

SIMULTANEOUS USE OF TWO QCLs FOR ON-LINE MID-IR DETECTION WITH HPLC FOR WINE ANALYSIS

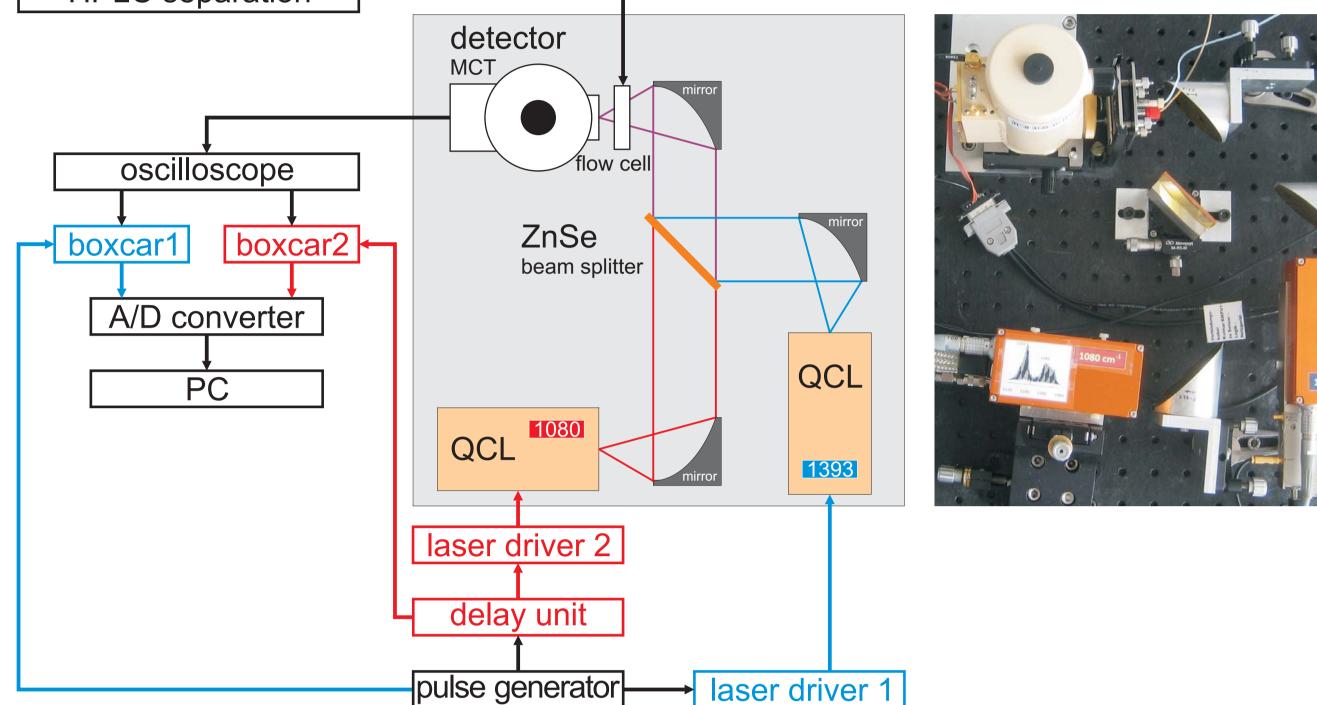
Institute of Chemical Technologies and Analytics

<u>Bernhard Zachhuber</u>, Julia Kuligowski, Wolfgang Tomischko, Bernhard Lendl Inst. of Chemical Technologies and Analytics, Vienna University of Technology, Vienna

A B S T R A C T

In the present study the simultaneous use of two Quantum Cascade Lasers (QCLs) was investigated for the on-line detection in High Performance Liquid Chromatography (HPLC). An optical set-up based on three

EXPERIMENTAL SETUP


MANIFOLD SKETCH AND PICTURE

HPLC separation

Separation of aqueous solutions of organic acids and sugars is done via High Pressure Liquid Chromatography. The separated components are pumped through a CaF₂ flow cell with an inner diameter of 52 μ m. The measurement principal is mid- infrared absorption spectroscopy. Two alternetly pulsed Quantum Cascade Lasers of different wavelength are focused on a MCT detector. The beam intensities are reduced while passing the flow cell, depending on the analyte concentration.

gold mirrors and a ZnSe beam splitter was used to direct the emitted laser light trough a calcium fluoride flow cell with an optical path length of 52 µm onto a Mercury-Cadmium-Telluride (MCT) detector. Using the separation of eight components of wine and grape juice, on-line dual QCL detection in HPLC could be shown successfully for the first time.

The detector signal is separated electronically using boxcar averagers, processed via A/D converter and stored on a PC.

QC - LASERS

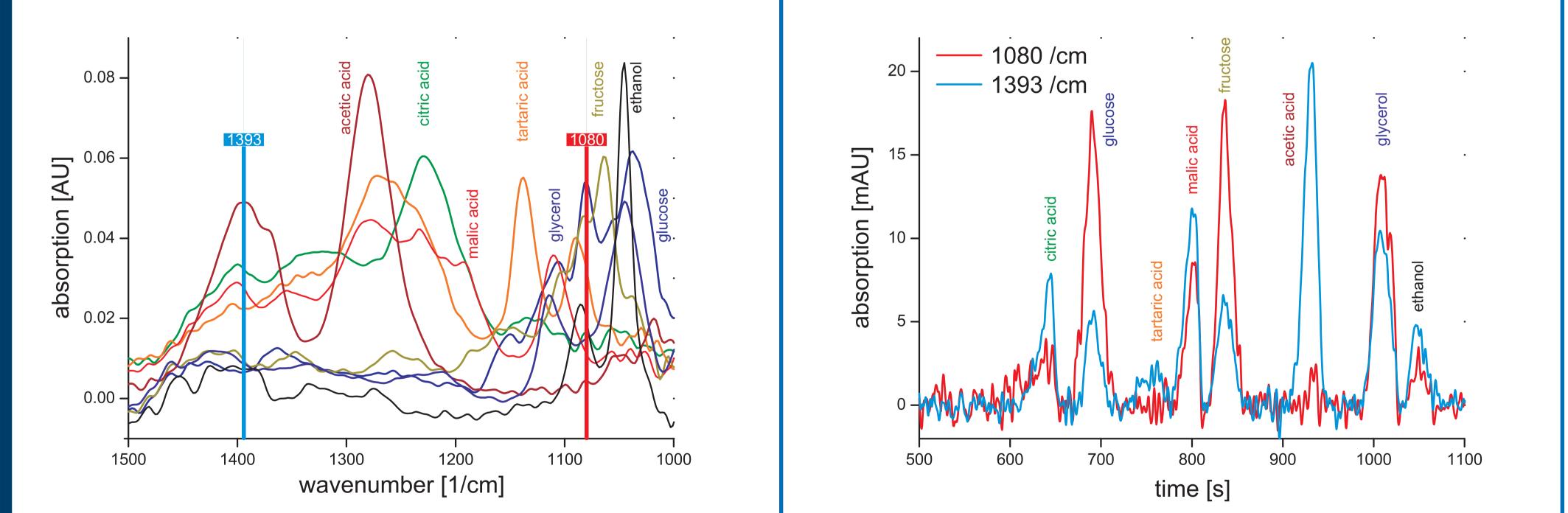
Two Quantum Cascade Lasers (QCLs) are used to quantify sugars and organic acids. Substance spectra of 3 g/l solutions in water were analysed on a FTIR spectrometer. At 1393 cm⁻¹ the C-O-H in-plane bending vibration of the COOH group is located, allowing the measurement of

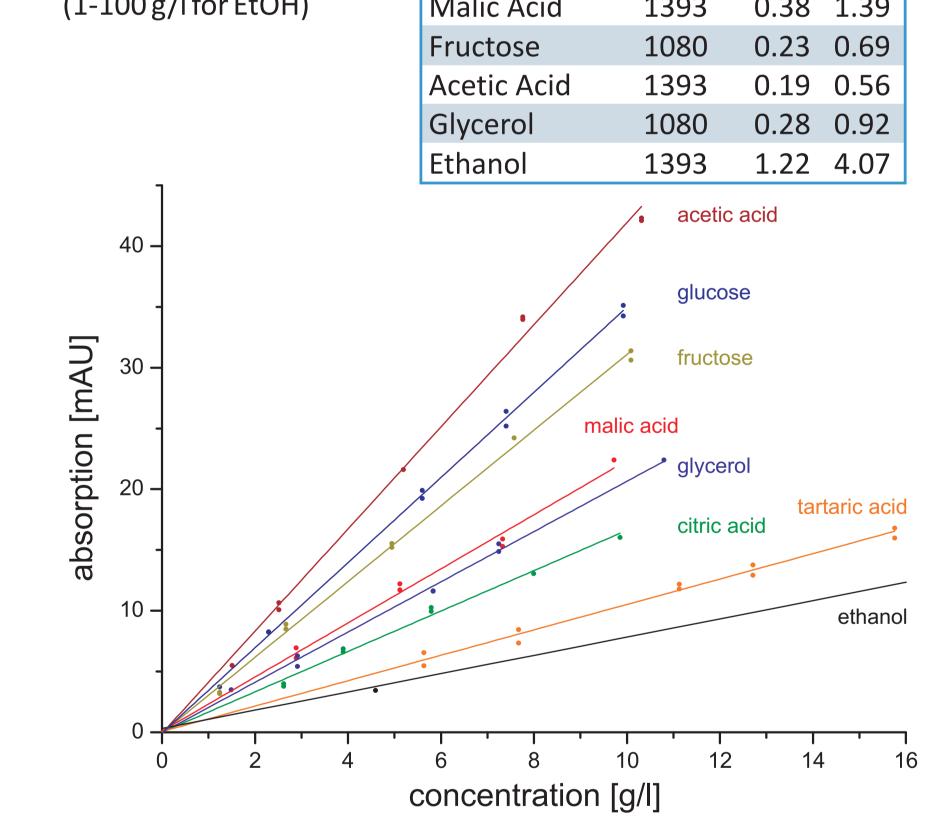
HPLC - SEPARATION

Separation via HPLC using a 50 µl injection loop. Column: Rezex Monosaccharide Ca²⁺, 300x7.8 mm Temperature: 85°C Flow rate: 0.6 ml/min Mobile phase: de-ionised water

The graph below shows the chromatograms at both

laser wavenumbers (1080 and 1393 cm⁻¹) for substance


mixtures of 5 g/l.


CALIBRATION

Calibration using						
aqueous solutions						
of eight substances						
ranging from 1-10 g/l						
(1-100 g/l for EtOH)						

ANALYTE	QCL	LOD	LOQ	
ANALTIE	[1/cm]	[g/l]	[g/l]	
Citric Acid	1393	0.46	1.53	
Glucose	1080	0.24	0.72	
Tartaric Acid	1393	1.29	4.53	
Malic Acid	1393	0 38	1 39	

organic acids. Whereas the C-C-O stretching vibration of the C-O group, between 1210 and 1000 cm⁻¹ allows sugar analysis [1].

EVALUATION

WINE SAMPLES

The performance of the developed method was tested on real samples with a complex matrix such as wine and grape juice.

RECOVERY

Recovery experiments were carried out to assess the accuracy of the proposed method. Previously analysed wine and grape juice samples were spiked with known amounts of the found analytes at two different concentration levels and analysed twice.

CONCLUSION

This study demonstrated, for the first time, the feasibility of the introduced on-line coupling of a HPLC separation to a dual QCL detection system.

The Relative Standard Deviation (RSD) lies between 0.1 and 10% in all measured samples and for all detected analytes.

The recovery values of all compounds were satisfactory and ranged between 95 and 109%.

CONCENTATION FOUND [g/l] ± s (RSD [%])								
	White wine	White wine	White	White wine	White wine	Red	Red wine	
ANALYTE	Traminer	Welschriesling	grape juice	Neuburger	Weissburgunder	grape juice	Zweigelt	
Citric Acid	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	
Glucose	4.5±0.1 (2.20)	< LOD	63.3±0.2 (0.35)	1.5±0.1 (8.64)	1.1±0.1 (9.99)	90.31±0.09 (0.10)	< LOD	
Tartaric Acid	4.7±0.4 (8.65)	<loq< td=""><td>6.0±0.2 (3.49)</td><td>6.1±0.3 (4.48)</td><td>5.0±0.4 (8.15)</td><td>14.1±0.9 (6.21)</td><td>< LOD</td></loq<>	6.0±0.2 (3.49)	6.1±0.3 (4.48)	5.0±0.4 (8.15)	14.1±0.9 (6.21)	< LOD	
Malic Acid	< LOD	<loq< td=""><td>4.2±0.1 (2.74)</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>< LOD</td></loq<>	4.2±0.1 (2.74)	< LOD	< LOD	< LOD	< LOD	
Fructose	24.1±.0.4 (1.55)	2.70±0.03 (1.26)	59.4±0.5 (0.87)	< LOD	1.1±0.1 (9.64)	85.7±0.9 (0.99)	< LOD	
Acetic Acid	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	
Glycerol	5.7±0.3 (5.92)	3.6±0.3 (8.72)	< LOD	5.9±0.5 (8.38)	6.3±0.5 (8.55)	< LOD	7.4±0.3 (3.83)	
Ethanol	109.2±3.3 (2.98)	92±2 (2.20)	< LOD	108.1±2.6 (2.37)	113.5±0.4 (0.37)	< LOD	108.5±0.8 (0.70)	

All investigated species could be chromatographically separated, detected and quantified in complex matrices, as the analysis of seven different wine and grape juice samples showed.

The use of a dual QCL system leads to more selective and robust measurement systems as more structural information on the investigated system is obtained.

REFERENCES

[1] Lin-Vien, D.; Colthup, N.B.; Fateley, W.G.; Grasselli, J.G.; Infrared and Raman Characteristic Frequencies of Organic Molecules. Academic Press: London (1991) 296.

This project was founded by the ____