,
editors, The TSP and Its Variations, volume 12 of Combinatorial Optimization,
pages 445–488. Kluwer Academic Publisher, May 2002.

[68] E. Justino, L. S. Oliveira, and C. Freitas. Reconstructing shredded documents
through feature matching. Forensic Science International, 160(2–3):140–147, July
2006.

[69] D. R. Karger, S. J. Phillips, and E. Torng. A better algorithm for an ancient
scheduling problem. In SODA ’94: Proceedings of the fifth annual ACM-SIAM
symposium on Discrete algorithms, pages 132–140, Philadelphia, PA, USA, 1994.
Society for Industrial and Applied Mathematics.

[70] N. Karmakar. A new polynomial-time algorithm for linear programming. Combi-
natorica, 4:373–395, 1984.

140

Bibliography

[71] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2005.

[72] J. Kennedy and R. C. Eberhart. Swarm Intelligence. Morgan Kaufmann Series in
Evolutionary Computation. Morgan Kaufmann, 2001.

[73] L. Khachiyan. A polynomial algorithm in linear programming (english translation).
Soviet Mathematics Doklady, 20:191–194, 1979.

[74] K. H. Kim. Evaluation of the number of rehandles in container yards. Computers
& Industrial Engineering, 32(4):701–711, 1997.

[75] K. H. Kim and G.-P. Hong. A heuristic rule for relocating blocks. Computers &
Operations Research, 33(4):940–954, 2006.

[76] G. Klau, I. Ljubić, A. Moser, P. Mutzel, P. Neuner, U. Pferschy, G. Raidl, and
R. Weiskircher. Combining a memetic algorithm with integer programming to
solve the prize-collecting Steiner tree problem. In K. Deb et al., editors, Genetic
and Evolutionary Computation – GECCO 2004, volume 3102 of LNCS, pages
1304–1315. Springer, 2004.

[77] G. W. Klau, N. Lesh, J. Marks, and M. Mitzenmacher. Human-guided tabu search.
In Proceedings of Eighteenth National Conference on Artificial Intelligence, pages
41–47. American Association for Artificial Intelligence, 2002.

[78] G. W. Klau, N. Lesh, J. Marks, and M. Mitzenmacher. Human-guided search.
Journal of Heuristics, 2009. In press. doi:10.1007/s10732-009-9107-5.

[79] G. W. Klau, N. Lesh, J. Marks, M. Mitzenmacher, and G. T. Schafer. The HuGS
platform: a toolkit for interactive optimization. In M. De Marsico, S. Levialdi, and
E. Panizzi, editors, AVI ’02: Proceedings of the Working Conference on Advanced
Visual Interfaces, pages 324–330, New York, NY, USA, 2002. ACM.

[80] F. König and M. E. Lübbecke. Sorting with complete networks of stacks. In S.-H.
Hong, H. Nagamochi, and T. Fukunaga, editors, Algorithms and Computation –
ISAAC 2008, volume 5369 of LNCS, pages 895–906. Springer Berlin/Heidelberg,
Dec. 2008.

[81] J. R. Koza. Genetic programming; automatic systhesis of topologies and numerical
parameters. In Glover and Kochenberger [46], pages 83–104.

[82] R. Kumar and L. Haomin. On asymmetric TSP: Transformation to symmetric
TSP and performance bound, 1994. Available online (lasted checked December 1,
2009) http://www.ece.iastate.edu/~rkumar/PUBS/atsp.pdf.

141

Bibliography

[83] P. D. Larson and A. Halldorsson. Logistics versus supply chain management: An
international survey. International Journal of Logistics Research and Applications,
7(1):17–31, 2004.

[84] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys, editors. The Trav-
eling Salesman Problem: A Guided Tour of Combinatorial Optimization. Series in
Discrete Mathematics & Optimization. John Wiley & Sons, Inc., 1985.

[85] Y. Lee and S.-L. Chao. A neighborhood search heuristic for pre-marshalling export
containers. European Journal of Operational Research, 196(2):468–475, 2009.

[86] Y. Lee and N.-Y. Hsu. An optimization model for the container pre-marshalling
problem. Computers & Operations Research, 34(11):3295–3313, 2007.

[87] P. Lehmann. Maultier. Historisches Lexikon der Schweiz (HLS), May 25, 2009.
http://www.hls-dhs-dss.ch/textes/d/D26237.php.

[88] H. R. Lourenco, O. C. Martin, and T. Stützle. Iterated local search. In Glover
and Kochenberger [46], pages 321–353.

[89] S. Lu and C. L. Tan. Automatic detection of document script and orientation. In
International Conference on Document Analysis and Recognition – ICDAR 2007,
volume 1, pages 237–241, Los Alamitos, CA, USA, 2007. IEEE Computer Society.

[90] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations
Research, 53(6):1007–1023, 2005.

[91] S. Luo, C. Wang, and J. Wang. Ant colony optimization for resource-constrained
project scheduling with generalized precedence relations. In ICTAI ’03: Proceed-
ings of the 15th IEEE International Conference on Tools with Artificial Intelligence,
page 284. IEEE Computer Society, 2003.

[92] D. Merkle, M. Middendorf, and H. Schmeck. Ant colony optimization for resource-
constrained project scheduling. IEEE Transactions on Evolutionary Computation,
6(4):333–346, 2002.

[93] T. Misar. Ein hybrides Verfahren basierend auf Variabler Nachbarschaftssuche
und Dynamischer Programmierung zur Tourenfindung in einem Ersatzteillager mit
domänenspezifischen Nebenbedingungen. Master’s thesis, Vienna University of
Technology, Institute of Computer Graphics and Algorithms, Austria, April 2009.
supervised by G. Raidl and M. Prandtstetter.

[94] N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Op-
erations Research, 24(11):1097 – 1100, 1997.

142

Bibliography

[95] W. Morandell. Evaluation and reconstruction of strip-shredded text documents.
Master’s thesis, Vienna University of Technology, Institute of Computer Graphics
and Algorithms, Austria, May 2008. supervised by G. Raidl and M. Prandtstetter.

[96] P. Moscato and C. Cotta. A gentle introduction to memetic algorithms. In Glover
and Kochenberger [46], pages 105–144.

[97] G. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Series
in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., 1999.

[98] A. Ostertag, K. F. Doerner, and R. F. Hartl. A variable neighborhood search
integrated in the POPMUSIC framework for solving large scale vehicle routing
problems. In M. J. Blesa et al., editors, Hybrid Metaheuristics, volume 5296 of
LNCS, pages 29–42. Springer, 2008.

[99] M. W. Padberg and L. A. Wolsey. Trees and cuts. Annals of Discrete Mathematics,
17:511–517, 1983.

[100] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization : algorithms
and complexity. Prentice-Hall, 1982.

[101] S. Pirkwieser and G. R. Raidl. A column generation approach for the periodic
vehicle routing problem with time windows. In M. G. Scutellà et al., editors,
Proceedings of the International Network Optimization Conference 2009, Pisa,
Italy, 2009.

[102] S. Pirkwieser, G. R. Raidl, and J. Puchinger. Combining Lagrangian decom-
position with an evolutionary algorithm for the knapsack constrained maximum
spanning tree problem. In C. Cotta and J. van Hemert, editors, Evolutionary Com-
putation in Combinatorial Optimization – EvoCOP 2007, volume 4446 of LNCS,
pages 176–187. Springer, 2007.

[103] M. Prandtstetter. Exact and heuristic methods for solving the car sequencing
problem. Master’s thesis, Vienna University of Technology, Institute of Computer
Graphics and Algorithms, August 2005. supervised by G. Raidl and B. Hu.

[104] M. Prandtstetter and G. R. Raidl. A variable neighborhood search approach for
solving the car sequencing problem. In Proceedings of the XVIII Mini EURO
Conference on VNS, Tenerife, Spain, 2005.

[105] M. Prandtstetter and G. R. Raidl. Combining forces to reconstruct strip shredded
text documents. In M. J. Blesa et al., editors, Hybrid Metaheuristics, volume 5296
of LNCS, pages 175–189. Springer, 2008.

143

Bibliography

[106] M. Prandtstetter and G. R. Raidl. An integer linear programming approach and
a hybrid variable neighborhood search for the car sequencing problem. European
Journal of Operational Research, 191(3):1004–1022, December 2008.

[107] M. Prandtstetter, G. R. Raidl, and T. Misar. A hybrid algorithm for computing
tours in a spare parts warehouse. In C. Cotta and P. Cowling, editors, Evolution-
ary Computation in Combinatorial Optimization - EvoCOP 2009, volume 5482 of
LNCS, pages 25–36. Springer, 2009.

[108] R. C. Prim. Shortest connection networks and some generalizations. The Bell
System Technical Journal, 3:1389–1401, 1957.

[109] J. Puchinger. Combining Metaheuristics and Integer Programming for Solving
Cutting and Packing Problems. PhD thesis, Vienna University of Technology,
Institute of Computer Graphics and Algorithms, Vienna, Austria, January 2006.
supervised by G. R. Raidl and U. Pferschy.

[110] J. Puchinger and G. R. Raidl. Combining metaheuristics and exact algorithms in
combinatorial optimization: A survey and classification. In Proceedings of the First
International Work-Conference on the Interplay Between Natural and Artificial
Computation, Part II, volume 3562 of LNCS, pages 41–53. Springer, 2005.

[111] J. Puchinger and G. R. Raidl. Relaxation guided variable neighborhood search.
In Proceedings of the XVIII Mini EURO Conference on VNS, 2005.

[112] J. Puchinger and G. R. Raidl. Bringing order into the neighborhoods: Relaxation
guided variable neighborhood search. Journal of Heuristics, 14(5):457–472, 2008.

[113] G. R. Raidl and J. Puchinger. Combining (integer) linear programming techniques
and metaheuristics for combinatorial optimization. In C. Blum, M. J. B. Augilera,
A. Roli, and M. Sampels, editors, Hybrid Metaheuristics – An Emergent Approach
for Combinatorial Optimization, volume 114 of Studies in Computational Intelli-
gence, pages 31–62. Springer, 2008.

[114] G. R. Raidl, J. Puchinger, and C. Blum. Metaheuristic hybrids. In M. Gendreau
and J. Y. Potvin, editors, Handbook of Metaheuristics. Springer, 2nd edition, ac-
cepted 2009, to appear.

[115] T. K. Ralphs, L. Kopman, W. R. Pulleyblank, and L. E. Trotter. On the ca-
pacitated vehicle routing problem. Mathematical Programming, 94(2–3):343–359,
2003.

[116] H. D. Ratliff and A. S. Rosenthal. Order-picking in a rectangular ware-
house: A solvable case of the traveling salesman problem. Operations Research,
31(3):507–521, 1983.

144

Bibliography

[117] M. G. C. Resende and C. C. Ribeiro. Greedy randomized adaptive search proce-
dures. In Glover and Kochenberger [46], pages 219–249.

[118] U. Ritzinger. Generierung von Ein- und Umlagervorschlägen in Lagern mit einer
Last-In First-Out Strategie und kundenspezifischen Auslagerpräferenzen. Master’s
thesis, Vienna University of Technology, Institute of Computer Graphics and Al-
gorithms, Austria, December 2008. supervised by G. Raidl and M. Prandtstetter.

[119] U. Ritzinger, M. Prandtstetter, and G. R. Raidl. Computing optimized stock
(re-)placements in Last-In, First-Out warehouses. In S. Voss et al., editors, Logistik
Management, pages 279–298. Physica-Verlag, 2009.

[120] V. Roshanaei, B. Naderi, F. Jolai, and M. Khalili. A variable neighborhood search
for job shop scheduling with set-up times to minimize makespan. Future Generation
Computer Systems, 25(6):654–661, 2009.

[121] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming.
Foundations of Artificial Intelligence. Elsevier, 2006.

[122] S. Sahni and T. Gonzales. P-Complete Approximation Problems. Journal of the
ACM, 23(3):555–565, July 1976.

[123] P. Schüller. Reconstructing borders of manually torn paper scheets using integer
linear programming. Master’s thesis, Vienna University of Technology, Institute
of Computer Graphics and Algorithms, Austria, January 2008. supervised by
G. Raidl and M. Prandtstetter.

[124] J. Silberholz and B. Golden. The generalized traveling salesman problem: A new
genetic algorithm approach. In E. K. Baker, A. Joseph, A. Mehrotra, and M. A.
Trick, editors, Extending the Horizons: Advances in Computing, Optimization,
and Decision Technologies, volume 37 of Operations Research/Computer Science
Interfaces, pages 165–181. Springer US, April 2007.

[125] A. Skeoch. An Investigation into Automated Shredded Document Reconstruction
using Heuristic Search Algorithms. PhD thesis, University of Bath, UK, 2006.

[126] M. M. Solomon. Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations Research, 35(2):254–265, 1987.

[127] D. Steenken, S. Voß, and R. Stahlbock. Container terminal operation and opera-
tions research — a classification and literature review. In H.-O. Günther and K. H.
Kim, editors, Container Terminals and Automated Transport Systems. Springer,
2005.

145

Bibliography

[128] T. Stützle and M. Dorigo. Aco algorithms for the quadratic assignment problem.
In Corne et al. [24], pages 33–50.

[129] T. Thron, G. Nagy, and N. Wassan. Evaluating alternative supply chain struc-
tures for perishable products. The International Journal of Logistics Management,
18(3):364–384, 2007.

[130] P. Toth and D. Vigo. The Vehicle Routing Problem. Number 9 in Monographs on
Discrete Mathematics and Applications. SIAM, Philadelphia, 2002.

[131] A. Ukovich and G. Ramponi. Features for the reconstruction of shredded notebook
paper. Image Processing, 2005. ICIP 2005. IEEE International Conference on,
3:93–96, September 2005.

[132] A. Ukovich and G. Ramponi. System architecture for the digital recovery of shred-
ded documents. volume 5672, pages 1–11. SPIE, 2005.

[133] A. Ukovich, G. Ramponi, H. Doulaverakis, Y. Kompatsiaris, and M. Strintzis.
Shredded document reconstruction using MPEG-7 standard descriptors. Signal
Processing and Information Technology, 2004. Proceedings of the Fourth IEEE
International Symposium on, pages 334–337, December 2004.

[134] A. Ukovich, A. Zacchigna, G. Ramponi, and G. Schoier. Using clustering for
document reconstruction. In E. R. Dougherty, J. T. Astola, K. O. Egiazarian,
N. M. Nasrabadi, and S. A. Rizvi, editors, Image Processing: Algorithms and
Systems, Neural Networks, and Machine Learning, volume 6064 of Proceedings of
SPIE. International Society for Optical Engineering, February 2006.

[135] G. Villa, S. Lozano, J. Racero, and D. Canca. A hybrid vns/tabu search algorithm
for apportioning the european parliament. In J. Gottlieb and G. R. Raidl, edi-
tors, Evolutionary Computation in Combinatorial Optimization – EvoCOP 2006,
volume 3906 of LNCS, pages 284–292. Springer, 2006.

[136] C. Walshaw. Multilevel refinement for combinatorial optimisation problems. An-
nals of Operations Research, 131:325–372, 2004.

[137] C. Walshaw. Multilevel refinement for combinatorial optimisation: Boosting meta-
heuristic performance. In C. Blum, M. J. B. Aguilera, A. Roli, and M. Sampels,
editors, Hybrid Metaheuristics: An Emerging Approach to Optimization, volume
114 of Studies in Computational Intelligence, pages 261–289. Springer, 2008.

[138] B. D. Williams and T. Tokar. A review of inventory management research in
major logistics journals: Themes and future directions. The International Journal
of Logistics Management, 19(2):212–232, 2008.

146

Bibliography

[139] L. A. Wolsey. Integer Programming. Series in Discrete Mathematics and Opti-
mization. John Wiley & Sons, Inc., 1998.

[140] F.-H. Yao and G.-F. Shao. A shape and image merging technique to solve jigsaw
puzzles. Pattern Recognition Letters, 24(12):1819–1835, 2003.

147

Appendix A

Pages Used for Generating Instances

Figure A.1.: Instance p06.

149

Appendix A. Pages Used for Generating Instances

Figure A.2.: Instance p01.

150

Figure A.3.: Instance p02.

151

Appendix A. Pages Used for Generating Instances

Figure A.4.: Instance p03.

152

Figure A.5.: Instance p04.

153

Appendix A. Pages Used for Generating Instances

Figure A.6.: Instance p05.

154

Figure A.7.: Instance p07.

Figure A.8.: Instance p08.

155

Appendix A. Pages Used for Generating Instances

Figure A.9.: Instance p09.

156

Figure A.10.: Instance p10.

157

Appendix B

Curriculum Vitae

Personal Information

• Name: Matthias Prandtstetter

• Date of birth: September 18, 1980

• Place of birth: Vienna, Austria

Education

• since 10/2005:
PhD student at the Vienna University of Technology, Austria Main research “Hy-
brid Optimization Methods for Warehouse Logistics and the Reconstruction of
Destroyed Paper Documents”.

• 10/2006–03/2006:
Computer Management studies (Informatikmanagement) at the Vienna Univer-
sity of Technology, Austria, with graduation to ”Mag.rer.soc.oec.” (equivalent to
MSocEcSc).

• 10/2000–10/2005:
Computer Science studies (Informatik) at the Vienna University of Technology,
Austria, with graduation to ”Diplom Ingenieur” (equivalent to MSc). Diploma
Thesis: ”Exact and heuristic methods for solving the Car Sequencing Problem”

159

Appendix B. Curriculum Vitae

• 09/1991–06/1999:
Comprehensive school (with focus on languages) in Stockerau, Austria

• 09/1987–06/1991:
Primary school in Korneuburg, Austria

Work Experience (Academic)

• since 03/2006:
Research and teaching assistant, Algorithms and Data Structures Group, Institute
of Computer Graphics and Algorithms, Vienna University of Technology

• 07/2005–01/2006:
Employed in the FWF project Combining Memetic Algorithms with Branch and
Cut and Price for Some Network Design Problem under grant P16263-N04, Al-
gorithms and Data Structures Group, Institute of Computer Graphics and Algo-
rithms, Vienna University of Technology

• 03/2002–06/2005:
Teaching assistant (Tutor), Algorithms and Data Structures Group, Institute of
Computer Graphics and Algorithms, Vienna University of Technology, Austria

Publications

• Ulrike Ritzinger, Matthias Prandtstetter and Günther R. Raidl.
Computing optimized stock (re-)placements in last-in, first-out warehouses. In
Stefan Voss et al., editors, Logistik Management, pages 279–298. Physica-Verlag,
2009.

• Matthias Prandtstetter and Günther R. Raidl.
Meta-heuristics for reconstructing cross cut shredded text documents. In Günther
R. Raidl et al., editors, GECCO ’09: Proceedings of the 11th annual conference
on Genetic and evolutionary computation, pages 349–356. ACM Press, 2009.

• Matthias Prandtstetter, Günther R. Raidl and Thomas Misar.
A hybrid algorithm for computing tours in a spare parts warehouse. In Carlos
Cotta and Peter Cowling, editors, Evolutionary Computation in Combinatorial
Optimization – EvoCOP 2009, volume 5482 of LNCS, pages 25–36. Springer,
2009.

• Matthias Prandtstetter.
Two approaches for computing lower bounds on the reconstruction of strip shred-

160

ded text documents. Technical Report TR 186–1–09–01, Institute of Computer
Graphics and Algorithms, Vienna University of Technology, 2009.

• Matthias Prandtstetter and Günther R. Raidl.
An integer linear programming approach and a hybrid variable neighborhood search
for the car sequencing problem. European Journal of Operational Research,
191(3):1004–1022, 2008.

• Matthias Prandtstetter and Günther R. Raidl.
Combining forces to reconstruct strip shredded text documents. In M. J. Blesa et al.,
editors, Hybrid Metaheuristics, volume 5296 of LNCS, pages 175–189. Springer,
2008.

• Matthias Prandtstetter and Günther R. Raidl.
An integer linear programming approach and a hybrid variable neighborhood search
for the car sequencing problem. Technical Report TR 186–1–05–01, Institute of
Computer Graphics and Algorithms, Vienna University of Technology, 2005. Sub-
mitted to EJOR (European Journal of Operational Research).

• Matthias Prandtstetter and Günther R. Raidl.
A variable neighborhood search approach for solving the car sequencing problem. In
Proceedings of the XVIII Mini EURO Conference on VNS, Tenerife, Spain, 2005.

• Matthias Prandtstetter.
Exact and heuristic methods for solving the car sequencing problem. Master’s thesis,
Vienna University of Technology, Institute of Computer Graphics and Algorithms,
August 2005. Supervised by G.R. Raidl and B. Hu.

Organizational and Reviewing Activities

• Program Commitee Member: 43rd Hawaii International Conference on System
Sciences

• since 02/2008:
Reviewer for Computers & Operations Research, Elsevier.

161

