

Thermodynamic Modeling of Materials for Solid Oxide Fuel Cells

Erwin Povoden-Karadeniz

Solid Oxide Fuel Cells (SOFC): Chemical energy → Electrical energy

Chromium "poisoning" of planar SOFC

Calphad (**Cal**culation of **phase diagrams**) modeling Thermodynamic La-Sr-Mn-Cr oxide database

Applications: SOFC cathodes poisoned by chromium

Principles of planar SOFC

From stack to system

Aim: high performance SOFC with long-time stability in the power plant scale

Degradation

SOFC degradation is caused by chromium from the interconnect

Mechanisms and microstructures

Open questions

-) Thermodynamics \rightarrow concentration of deposits at the

cathode-electrolyte interface?

-) Thermodynamics \rightarrow Cr compounds + LSM \rightarrow ? \rightarrow properties?

-) Reaction mechanisms to Mn(Cr,Mn)₂O₄ spinel?

 \rightarrow LSMCrO \rightarrow Calculations of local thermodynamic equilibiria in degraded SOFC

The construction of a thermodynamic database is a fundament for **future kinetic modeling**.

CALPHAD Modeling

Calphad (=Calculation of Phase Diagrams) modeling

$\Delta^{\circ}G = A + BT + CT \ln T + DT^{2} + ET^{3} + FT^{-1}$ $\Delta G = \Delta H - T\Delta S$ $\Delta S = -\left(\frac{\partial G}{\partial T}\right) = -B - C(1 + \ln T) - 2DT - 3ET^{2} + FT^{-2}$ $\Delta H = \Delta G + T\Delta S = A - CT - DT^{2} - 2ET^{3} + 2FT^{-1}$ $C_{p} = \left(\frac{\partial H}{\partial T}\right) = -C - 2DT - 6ET^{2} - 2FT^{-2}$ Thermodynamic properties can be derived from the Gibbs energy polynomial

Example: stoichiometric Cr_2O_3

 $\Delta G_{\text{Cr}_2\text{O}_3} = -1164542 + 728.56T - 119.8T \ln T - 4.97 \times 10^{-3}T^2 + 1050000T^{-1}$

The Gibbs energy function of a stoichiometric phase is achieved by **fitting model parameters (A to F)** to experimental thermodynamic and phase diagram data

Assessed subsystems

Strategy: Optimize low-order subsystems first, then extend modeling to higher orders. Extension from pseudoquaternaries to LSMCr without additional model parameters

Cr-Mn Spinel

Thermodynamic data

MnO_x-CrO_{1.5} phase diagram

Povoden et al., Int. J. Mat. Res., 97(5), 2006

Cubic spinel is the dominating phase in air in a wide temperature range Tetragonally distorted spinel is stable at the Mn-rich side of the section Good fit of the model description with data from Pollert et al. and Holba et al.

Calculation under low oxygen partial pressures

Ternary phase diagram

Mn-Cr-O

Perovskite

La-Cr-O oxide subsystem

(La³⁺,Va)(Cr³⁺,Cr⁴⁺,Va)(O²⁻,Va)

Enthalpy of formation from oxides

<u>This work:</u> $\Delta_{\rm f} H^{\circ} = -73700 \text{ J mol}^{-1}$

<u>Literature:</u> $\checkmark \Delta_{\rm f} H^{\circ} = -77163.5 \text{ J mol}^{-1}$ Cheng & Navrotsky 2005

↓

Good agreement

Standard entropy

<u>This work:</u> $S^{\circ} = 109.2 \text{ J K}^{-1} \text{mol}^{-1}$

<u>Literature:</u> $\checkmark S^{\circ} = 111 \text{ J K}^{-1}\text{mol}^{-1}$ Vishnyakow and Suponitskii 1985 $\checkmark S^{\circ} = 114 \text{ J K}^{-1}\text{mol}^{-1}$ Yokokawa et al. 1991, est.

S° = 87 J K⁻¹mol⁻¹ Azad et al. 1990

Experimental phase diagram data \rightarrow decision for the correct set of thermodynamic data

Calculated stability of rhombohedral La-Cr-perovskite

Defect concentrations of nonstoichiometric La-Cr perovskite

Advantage of modeling defect chemistry with Calphad:

Thermodynamically consistent (Gibbs energies of compounds)

Straight-forward extension to high-order systems

Oxygen nonstoichiometry in $La_{1-x}Mn_xCrO_{3-\delta}$ perovskite

(La³⁺, Va)(Cr³⁺,Cr⁴⁺,Mn²⁺,Mn³⁺,Mn⁴⁺,Va)(O²⁻,Va)

Oxygen nonstoichiometry in $La_{1-x}Sr_xCrO_{3-\delta}$ perovskite

(La³⁺,Sr²⁺,Va)(Cr³⁺,Cr⁴⁺,Va)(O²⁻,Va)

La-Sr-Cr-O oxide subsystem

 $LaO_{1.5} - SrO - CrO_{1.5}$ air, 1223 K

lonics 123, 1999, 59-65.

 $La_{1-x}Sr_xCrO_{3-\delta}$ perovskite enthalpy of formation from oxides at 298 K

Summary of results in assessed oxide subsystems

The modifie and imagine and i

 \rightarrow Extension without additional parameters to the higher order system: La-Sr-Cr-Mn-O

Cr-gas+LSM → Spinel

Composition of cathode: (La_{0.8}Sr_{0.2})_{0.9}MnO₃ Conditions: Operation temperature: 1073 – 1273 K

Where to get the appropriate chemical potential of chromium?

Cr level ≈ 3 wt%

2.) from oxygen partial pressure:

assumption: oxygen vacancies exist in LSM at triple phase boundary (TPB)

A. Hammouche et al., J. Electrochem. Soc., 1991, 138, 1212.
T. Horita et al., J. Electrochem. Soc., 2001, 148, J25-30.
G.J. la O' et al., J. Electrochem. Soc., 2007, 154, B427-B438.

Calculation: from polarisation

 $\rightarrow p_{\rm O2}$ > 0.1 Pa at TPB

ightarrow Chemical potential of chromium

μ ≈-300 kJmol⁻¹ Reference: 10⁵ Pa CrO_{3(α)}

A.N. Grundy et al., Calphad 28, 2004, 191-201

Equilibria in degraded SOFC

Cubic spinel forms at low p_{O2} in Cr-poisoned LSM.

At lower temperatures c-spinel formation is shifted towards lower p_{O2} .

No $Cr_2O_{3(s)}$ is found in thermodynamic equilibrium.

Spinel tends to **clogg pores** at high *T* and low p_{O2} .

Composition of spinel and electrical conductivity

Low p_{O2} : More chromium in spinel \rightarrow lower electrical conductivity

Defect chemistry of cathode

Considerably lower defect concentrations in LSM(Cr) than in LSM at p_{O2} <1 Pa at high $T \rightarrow$ lower electrical conductivity of LSM(Cr) High Mn²⁺ at p_{O2} <3500 Pa at high $T \rightarrow$ favors spinel formation

Conclusions

- (A,Va)(B,Va)(O²⁻,Va)₃ perovskite model from low to high order systems.
- Thermodynamics \rightarrow LSM(Cr)+spinel, no Cr₂O₃
- Thermodynamics \rightarrow High *T*, low p_{O2}
 - \rightarrow Spinel blocks pores at TPB
 - \rightarrow High Mn²⁺ in LSM(Cr), thus favored (Mn²⁺)(Cr³⁺,Mn³⁺)O₄ spinel formation
 - → more chromium in spinel and changing defect concentrations, hence decreasing electrical conductivity.
- Thermodynamics \rightarrow Lower operation *T* and lower current load (thermodynamically: higher p_{O2}) means less degradation

Conventional materials – Optimization

- Improvements for calculations:
 quantitative p_{Cr}
- \rightarrow La-Sr-Mn-Cr-Y-Zr-O

oxide database

• LSM \iff coatings:

La-Sr-Mn-O-Cr-Co,

- & New ways alternative materials
 - Promising new cathode perovskites: (La,Sr)(Co,Fe)O₃ √La-Sr-Fe-O (Ba,Sr)(Co,Fe)O₃
 - Highly chromium-tolerant cathodes: La(Ni,Fe)O₃ perovskite (La,Ba)(Co,Fe)O₃ perovskite

LaCrO₃-based ceramic interconnects

La-Sr-Ca-Cr-O La-Sr-Ca-V-Cr-O La-Ca-Zn-Cr-O

33

Outlook – Kinetic modeling

non-equilibrium <u>time</u> → equilibrium surface mechanisms –

early stages of degradation:

Several ppm of Cr lead to significant decrease of oxygen diffusion

(J. Zheng and P. Wu, 4th international symposium on solid oxide fuel cells, and pers. comm.)

Thermodynamic LSMCr oxide database + algorithms and mobility databases → modeling of kinetics