IEWT 2009

6. Internationale Energiewirtschaftstagung an der TU Wien, 11.–13. Februar 2009

Themen

Programm

Call for papers

Anmeldung

Downloads

Infos

http://eeg.tuwien.ac.at/events/iewt/iewt2009/html/home.php

Kontakt

Energie, Wirtschaft und technologischer Fortschritt in Zeiten hoher Energiepreise

IEWT 2009

6. Internationale Energiewirtschaftstagung an der TU Wien

> 11. – 13. Februar 2009 Wien, Österreich

Tagungsort: Technische Universität Wien Karlsplatz 13 1040 Wien

Veranstalter:

Institut für Elektrische Anlagen und Energiewirtschaft der TU Wien (EAEW)

AAEE (Austrian Association for Energy Economics)

Der Marktwert der Windenergie im Mitteleuropäischen Strommarkt – Einflussparameter und Trends

Carlo Obersteiner

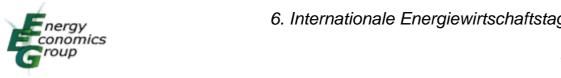
Energy Economics Group (EEG), Vienna University of Technology obersteiner@eeg.tuwien.ac.at

Marcelo SAGUAN

Department of Power and Energy Systems, SUPELEC and GRJM, Faculté Jean Monnet, University of Paris XI

Adam TERINGL

Czech Technical University in Prague


Überblick

1. Einleitung

- Motivation
- Einflussparameter

2. Methodik

- Abbildung des Modellsystems
- Modellierung der Parametervariationen
- 3. Sensitivitätsanalyse für Modellsystem
- 4. Anwendung auf den Mitteleuropäischen Strommarkt
 - Annahmen
 - Ergebnisse
- 5. Schlussfolgerungen
- 6. Ausblick

1. EINLEITUNG - Motivation

1. Historisch und zukünftig: steigender Windanteil in Europäischen Strommärkten

Auswirkungen auf Strommärkte/-preise

- Kurzfristige Sicht: Merit-Order-Effekt Sensfuß et al. (2008), De Miera et al. (2008), Munksgaard and Morthorst (2008), Neubarth et al. (2006)
- 2. Windenergie wird mittel- bis langfristig konventionell vermarktet

Auswirkung auf Marktwert der Windenergie

Bisher kaum untersucht

Literatur

Lamont A. D. (2008) 'Assessing the long-term system value of intermittent electric generation technologies'

 Key analytical finding: market value of wind power can be split up in two components

$$mv = \frac{\sum_{h=1}^{H} (p_{PX,h} \cdot P_{Wind,h})}{\sum_{h=1}^{H} (P_{Wind,h})}$$

$$mv = \overline{p_{PX}} + \frac{\text{cov}(p_{PX}, P_{Wind})}{\overline{P_{Wind}}}$$

with:

mv market value of wind power

 $p_{PX,h}$ hourly power price at power exchange

P_{Wind,h} hourly wind power generation

 p_{PX} power price vector

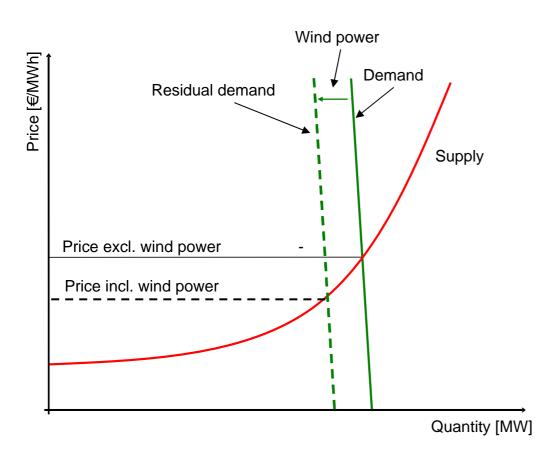
P_{Wind} wind power generation vector

Literatur

Lamont A. D. (2008) 'Assessing the long-term system value of intermittent electric generation technologies'

Weitere Erkenntnisse:

- Marktwert der Windenergie nimmt mit zunehmendem Windanteil ab
- Erklärung: Abnahme der Kovarianz zwischen Windeinspeisung und Strompreis


Zentrale Frage:

 Welche Parameter beeinflussen die Kovarianz zwischen Windeinspeisung und Strompreisen?

Wesentliche Einflussparameter

Systemimmanente Korrelation

 Korrelation Windeinspeisung-Nachfrage, -Angebot

6

- Variabilität von Windeinspeisung und Nachfrage
- Windanteil
- Angebotscharakteristik

Weitere Einflussparameter

- SRMC der Grenztechnologien (Gas, Kohle, CO2-Zertifikatspreis)
- Marktmacht (Mark-up bzw.
 Zurückhalten von Kapazitäten)
- → langfristige Korrelation mit Windeinspeisung?

2. METHODIK – Abbildung des Modellsystems

Inputparameter

Stündliche Daten für Deutschland (2006)

- Windeinspeisung
- Bruttostromnachfrage
- Day-Ahead Preise EEX

Modellsystem

$$\pi_h = a + Q_{D,res,h}^{b}$$

• Isolierter Markt

Perfekter Wettbewerb

Statische Betrachtung

Annahmen

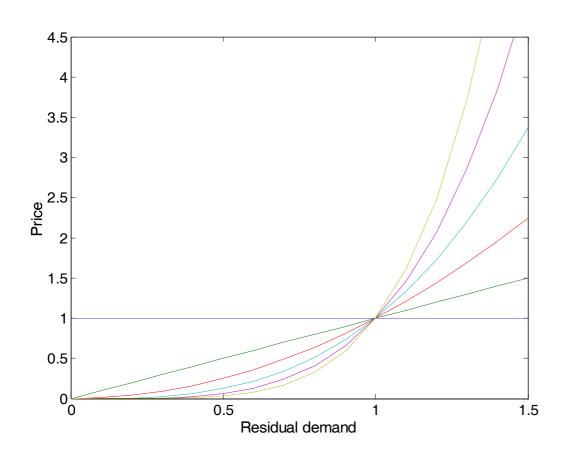
- Prognoseunsicherheit vernachlässigt
- Marktwert bezieht sich auf gesamtes Windportfolio

 π_h stündlicher Strompreis

Q_{D.res.h} Stündliche Restnachfrage (Nachfrage abzüglich Windeinspeisung)

a, b Parameter der Angebotskurve

Markwert


Baseload Technologie: $mv_{base} = \overline{\pi_h}$

Wind:
$$mv_{Wind} = \overline{\pi_h} + \frac{\text{cov}(\pi_i P_{Wind})}{\overline{P_{Wind}}}$$

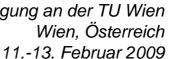
Konvexitätsgrad der Angebotskurve

Reale Angebotskurve

- Treppenfunktion
- Zeitvariabel
- Reflektiert Kraftwerkspark

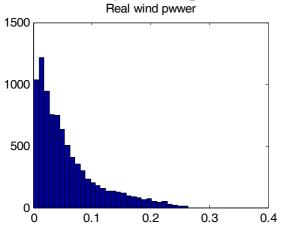
8

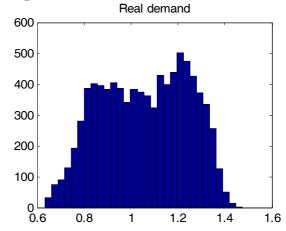
Modellierte Angebotskurve

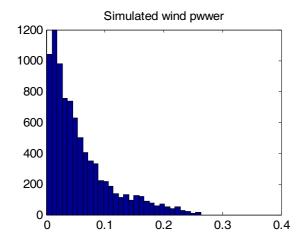

- Kontinuierliche Funktion
- Bleibt zeitlich unverändert
- Variation von Parameter b
 zwischen 0 und 5

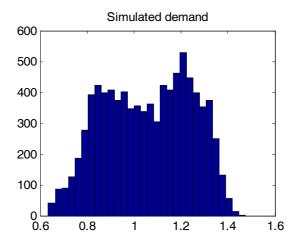
Windanteil

- Skalierung historischer Windeinspeisezeitreihen
- Normiert auf Restnachfrage (Arbeitspunkt bleibt gleich)

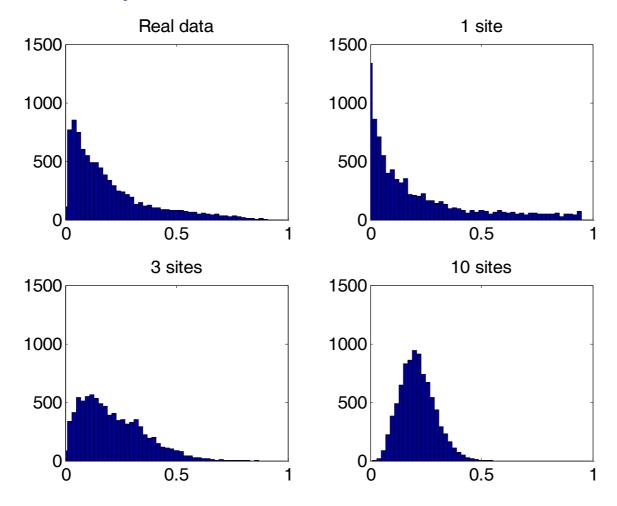




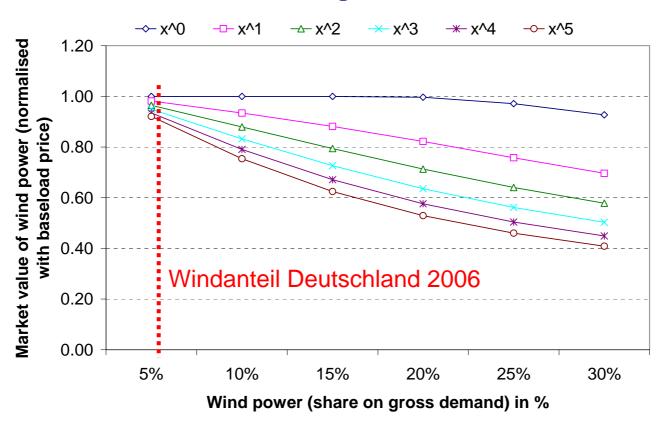



Windeinspeise-Nachfrage-Korrelation

Häufigkeitsverteilung historischer vs. simulierter Windeinspeisung und Nachfrage (Deutscher Datensatz 2006)

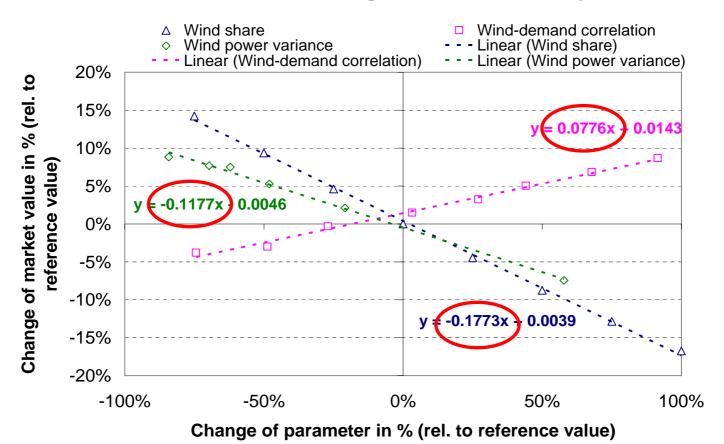


Windeinspeisecharakteristik (2)


Häufigkeitsverteilung realer vs. simulierter Windeinspeiseszenarien (normiert auf die installierte Kapazität)

3. SENSITIVITÄTSANALYSE – Angebotskurve, Windanteil

Marktwert der Windenergie in Abhängigkeit von Windanteil und Angebotscharakteristik

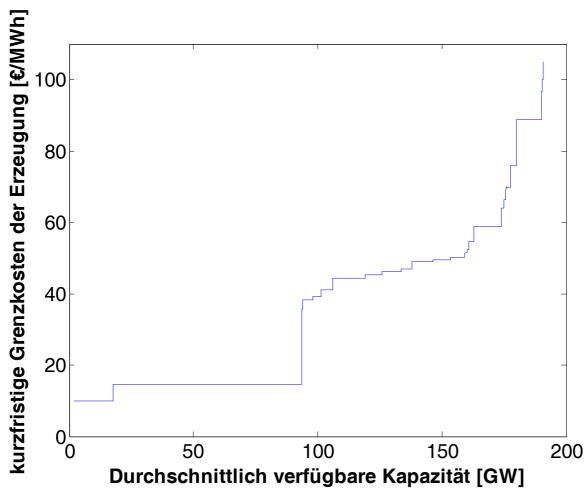


Sensitivität des Marktwerts auf Parameteränderungen

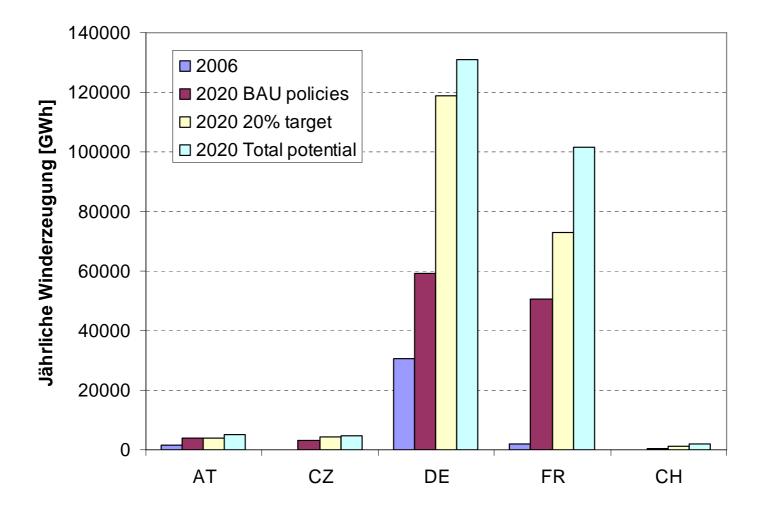
Deutscher Datensatz 2006, Angebotsfunktion: Polynom 4. Grades

Annahmen: Deutscher Datensatz 2006, Angebotsfunktion: a=0, b=4, Marktwert auf Base-Preis normiert

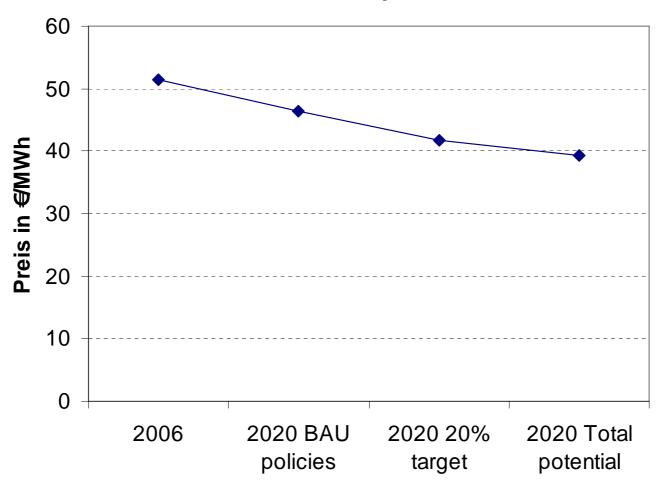
4. MODELLANWENDUNG – Mitteleuropäischer Strommarkt


Annahmen

- Mitteleuropäischer Strommarkt umfasst Deutschland, Frankreich,
 Tschechien, Österreich und Schweiz
- Referenzjahr 2006
- Stündliche Windeinspeisung und Nachfrage
- Modellierung der Angebotskurve basierend auf bestehendem Kraftwerkspark
- Durchschnittliche Primärenergieträger-, und CO2-Zertifikatspreise
- Mitteleuropäischer Strommarkt ist isoliert (kein Austausch mit Nachbarmärkten)

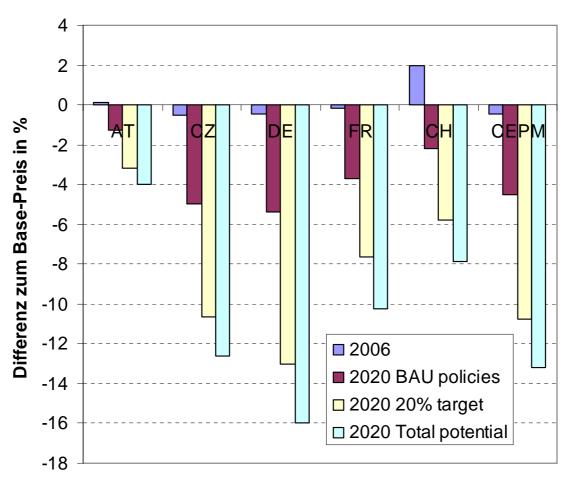

Angebotskurve – Mitteleuropäischer Strommarkt 2006 (ohne Wind)

Analysierte Szenarien – Winderzeugung je Land



Ergebnisse (1) – Merit-Order-Effekt

Base-Preis im Mitteleuropäischen Strommarkt

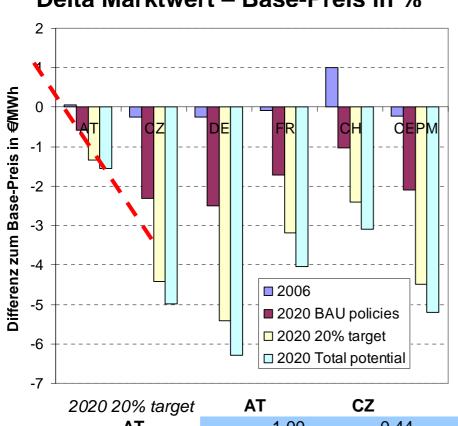


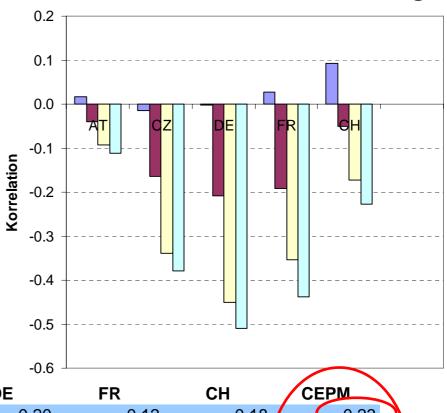
Ergebnisse (2) – Marktwert der Windenergie

Delta Marktwert – Base-Preis in %

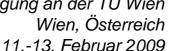
Ergebnisse (2) – Marktwert der Windenergie

Delta Marktwert – Base-Preis in €MWh




Ergebnisse (3) – Erklärung

Delta Marktwert – Base-Preis in %



Korrelation Wind – Restnachfrage

20

2020 20% target	AT	CZ	DE	FR	CH	СЕРМ
AT	1.00	0.44	0.20	0.12	0.18	0.23
CZ	0.44	1.00	0.73	0.32	0.39	0.69
DE	0.20	0.73	1.00	0.51	0.38	0.95
FR	0.12	0.32	0.51	1.00	0.57	0.75
CH	0.18	0.39	0.38	0.57	1.00	0.51
CEPM	0.23	0.69	0.95	0.75	0.51	1.00

5. SCHLUSSFOLGERUNGEN

- Sensitivität des Marktwerts der Windenergie für alle analysierten Einflussparameter signifikant
- **Wind-Preis-Korrelation reduziert Marktpreis**
- Base-Preis kein geeigneter Indikator für den Marktwert der Windenergie
- Größenordnung des Effekts für Länder im Mitteleuropäischen Strommarkt unterschiedlich
- Zukünftig auch Korrelation zwischen Einspeisung eines Standortes mit Gesamteinspeisung im jeweiligen Strommarkt zu berücksichtigen

6. AUSBLICK

Weiterführende Arbeiten umfassen

- Bewertung der Sensitivitäten für den Mitteleuropäischen Strommarkt
- Bewertung zukünftiger Entwicklungen dieser Parameter
 - Entwicklung Kraftwerkspark (in Abhängigkeit des Windausbaus)
 - Preisentwicklungen (Primärenergieträger, CO2-Zertifikate)
 - Geografische Verteilung der Windenergie im Mitteleuropäischen Strommarkt
 - Offshorenutzung in Deutschland
 - Speichereinsatz zum Ausgleich der Windenergie

Vielen Dank für die Aufmerksamkeit

Weitere Information / Fragen:

Carlo Obersteiner

Energy Economics Group

Tel.: +43 1 58801 37367

Fax: +43 1 58801 37397

Email: <u>obersteiner@eeg.tuwien.ac.at</u>

Web: www.eeg.tuwien.ac.at