
FROM LEGACY WEB APPLICATIONS
TO WEBML MODELS

A Framework-based Reverse Engineering Process

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

ausgeführt von

Max Rieder

Matrikelnummer 0126507

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuerin: O.Univ.Prof. Mag. Dipl.-Ing. Dr.techn. Gertrude Kappel
Mitwirkung: Univ.Ass. Mag. Dr.rer.soc.oec. Manuel Wimmer

Wien, 01.12.2009 _______________ _______________
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

http://www.tuwien.ac.at/

Erklärung zur Verfassung der Arbeit

Max Rieder
Tautenhayngasse 15/2/2303
1150 Wien

”Hiermit erkläre ich, dass ich diese Arbeit selbstständig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel voll angegeben habe und dass ich die Stellen der Arbeit einschließlich Ta-
bellen, Karten und Abbildungen , die anderen Werken oder dem Internet im Wortlaut oder dem Sinn
nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht
habe.“

Wien, 07. Dezember 2009

i

Acknowledgements

I would like to thank all the people that supported me during my studies and during the time of
writing my master thesis. These are especially my parents, Wilfried and Rosemarie Rieder, who
gave me a lot of financial and moral support. I also want to thank Dr. Manuel Wimmer, who helped
me with technical issues and the principles of scientific writing, as well as Prof. Dr. Gerti Kappel,
for supervising my work.

iii

Abstract

In the last decade the adoption of web applications instead of desktop applications has grown
rapidly. Also the patterns and technologies for developing and running web applications have
changed a lot over time. The World Wide Web has evolved from a collection of linked static docu-
ments to a space of countless dynamic, data centric applications. One of the oldest and most popular
languages for developing dynamic web applications is PHP. Although nowadays there are proved
techniques for developing web applications in PHP, many older PHP web applications are written
without the notion of applying well-defined design patterns. Those web applications are hard to
understand, maintain, extend as well as hard to migrate to new web platforms.

Nowadays many web applications are developed using Model Driven Engineering (MDE) tech-
niques where software systems are described as models and code artifacts are generated out of these
models. But often the requirement is not to develop a completely new web application but to capture
the functionality of an existing legacy application. As it usually takes a lot of time for humans to
understand the source code, it can be helpful to have a tool that analyzes the source artifacts and
transforms them into a model on a higher level of abstraction. This process is called reverse engi-
neering. The requirements for such a tool to work is the existence of well-known patterns in the
source code, which is typically found in Model-View-Controller (MVC) web applications.

In this thesis a reverse engineering process from a legacy PHP web shop application into a
model of the Web Modeling Language (WebML), based on static code analysis, is presented. First
of all the requirements for the source code are analyzed in order to apply an automatic reverse
engineering process on it. The source application is refactored to fulfill these requirements, which
leads to a MVC version of the example application. The refactored application is the source for the
next step, a code to model transformation into an intermediate model of the MVC web application.
The last step is a model to model transformation from the the MVC model into a WebML model.

The result is a WebML model that shows the most important structural and behavioral aspects of
the example application. The benefit of such a model is that that it provides a realistic documentation
of the current state of the application. Whenever the application changes, the process can be repeated
so the documentation never gets outdated. It helps humans to understand the connections between
different parts of the application and can be used to support refactoring activities or the migration
to another platform.

v

Kurzfassung

In den letzten Jahren ist der Einsatz von Webanwendungen als Ersatz für Desktop Anwendungen
rapide angestiegen. Auch die Entwurfsmuster und die Technologien, die zur Entwicklung und zum
Betrieb von Webanwendungen verwendet werden, haben sich im Laufe der Zeit geändert. Das
World Wide Web hat sich von einer Sammlung aus statischen, verlinkten Dokumenten zu einem
Netz aus unzähligen dynamischen Applikationen für unterschiedlichste Zwecke entwickelt. Eine
der ältesten und auch beliebtesten Sprachen zur Entwicklung von Webanwendungen ist PHP. Ob-
wohl es heutzutage erprobte Techniken zur Entwicklung von PHP Anwendungen gibt, wurden viele
ältere PHP Anwendungen ohne dem Einsatz von Entwurfsmustern geschrieben. Solche Webanwen-
dungen sind schwierig zu verstehen, zu warten, zu erweitern und umzuschreiben.

Heutzutage werden viele Web Anwendungen unter Einsatz von Techniken des Model Driven
Engineerings (MDE) entwickelt, wo Software Systeme als Modelle beschrieben werden und Code
Artefakte aus diesen Modelle generiert werden. Doch häufig ist es nicht gefordert, eine komplett
neue Web Anwendung zu entwickeln, sondern die Funktionalität einer existierenden Legacy App-
likation zu erfassen. Da ein Mensch üblicherweise lange braucht, um den Quellcode zu verstehen,
kann ein Tool hilfreich sein, das den Quellcode analysiert und in ein Model auf einer höheren Ab-
straktionsebene transformiert. Diesen Vorgang nennt man Reverse Engineering. Dafür müssen
wohldefinierte Muster im Quellcode vorhanden sein, wie man sie typischerweise in Model-View-
Controller (MVC) Web Anwendungen findet.

In dieser Arbeit wird ein Reverse Engineering Prozess von einer Legacy PHP Webshop An-
wendung in ein Model der Web Modeling Language (WebML), basierend auf statischer Codeanal-
yse, vorgestellt. Zuerst werden die Anforderungen analysiert, die der Quellcode erfüllen muss, um
überhaupt einen automatischen Transformationsprozess darauf anwenden zu können. Die Beispielap-
plikation wird einem Refactoring unterzogen, das zu einer MVC Webanwendung führt. Der nächsten
Schritt ist eine Model to Code Transformation in eine Zwischenmodell der MVC Web Anwendung.
Der letzte Schritt ist eine Model to Model Transformation des MVC Modells in ein WebML Modell.

Das Ergebnis ist ein WebML Modell, das die wichtigsten Aspekte der Struktur und des Ver-
haltens der Beispielanwendung darstellt. Der Nutzen so eines Modells ist, dass es eine realistische
Dokumentation über den aktuellen Zustand der Applikation darstellt. Sobald sich die Applikation
ändert, kann der Prozess wiederholt werden, so dass die Dokumentation niemals veraltet. Das Mod-
ell hilft Menschen, die Zusammenhänge der verschiedenen Anwendungsteile zu verstehen und kann
für Refactoringzwecke oder für die Migration auf eine neue Plattform verwendet werden.

vii

Table of Contents

1 Introduction 1
1.1 Motivation and Goal of this Thesis . 1
1.2 Structure of this Thesis . 2

2 The Example Application 3
2.1 Used Technology: LAMP . 3
2.2 A functional Description from a User’s Perspective 4
2.3 Description of the Source Code . 7

2.3.1 The Data Model . 7
2.3.2 The Shop Catalog Script . 8
2.3.3 The Shopping Cart Script . 10
2.3.4 The Process Order Script . 13

3 Overview of the Reverse Engineering Process 15
3.1 The Reverse Engineering Process . 15
3.2 Methodology of this Thesis . 15

3.2.1 Requirements for the Reverse Engineering Process 15
3.2.2 Conceptual Design . 17
3.2.3 Implementation . 18

4 Requirements for the automatic Reverse Engineering Process 19
4.1 A simple MVC Framework . 19

4.1.1 The Model . 21
4.1.2 The Controller . 22
4.1.3 The View . 25

4.2 A Transformation into a MVC Framework Application 26
4.2.1 Transforming the Data Model . 26
4.2.2 Implementing the Model and the View . 27

4.3 Symfony . 33

ix

x TABLE OF CONTENTS

4.3.1 Fundamental Concepts . 33

4.3.2 Symfony’s MVC Implementation . 36

4.3.3 The Project and Code Organization . 37

4.3.4 The Controller Layer . 39

4.3.5 The View Layer . 40

4.3.6 The Data Access Layer . 41

4.3.7 Setting up an Example Project in Symfony 44

4.4 A Transformation into a Symfony Application . 45

4.5 A Comparison between the MVC Framework and Symfony 48

5 Ingredients for the Conceptual Design 51
5.1 WebML . 51

5.1.1 The Data Model . 51

5.1.2 The Hypertext Model . 53

5.1.3 The Content Management Model . 55

5.2 XML and HTML Processing Tools . 57

5.2.1 Jericho . 58

5.2.2 JAXB . 59

6 Conceptual Design 63
6.1 Defining the Target Data Structure . 63

6.1.1 The Data Model . 64

6.1.2 The Web Model . 64

6.2 Defining a Mapping between the Web Application and the Web Model 68

6.2.1 Identifying View Patterns . 68

6.2.2 Identifying Model Patterns . 72

6.2.3 Defining an intermediate Data Structure for the Web Application 77

7 Ingredients for the Implementation 83
7.1 Introduction on how a Compiler works . 83

7.1.1 The lexical Analysis Phase . 83

7.1.2 The syntactic Analysis Phase . 83

7.1.3 The Code Generation or Execution Phase 84

7.2 Working with JavaCC . 84

7.2.1 Lexical States . 86

7.3 Working with JJTree . 87

7.3.1 Building an Abstract Syntax Tree . 87

TABLE OF CONTENTS xi

7.3.2 The Visitor Pattern . 88

8 Implementation 89
8.1 Transforming the Database Schema into a WebML Data Model 90

8.1.1 A Grammar for Create Table Statements 90

8.1.2 Defining the Relationships between the Tables 93

8.1.3 Implementing the Compiler . 95

8.2 Implementing the PHP to WebML Compiler . 98

8.2.1 Building the AST . 99

8.2.2 Transforming the Templates to XML . 102

8.2.3 Transforming the Model Classes . 104

8.2.4 Creating the Pages . 112

8.2.5 Creating the Links from the Pages . 113

8.2.6 Creating the Links from the Operation Modules 115

8.2.7 Creating and Marshalling the WebProject 116

9 Related Work 117
9.1 Overview . 117

9.2 Web Modeling Languages . 118

9.3 The WARE tool . 119

9.3.1 The Analysis Phases . 119

9.3.2 The Conceptual Model . 120

9.3.3 Tool Support . 120

9.4 A Comparison to WARE . 120

10 Conclusion and Future Work 121
10.1 Summary . 121

10.2 Evaluation . 124

10.2.1 Prerequisite for an Automatic Transformation 124

10.2.2 Shortcomings of the Assumptions . 125

10.2.3 Information Loss in Reverse Engineering 126

10.3 Future Work . 126

10.3.1 Improving the Analysis of the PHP Code 126

10.3.2 Using intermediate Models or Data Structures 127

10.3.3 Introducing a Refactoring Phase . 127

Appendices 128

xii TABLE OF CONTENTS

A The Reverse Engineering Framework and Examples 129

Bibliography 129

Chapter 1

Introduction

1.1 Motivation and Goal of this Thesis

Since the early days of the World Wide Web, websites have evolved from simple collections of
HTML pages presenting static content to dynamic applications that are able to interact with the user
and to generate dynamic content [19]. A dynamic web application is based on one or more data
sources (usually a relational database, although others sources such as web services or semantic
web data are possible). To operate on the data provided by a data source web applications have to
somehow implement basic CRUD (create, read, update and delete) operations.

As web applications have a client-server architecture, where the browser communicates with
the web server via the stateless HTTP protocol, described in RFC 2616 [13], the application logic is
placed on the web server and the browser is simply a thin client, mainly responsible for rendering the
user interface, reacting on user triggered events and to send and receive HTTP messages (although
it is possible to execute application logic in the browser, e.g by using JavaScript, described in the
ECMAScript Language Specification [11]).

Due to the stateless nature of the HTTP protocol, a web application not only has to implement
the CRUD operations but also has to take care about session handling and request/response param-
eter parsing. Nowadays there are numerous programming languages and frameworks capable or
especially dedicated to implement web applications. One of the oldest and most popular scripting
language for web application development is PHP.

While PHP is easy to learn and provided with many features required for web applications
out of the box, it comes with certain drawbacks, such as that it is hard to debug and to refactor
(as it is not a statically typed language) and that it encourages a bad programming style. Still
many productive web applications nowadays are written in PHP. There are different approaches to
measure the popularity of programming languages. O’Reilly Radar [20] presents a diagram with the
relative share trends of books on programming language sold by the publishing company O’Reilly,
where sales on books about PHP slightly oscillate between eight and ten percent, between 2003 and
2006. TIOBE Software [53] presents a monthly index indicating the popularity of programming
languages, based on ratings calculated using popular search engines. According to the TIOBE index
[52] PHP has a popularity of 9.921% in May 2009. In both statistics Java [37] is the most popular
programming language with 19.537% in [52] in May 2009. As those statistics are considering

1

2 Chapter 1. Introduction

programming languages for all purposes and not especially for web applications, it can be assumed
that the share of PHP based web applications amongst all web applications is even higher.

As business requirements change over time, it is inevitable that legacy IT systems have to be
adapted to the new requirements. This is not only true for COBOL applications written in the 1960s
but also for web applications written in the 1990s and in this century. In his book, W. Ulrich [54]
has identified the following typical characteristics for legacy application architecture:

• Humans cannot understand how the system functions.

• The system is hard to modify with confidence that a given change is correct.

• Business logic is hard to distinguish from logic that controls data access, user interface and
environmental management functions.

• Business logic is redundantly and inconsistently defined within and across systems.

• The system lacks functional or technical documentation, or both.

• It is difficult to integrate the system with other systems not built under the same architecture.

One approach to reduce the impact of those characteristics is to leverage modeling techniques.
For a newly built system it is possible to start with modeling different aspects of the system and
then generate the system out of the model. But what about existing legacy systems where the above
mentioned characteristics apply to? In order to obtain a model of such a system, some kind of
reverse engineering process has to be performed. The aim of this thesis is to provide an example
of how reverse engineering can be a applied on a poorly designed web shop application, written
in PHP. It is analyzed which structures can be easily automatically reverse engineered, which parts
need to be re engineered by hand and which parts can not be represented in the target model at all.
The modeling language chosen for the target model is the web modeling Language (WebML). It is
described in Ceri et al. [5] and on the WebML website [24]. Its advantages over other modeling
languages is that it is especially designated to the modeling of web applications, that it consists of
modeling elements reflecting typical functionality of data intensive web applications, that a WebML
model is is easy to understand and that it provides a commercial tool support.

1.2 Structure of this Thesis

This thesis consists of ten chapters. In Chapter 2 the example application, which is the source for the
reverse engineering process is described. In Chapter 3 an overview of the whole reverse engineering
process is given. Chapter 4 analyzes, which requirements the example application must fulfill in
oder to apply an automatic transformation process on it. The application is refactored according to
these requirements. In Chapter 5 the necessary ingredients for the conceptual design of the reverse
engineering process are described and in Chapter 6 the conceptual design is presented. In Chapter
7 the necessary ingredients for the implementation of the reverse engineering process are described
and in Chapter 8 the implementation is presented. In Chapter 9 and overview of related work is
given. In Chapter 10 the result of the reverse engineering process is analyzed and possibilities for
future work are outlined.

Chapter 2

The Example Application

In this Chapter the example application, which is the starting point of the reverse engineering pro-
cess, is described. In Section 2.1 the technologies used to run the application are described. In
Section 2.2 the example application is presented from a user’s point of view. In Section 2.3 the
implementation of the application is shown.

2.1 Used Technology: LAMP

LAMP is an acronym for Linux, Apache, MySQL and PHP and describes the combined application
of these technologies. This bundle of freely available open source software is very often used as a
platform for real world web applications, as well as for the example application presented in this
thesis. The technologies used are:

Linux ”Linux is a free Unix-type operating system originally created by Linus Torvalds with the
assistance of developers around the world. Developed under the GNU General Public License
, the source code for Linux is freely available to everyone.” [46]

Apache The Apache httpd project is an open-source HTTP server for UNIX and Windows based
operation systems.

MySQL A relational database management system (RDBMS), which is described in [40]. The
MySQL dump tool [38], bundled with the RDBMS, is used to retrieve the SQL create table
statements used for the database of the example application.

PHP A scripting language for web applications. A more detailed overview is given in the remaining
part of this Section.

PHP

In the early days of the World Wide Web, websites were mainly a collection of simple HTML pages
with static content, linked amongst each other. Each page was a text file in the file system of the web
server’s machine and the web server simple returned the content of those files to requesting clients.

3

4 Chapter 2. The Example Application

With the introduction of the Common Gateway Interface it became possible for the web server to
interact with other applications. Hence the content presented to the client was no longer limited
to hard coded text files but could be generate dynamically, e.g. by executing a Perl script. Clients
were now able to influence the behavior of the website by providing form inputs, which were inter-
preted on the server side. But still there was no programming language which satisfied the special
requirements for dynamic web applications. In 1995 Rasmus Lerdorf wrote a set of Perl scripts and
later a C implementation of a program called ”Personal Home Page Tools”. The program enabled
the development of simple dynamic Web applications providing database communication, Perl-like
variables, automatic interpretation of form variables and HTML embedded syntax. Rasmus released
the source code for everybody under the name PHP/FI, which stood for Personal Home Page / Forms
Interpreter. PHP/FI 2.0 was released in November 1997 but was shortly after succeeded by the of-
ficial release of PHP 3.0 in June 1998, which closely resembles PHP as we know it today. PHP 3
is a complete rewrite of the original language implementation, written by Andi Gutmans and Zeev
Suraski, which provides a solid infrastructure for lots of different databases, protocols and APIs, as
well as strong extensibility features. The name was changed to simply PHP as the recursive acronym
for PHP: Hypertext Preprocessor, in order to remove the implication of limited personal use. PHP
3 enabled the development of complex web applications, but the implementation was not designed
to handle such applications efficiently. Therefore Andi Gutmans and Zeev Suraski rewrote the core
implementation of PHP to improve performance under the name Zend Engine (comprised of their
first names, Zeev and Andi). PHP 4 is based on this engine and was released in May 2000. In
addition to improved performance, PHP 4 provides support for more web servers, HTTP sessions,
output buffering, more secure ways of handling user input and several new language constructs.
PHP 5 was released in July 2004 based on its new core, the Zend Engine 2.0 with a new object
model and dozens of other new features.

Table 2.1 gives a short overview of the PHP functions and language elements used in the exam-
ple application. A detailed description of all functions can be found in the PHP Function List [49].
The object oriented features of PHP are described in the PHP Manual [47].

2.2 A functional Description from a User’s Perspective

The example to be reverse engineered is a simple shopping cart application, based on the example
in the German version of the book PHP and MySQL For Dummies by J. Valade [56]. It’s a shop
for online purchasing of food. The entry point for the customer is the shop catalog page, shown in
Figure 2.1, which displays the available product categories: Fruits and vegetables. The categories
are further subdivided into sub categories: Vegetables can be salad or tomato, fruit can be apple
or orange. The user may choose one subcategory via a radio button and a click on the Choose
category button. Furthermore there is a button to reach the shopping cart.

A click on the button to view the shopping cart leads the user to the page shown in Figure 2.2
which displays the information that the cart is currently empty, together with a link back to the
categories page.

After choosing a subcategory, the user gets a list of all available products as shown in Figure
2.3 where apples have been chosen. Each line has a text input field, where the user may enter the
desired amount to be ordered. There are buttons for placing the order, changing the category and

2.2. A functional Description from a User’s Perspective 5

Function/Variable Description
construct() The constructor of a class
destruct() The destructor of a class
GET Associative array containing the request parameters of a

get request.
POST Associative array containing the request parameters of a

post request.
array Creates an array
date Returns a data string with the current date formatted ac-

cording to the given format string
die Does the same as exit
echo Output one or more strings
empty Determine whether a variable is empty
exit Terminates the execution of the current script
header Sends an raw HTTP header
include Includes and evaluates the specified file
include once Includes and evaluates the specified file if hasn’t been in-

cluded yet
isset Checks if a variable exists
mysqli query Performs a query against the database
mysqli insert id Returns the auto generated id used in the last query
mysqli fetch assoc Returns an associative array that corresponds to the

fetched row or NULL if there are no more rows
mysqli fetch array Fetch a result row as an associative, a numeric array, or

both
mysqli error Returns the text of the error message from previous

MySQL operation
session destroy Destroys all data registered to a session
session start Starts a new user session
sizeof Count all elements in an array
substr Returns a part of a string

Table 2.1: PHP functions used

Figure 2.1: The shop catalog page

6 Chapter 2. The Example Application

Figure 2.2: Empty shopping cart

displaying the cart. As the length of the list is limited to two items, but four items where found, the
application offers a paginating functionality. By clicking the button in the lower right corner, the
users gets to see the next two results.

Figure 2.3: The products page for apples

If the user decides to order 2 kg of Delicious and 1 kg of Fuji, he is redirected to the shopping
cart. Figure 2.4 shows a line for each products, together with the price per kilogram, the total price
and a text input field with the currently selected amount. Furthermore there is a line for the total
price. The user has three choices now: To proceed shopping, to place the order or to update the cart
by entering a different amount for a product. The user may change the amount of Fuji apples to 4
kg and finally clicks on the Place order button. On the next page, shown in Figure 2.5, he may
enter the payment and shipping information.

Figure 2.4: The shopping cart with two products

The next page displays a summary of the shipping address, the order positions, and the total
amount to be payed. Now the user may choose to continue his shopping tour, to change the shipping
and payment information, to cancel or to submit the order. Finally, a click on the submit order button

2.3. Description of the Source Code 7

Figure 2.5: A form to enter shipping and payment information

stores the order into the database.

Figure 2.6: Summary of the order

2.3 Description of the Source Code

The implementation of the webshop does not follow any good programming practice or design
pattern for web applications, such as the Model-View-Controller pattern. There is not even any
separation of concerns, e.g into template files containing HTML and simple display logic and files
containing only application and business logic.

2.3.1 The Data Model

The shopping cart application is based on three tables in a MySQL Database. The food table holds
information about the products offered by the web shop. The customer order table stores each
order placed by a customer together with the shipping and payment information. The order item
table is a link table between the food table and the customer order table and stores each item
the user puts into the shopping cart. It also stores the requested quantity for each item and the

8 Chapter 2. The Example Application

price for each item line. An obvious shortcoming of the database model is that the food table is
not normalized as the food category and type is stored in attributes of the food table and not in
separate tables.

Figure 2.7: The database model of the webshop application

2.3.2 The Shop Catalog Script

The entry page is called ShopCatalog.php with the purpose to display a product catalog. The
script either displays the product categories available, or the product page, after a category was
chosen. The script first starts a user session with a call to session start(). Then another
script called functions main.inc, containing the function Connect to db() to establish a
connection to the databases, is included with a call to include once(). The rest of the script
consists of several nested if/else blocks. First it is checked, whether the post parameters Prod-
ucts and interest are set, as shown in Code Snippet 1.

1 if(isset($_POST[’Products’])
2 && isset($_POST[’interest’])){ ...

Code Snippet 1: Check if request parameters are set

On the first request this condition fails and the corresponding else block, shown in Code
Snippet 2 is executed:

A connection to the database is established, and the food table containing all available products
is queried. The next step is to iterate over the result and put it into a two dimensional array. As
shown in this example, PHP allows associative arrays (hashes). The category name is the key of

2.3. Description of the Source Code 9

1 } else {
2 $connect = connect_to_db("Vars.inc");
3 $sql_cat = "SELECT DISTINCT category,type FROM Food
4 ORDER BY category,type";
5 $result = mysqli_query($connect,$sql_cat)
6 or die("sql_cat: ".mysqli_error($connect));
7 while($row = mysqli_fetch_array($result)){
8 $food_categories[$row[’category’]][]=$row[’type’];
9 }

10 include("fields_index_page.inc");
11 include("catalog_index_page.inc");
12 }

Code Snippet 2: Else block

the first dimension and with each iteration the type is is added to the end of its corresponding type.
Finally there are two include statements. fields index page.inc defines some constants to
be displayed to the user. catalog index page.inc, shown in Code Snippet 3, produces the
HTML displayed to the user.

The catalog index page.inc script is a mixture of inline HTML, PHP echo statements
outputting HTML or variables and some iteration statements. This is very bad programming style,
as all view related code should be placed into template files, containing mostly inline HTML and
usually only one line long PHP statements for echoing variable values and opening or closing itera-
tion blocks or conditional statements. Outputting HTML via echo statements should be avoided.

1 <html>
2 <head><title><?php echo $page[’title’] ?></title></head>
3 <body>
4 <?php
5 echo "<form action=’ShoppingCart.php’ method=’POST’>\n
6 ...
7 echo "<form action=’$_SERVER[PHP_SELF]’ method=’POST’>\n";
8 foreach($food_categories as $key => $subarray){
9 echo "<h3>$key</h3>"; echo "";

10 foreach($subarray as $type){
11 echo "<input type=’radio’ name=’interest’
12 value=’$type’>$type
\n";
13 }
14 echo "";
15 }
16 echo "<p><input type=’submit’ name=’Products’
17 value=’Kategorie wählen’>\n </form>\n";
18 ?> </div> <hr> ...

Code Snippet 3: catalog index page.inc

After the user submits the lower form together with the selected product, the request is again
handled by the ShopCatalog.php as indicated by the
$ SERVER[PHP SELF] variable which contains the name of the currently executed script.

10 Chapter 2. The Example Application

This time as the Products and interest parameters are set, the if block in Code Snippet 1
is entered. First it it checked if the value of the Products parameter is Add to cart. If so the
user has submitted his request from the products view by clicking the Add to cart button. Oth-
erwise he has submitted the request from the categories view by clicking the Choose category
button.

The else block contains code to implement the pagination functionality and a database query to
select all products of the selected subcategory. Then there is a while loop to put the query result
into a two-dimensional array. Finally there are again two include statements. One to include
the fields products page.inc as above and one to include the shopping product-
page.inc script, which is responsible to render the HTML for the product list. The
shopping product page.inc follows a similarly bad programming style as the catalog-
index page.inc script and is omitted for brevity.

1 if($_POST[’Products’] == "In den Warenkorb"){
2 ...
3 } else {
4 // code to implement a pagination functionality
5 // and to select the submitted product
6 // from the food table
7 include("fields_products_page.inc");
8 include("shopping_product_page.inc");
9 }

Code Snippet 4: Request handling to display the product page

The if block shown in Code Snippet 4 is executed when the user clicks the Add to cart
button on the products page. The content of the if block is shown in Code Snippet 5. First it is
checked whether an order number is already available in the session. If not, a new entry into the
customer order table is created. The auto generated id is fetched and and stored in the session
as the order number and the number of items is set to 0. If the order number is already available in
the session, it is retrieved together with the number of items already listed in the order.

Then in a foreach block it is iterated over all parameters of the post request. The catalog number
is extracted from each request value and the database is queried for the corresponding price. Then
the order number, the item number, the catalog number, the quantity and the price is inserted into the
order item table. Finally the number of items is stored into the session and the user is redirected
to the shopping cart page.

2.3.3 The Shopping Cart Script

The handling of the shopping cart is done by the ShoppingCart.php script. Again it starts
with a call to session start() followed by an include of functions main.inc. Next it is
checked whether an order number has been stored into the session as shown Code Snippet 6. If not,
a message informing the user that the shopping cart is empty and a link back to the shop catalog
page is echoed and the script terminates with a call to exit().

In case the order number exists, which means that there are products in the shopping cart, the

2.3. Description of the Source Code 11

1 if(!isset($_SESSION[’order_number’])){
2 // code to create a new order
3 // in the customer_order table
4 } else {
5 $order_number = $_SESSION[’order_number’];
6 $n_items = $_SESSION[’n_items’];
7 }
8 foreach($_POST as $field => $value){
9 // code to select the price of the product

10 // and to create a new entry in the
11 // order_item table
12 }
13 $_SESSION[’n_items’] = $n_items;
14 header("Location: ShoppingCart.php");
15 exit();

Code Snippet 5: Request handling to a product to the cart

1 if(!isset($_SESSION[’order_number’])
2 or empty($_SESSION[’order_number’])){
3 echo "Warenkorb ist zurzeit leer
\n
4 Einkauf fortsetzen\n";
5 exit();
6 }

Code Snippet 6: Empty shopping cart

12 Chapter 2. The Example Application

script continues with a switch block with the value of the Cart parameter of the post request as
argument. This is shown in Code Snippet 7.

1 switch (@$_POST[’Cart’]){
2 case "Einkauf fortsetzen":
3 header("Location: ShopCatalog.php");
4 break;
5 case "Warenkorb aktualisieren":
6 // code to update the cart
7 include("fields_cart.inc");
8 include("table_page.inc");
9 break;

10 case "Bestellung aufgeben":
11 header("Location: ProcessOrder.php?from=cart");
12 exit(); break;
13 default:
14 include("fields_cart.inc");
15 include("table_page.inc");
16 break;
17 }

Code Snippet 7: Non-empty shopping cart

There are four cases of interest. The first three cases reflect the buttons the user can click on
the shopping cart page. The default case is executed if the user comes from another page or has
pressed the refresh button. First the fields cart.inc script is included, which defines some
variables used in the view script. Then there is a query to select all current items in the shopping
cart from the order item table. If the query returns an empty result set, a message is echoed,
informing the user that the cart is empty together with a link back to the shop catalog page and the
script terminates. Next there is a while loop iterating over all the rows and a nested foreach loop
iterating over the fields of each row. For each order item there is another query to the food table,
selecting the corresponding name and type of the product. An array is constructed, combining the
data of tables.

The table page.inc has a similar appearance as the catalog index page.inc. There
are several echo statements for outputting HTML and a for loop to render the content of the array
containing the order items into a table. The table displays the item number, the catalog number, the
name and the price multiplied by quantity for one item line. Furthermore there is a text field input
for the quantity, so the user may change the desired amount of a product. At the end the total price is
calculated. There are three submit buttons rendered to the user: Continue shopping, Place
order and Update cart.

Another case of special interest is "Update cart". This block is executed if the user changes
the amount of certain order items. A foreach loop iterates over the quantity array submitted via
a post request. Each order item for the current order number in the order item is updated with
the quantity submitted. Next, all items with the quantity 0 are deleted. The numbering of the items
might be wrong now as the deleted items leave holes in the order. To restore the correct order,
all items are selected and put into array. Then they are deleted from the table, renumbered and
reentered. In case that there are no more items left in the cart (the user has set all quantities to 0), a

2.3. Description of the Source Code 13

message is echoed to the user, informing him that the cart is empty together with a link back to the
shop catalog page and the script terminates. Otherwise the shopping cart is redisplayed by including
fields cart.inc and table page.inc, as it is done in the default case.

The remaining two cases simply perform redirects to other scripts. The "Continue shop-
ping" case redirects the user back to the shop catalog page and the "Place order" case redi-
rects the user to the process order script.

2.3.4 The Process Order Script

The process order script ProcessOrder.php basically handles the processing of the shipping
and payment for the order. Again it starts with a call to session start() and to
include("functions main.inc"). Then it is checked whether an order number has been
set, as shown in Code Snippet 8. If not, the user is redirected to the catalog page and the script ter-
minates. The rest of the script consists of several if/elseif blocks which are executed depending
on the submitted request parameters.

1 if(!isset($_SESSION[’order_number’])){
2 // redirect to ShopCatalog.php
3 }
4 if(@$_GET[’from’] == "cart"){
5 // if the user comes form the shopping cart
6 // page, display shipping info entry form
7 }
8 elseif(isset($_POST[’Summary’])){
9 // validate all data submitted

10 // and show a summary
11 }
12 elseif(isset($_POST[’Ship’])){
13 // redisplay shipping info entry form
14 // if the user wants to change his data
15 }
16 elseif(isset($_POST[’Final’])){
17 // Finish the ordering process
18 // store everything to the customer_order table
19 }

Code Snippet 8: Process order

If the user was redirected from the shopping cart page, the if(@$ GET[’from’] == -
"cart"){...} block is executed. First the script fields ship info.inc is included, which
contains some arrays with field names and elements for the shipping info form. Then the script
single form.inc is included which renders the actual shipping info form. When the user sub-
mits the shipping details form, the name of the submit button is set to Summary, so in this case the
block containing the elseif(isset($ POST[’Summary’])) check is entered. This block
performs some input validation and displays redisplays the shipping info form together with an error
message if the input validation failed. If not, the data submitted by the user is written to the cus-
tomer order table and the summary page is displayed by including fields summary.inc
and summary page.inc. Now the user has the choice to click the button for changing the

14 Chapter 2. The Example Application

shipping info data or the button to confirm the order. In the first case the block containing el-
seif(isset($ POST[’Ship’])) check is entered and the shipping info form is redisplayed.
In the latter case the elseif(isset($ POST[’Final’])) block is entered. If the user has
chosen to cancel his order, the order number is unset from the session, the session is destroyed
and the user is redirected back to the catalog page. If the user decides to continue the shopping
tour he is also redirected to the catalog page. And finally if the user decides to confirm the order
submitted flag in the customer order table is set to yes and the session is destroyed.

Chapter 3

Overview of the Reverse Engineering
Process

In this Chapter an overview of the reverse engineering process, the requirements for applying the
process and the methodology for the implementation is given.

3.1 The Reverse Engineering Process

Figure 3.1 gives an overview of the whole reverse engineering process. In the first step the re-
quirements for the reverse engineering process are analyzed and the source application is refactored
according to these requirements, which results in a MVC version of the example application. In
the second step an automatic code to model transformation is performed. The result of this trans-
formation is an intermediate model of the MVC web application. The third step is the automatic
transformation from the intermediate MVC model into the target WebML model. The automatic
transformation steps require the definition of a meta model for the intermediate MVC data structure
and a meta model for the target WebML data structure.

3.2 Methodology of this Thesis

The the reverse engineering process is developed in two phases. Phase 1 is about the definition
of mappings between the source data structure (i.e. a PHP-MVC application) and the target data
structure (i.e. WebML). This is done by the means of intermediate data structures. Phase 2 consists
of the implementation of the reverse engineering program according to the mappings defined in
phase 1. The program is implemented in Java.

3.2.1 Requirements for the Reverse Engineering Process

In Chapter 4 it is analyzed what requirements a web application must fulfill in order to be able to
develop a reverse engineering process for it at all. The transformation process is based on automatic
pattern recognition in the source artifacts. The most widely adopted pattern for web applications

15

16 Chapter 3. Overview of the Reverse Engineering Process

���������	�
��������

��������
���������� 	�
��

���

������

������	�
��������

����������
���������

��	�
��������

������������
�������������

�����
��
�������������������������
�
�����	����������������
���
	����	�
������������
�����

���������

�������������
�������������

�����
������������������������
���������������
��������������������
����������� �����������
������!�����������������

�����������
��!"!�##!
��!� $���
��!������#$	
���%����%�	��

�����������
�& '��'	�����
���
�&����(��")	��!������

�����
��)������������������(��
�������������������
��)������������������(�
���*��� ����������

������������
�&�+���
�&&)����

��	�������������	�������

,-�(���.//0�������0���

Figure 3.1: Overview of the Reverse Engineering Process

3.2. Methodology of this Thesis 17

is the Model-View-Controller pattern (MVC). There are countless MVC frameworks available for
PHP. To demonstrate the similarity between those kind of frameworks, the example application is
manually rewritten for two different MVC platforms. The first one is a simple MVC framework,
presented in an article on the O’Reilly website, which is rather intended to introduce the principles
of the MVC pattern in PHP than being a full-fledged development platform. The second one is
Symfony, one of the most popular and powerful PHP MVC frameworks available at the time of
writing. Symfony offers much more features than the simple MVC framework. However the aim of
rewriting the example application for both frameworks is to show that the basic principles of how
the code is structured are similar. Hence a reverse engineering process developed for one framework
should be easily adaptable to fit for the other framework. The process presented in the following
chapters is developed for the simple MVC framework.

3.2.2 Conceptual Design

In Chapter 5 the necessary ingredients for phase 1 of the reverse engineering process are described.
The most important modeling elements and patterns of the Web Modeling Language are presented.
The target data structure (i.e. the WebML model) as well a the intermediate data structure for
mapping the view parts of the application are expressed in XML. For the implementation of the
mappings between the compiler program and these data structures the JAXB XML binding frame-
work is used, which is briefly introduced. The view parts of the application mainly consist of HTML
code that has to be parsed. Therefore the HTML parsing tool Jericho is used in the implementation
phase, which is also presented in Chapter 5.

Chapter 6 describes phase 1 of the reverse engineering process. This phase is divided into three
steps:

1. The target data structure is defined. This involves the creation of Java classes that represent the
required modeling elements of WebML. These classes are mapped to an XML representation
that can be viewed and processed by the commercial WebRatio tool for WebML modeling.
The mapping is done using the JAXB XML binding framework.

2. A mapping between the patterns used in the view layer of the source application and the
elements of the the WebML hypertext model is defined. The source artifacts of the view
layer are template files that consist mostly of HTML code with some small parts of PHP
code in between which is limited to statements for echoing variable values and for iterating
over list values. To make the mapping easier an intermediate XML representation is defined,
which only contains the parts that are relevant for the mapping, such as forms, input elements,
hyperlinks, iteration and echo statements.

3. A mapping between the patterns used in the model layer of the source application and the
content management model of the target application is defined. Again an intermediate data
structure is used that helps to map framework and source language specific concepts such
as model classes, functions, database queries, request parameters or variables to WebML
modeling elements.

18 Chapter 3. Overview of the Reverse Engineering Process

3.2.3 Implementation

In Chapter 7 the necessary ingredients for phase 2 of the reverse engineering process are described.
In order to implement the reverse engineering program, it is necessary to understand the basic
principles of how a compiler works. This is described by the means of a simple calculator example.
Then the parser generator tool JavaCC and the preprocessor JJTree for the generation of abstract
syntax trees are described.

Chapter 8 describes phase 2 of the reverse engineering process, the implementation of the re-
verse engineering program. This includes two major steps:

1. The first step is to write a compiler that takes the database creation script of the source appli-
cation as its input and creates a WebML data model out of it. This includes the writing of a
grammar file and the creation of an abstract syntax tree. The mapping between SQL create
table statements and a WebML data model is almost straightforward.

2. In step two a compiler is written that creates a WebML hypertext model using the data model
from step one, the model and the view artifacts of the source application. The work that the
compiler has to do is rather complex and is therefore divided into several sub steps:

(a) Building and abstract syntax tree of the PHP code.

(b) Transforming the view templates into the intermediate XML representation for the view
layer.

(c) Transforming the model classes into WebML Operation Modules using the intermediate
data structure for the model layer.

(d) Creating the WebML Pages using the intermediate XML representation.

(e) Creating the Links between the Pages and the Operation Units.

(f) Serializing the complete WebML project to its XML representation.

Chapter 4

Requirements for the automatic Reverse
Engineering Process

In this chapter the refactoring of the example application into a MVC web application is described.
This is the requirement for further automatic processing of the source code.

4.1 A simple MVC Framework

The purpose of the MVC design pattern is to separate the logic of the user interface from the business
logic of an application by dividing it into three concerns:

• The model encapsulates the business logic and the operations on the application data.

• The view presents the data from the model to the user.

• The controller receives all incoming requests and acts as a moderator between the model
and the view. Furthermore the controller might perform tasks like user authentication or the
filtering of requests.

For the first iteration in the reverse engineering process of the example application a slightly
modified version of a simple model-view-controller (MVC) framework as described in an article on
the O’Reilly website [32] is used. It does not have a name, so it is referred to it as MVC framework.

The MVC framework allows the application developer to organize his application code into
modules. A module is a directory containing model and view parts of the application. For each web
page of the application there is one file containing one model class and one corresponding template
file to render the view. A model class file has to have the same name as the class it contains with
the ending .php. The corresponding template file has to have the name of the model class with the
ending tpl.php.

Table 4.1 describes the first level of the directory structure of the MVC Framework.
To create a module the developer has to put a directory inside the modules directory and call

it as the name of the module should be. All model class files belonging to this module are placed
immediately inside this directory. In the original version of the MVC Framework there is just one

19

20 Chapter 4. Requirements for the automatic Reverse Engineering Process

Figure 4.1: The MVC pattern (Source: [25])

Resource name Typea Description
includes D Contains all classes provided by the MVC framework
modules D Contains the application code written by the developer
resources D The place to keep things like images, stylesheets etc.
.htaccess F Contains rewrite rules for the Apache Web Server
config.php F Contains application settings, such as the Database DSN
index.php F The controller script

aD = directory, F = file

Table 4.1: The first level of the MVC framework directory structure

4.1. A simple MVC Framework 21

directory inside the module directory called tpl, which holds templates written for the smarty
template engine [31]. In the modified version used for this thesis there is another directory called
phptpl which holds templates written in plain PHP. For this thesis only plain PHP templates are
used.

4.1.1 The Model

Most of the application logic resides in the model. It is also the place where operations on the
database are performed. A model class has to extend from one of two classes, provided by the
framework. The first one is FR Auth, which is the parent class for all model classes that should
only be accessible by authenticated users. The second one is FR Auth No, which is the parent
class for all model classes that do not require user authentication. Those two classes are part of a
class hierarchy that provides access to different functions and objects which are useful for many
web applications.

The FR Auth declares an abstract authenticate function. An implementation of this func-
tion is responsible to check the user credentials an has to return true, if the authentication was
successful or false otherwise. FR Auth No is a convenience class that extends FR Auth and
implements the authenticate by simply returning true. The authenticate function is
called by the controller as described in Subsection 4.1.2.

All public member functions of a model class can be called by the controller. Such a call is
triggered by the user of the web application via a certain request query string. This is described in
Subsection 4.1.2.

Code Snippet 9 outlines the structure of a model class. A constructor with a call to the parent
constructor and a destructor with a call to the parent destructor is required by the framework. Fur-
thermore the constructor can be used to initialize the model object with the desired information. In
his example the presenter property is set to phptpl, which causes the framework not to use the
PHP based templates in the phptpl directory of a module instead of the smarty based templates.

As many web applications operate on relational databases, the MVC framework has built in
support for database access and database manipulation by providing a class called FR Object DB
in the class hierarchy of the model classes. FR Object DB has a protected field called db that
points to a DB container object of the PEAR DB API [48]. This object can be used in custom
model classes to perform database queries. The object is is initialized in the constructor of the
FR Object DB class.

The set function is inherited from the FR Module class which is part of the class hierarchy
for model classes. This function is used to set data for a module that can be accessed by the view.
The second argument is the object passed to the view and the first argument is the variable name
under which the object will be available in the view template.

The default function in Code Snippet 9 is a simple example for a typical task to be per-
formed by a model class. The aim is to perform a database query and to pass the result to the view,
wrapped into an array. The first statement is a query string to select the id and the name of all
categories in the categories table. The query is performed by a call to the query method of the
db object. In a while loop it is iterated over all result rows and the value of the name field of
each row is put into an array named category names. Finally the category names array is
passed to the view, where it will be accessible as categories.

22 Chapter 4. Requirements for the automatic Reverse Engineering Process

1 class categories extends FR_Auth_No {
2 public function __construct() {
3 parent::__construct();
4 $this->presenter = "phptpl";
5 }
6 public function __default(){
7 $sql = "SELECT * FROM Categories";
8 $result = $this->db->query($sql);
9 $categories = array();

10 while ($row =& $result->fetchRow()) {
11 $category_names[]=$row[’name’];
12 }
13 $this->set(’categories’,$category_names);
14 }
15 public function performAction(){
16 // do something else
17 }
18 public function __destruct() {
19 parent::__destruct();
20 }
21 }

Code Snippet 9: categories.php, a model class extending from FR Auth No

4.1.2 The Controller

The controller in the MVC Framework is the file index.php. All requests addressed to the MVC
Framework are routed to this script together with a HTTP query string [2] used for determining the
responsible model class and member function to handle the request. The query string may contain
the keys listed in Table 4.2.

Key Value Required?
module The name of the module Yes
class The name of the model class No
event The name of the public function to be invoked No

Table 4.2: Key-values pairs of the query string for method invocations

For example, given that the class outlined in Code Snippet 9 belongs to a module called web-
shop and the user of the web application wants to trigger the invocation of the public member
function performAction, he could do so by sending the request /index.php?module=-
webshop&class=categories&event=performAction to the web server. The de-
fault() method is called in case that the event argument is omitted in the request. If the class
argument is missing the controller assumes that there is a class with the same name as the module.

Code Snippet 10 shows the code of the controller script. The module, the event and the
class parameters are read from the GET array. If the event is omitted it is set to default.
Then it is tried to load the model class file associated with the request and to create an instance
of this class. The static isValid method of the class FR Module, provided by the framework,
checks, whether the instance just created is a valid model class, meaning that it has to be an instance

4.1. A simple MVC Framework 23

of FR Module and FR Auth. The next step is a check whether the user is authenticated. If so,
the requested member function of the module is invoked. If the function returns a string with a path
to another location, the user is redirected to it. Otherwise the a presenter object is retrieved and its
display method is called which is responsible for rendering the view to the user.

1 if (isset($_GET[’module’])) {
2 $module = $_GET[’module’];
3 if(isset($_GET[’event’])){$event = $_GET[’event’];}
4 else {$event = ’__default’;}
5 if(isset($_GET[’class’])){$class = $_GET[’class’];}
6 else {$class = $module;}
7 $classFile =
8 FR_BASE_PATH.’/modules/’.$module.’/’.$class.’.php’;
9 if (file_exists($classFile)) {

10 require_once($classFile);
11 if (class_exists($class)) {
12 try {
13 $instance = new $class();
14 if (!FR_Module::isValid($instance)) {
15 die("Requested module is not
16 a valid framework module!");
17 }
18 $instance->moduleName = $module;
19 if ($instance->authenticate()) {
20 try {
21 $result = $instance->$event();
22 if(isset($result)){
23 header("Location: $result");
24 }
25 if (!PEAR::isError($result)) {
26 $presenter =
27 FR_Presenter::factory(
28 $instance->presenter,$instance);
29 if (!PEAR::isError($presenter)) {
30 $presenter->display();
31 } else {
32 die($presenter->getMessage());
33 }
34 }
35 }
36 // several catch statemens come here
37 }

Code Snippet 10: The controller - index.php

A problem in the format of the URL path and the query string presented so far is, that it is not
search engine friendly and that post requests would not work as the controller only checks the GET
array. A solution to this problem is the use of the apache web server’s mod rewrite module [45]
for rule-based URL rewriting.

The mod rewrite module allows the developer to define an unlimited number of rewrite rules
using the syntax RewriteRule Pattern Substitution [flags]. The apache mod-
rewrite documentation [43] says: ”Pattern is a perl compatible regular expression, which is

applied to the current URL. “Current” means the value of the URL when this rule is applied. This

24 Chapter 4. Requirements for the automatic Reverse Engineering Process

may not be the originally requested URL, which may already have matched a previous rule, and
have been altered.” The order in which the rewrite rules are defined is important as they will be
applied in this order at runtime. Table 4.3 gives some hints on the syntax of regular expressions.

Expression Description
. Any single character
[chars] Character class: Any character of the class chars
[ˆchars] Character class: Not a character of the class chars
text1|text2 Alternative: text1 or text2
? 0 or 1 occurrences of the preceding text
* 0 or N occurrences of the preceding text (N >0)
+ 1 or N occurrences of the preceding text (N >1)
ˆ Start-of-line anchor
$ End-of-line anchor

Table 4.3: The basics of the regular expressions syntax in mod rewrite

The aim is to avoid the mentioning of the controller file index.php together with the query
string consisting of key-value pairs and to use a path that looks similar to paths used for directory
structures in file systems instead. A model function should be accessible via the pattern
http://<host-name>/<module-name>/<class-name>/
<function-name>.
To achieve this behavior the url rewriting rules in Code Snippet 11 are used. This code has to be
placed in a file called .htaccess in the root directory of the web application.

1 RewriteEngine on
2 RewriteRule ˆ$ /index.php?module=welcome [L]
3 RewriteRule ˆresources/([.]+)$ /resources/$1 [L]
4 RewriteRule ˆ([a-zA-Z0-9]*)$ /index.php?module=$1 [L]
5 RewriteRule ˆ([a-zA-Z0-9]*)/([a-zA-Z0-9]*)$
6 /index.php?module=$1&class=$2 [L,QSA]
7 RewriteRule ˆ([a-zA-Z0-9]*)/([a-zA-Z0-9]*)/([a-zA-Z0-9]*)$
8 /index.php?module=$1&class=$2&event=$3 [L]

Code Snippet 11: URL rewriting rules used in the MVC framework

The first line is required to activate the rewrite engine. The URL of each incoming request is
sequentially matched against each rewrite rule. The L flag at the end of each rule stands for ”last
rule” It is telling the rewrite engine to stop the rewriting process by not applying any more rewrite
rules.

• The first rewrite rule is matched if no path is provided. In this case the request is routed to the
welcome module. The module defined here should be the homepage of the web application.

• The second rewrite rule matches all requests directed to resources, followed by a slash
and an argument of arbitrary length, but with at least one character. The argument after the

4.1. A simple MVC Framework 25

slash should be the file name of a resource in the resources directory. As mentioned in 4.1
this directory contains artifacts to be included into a web site such as images or stylesheets.
Therefore this path element must be treated differently to all other paths, which denote names
of a modules. $1 in the substitution part is a placeholder for the regular expression in the
pattern part. The number 1 after the $ sign says that the string that matched the first pattern
should be inserted here.

• The fourth rule matches an arbitrary sequence of alphanumeric characters that might be writ-
ten in upper case or in lower case letters, which should be the name of the requested module,
in other words the pattern /<module-name>.

• The third rule matches the pattern /<module name>/<class name> and the third rule
matches the pattern
/<module-name>/<class-name>/<function-name>

4.1.3 The View

The view consists of several template files, one for each model class. The purpose of a template file
is to present the data passed from the model to the user. As template files should contain as little
program code as possible, the biggest part consists of plain HTML. The only snippets of PHP code
that should be used are statements to print the value of variables and to iterate over arrays.

Code Snippet 12 is an example of how a simple template to display the content of the cate-
gories array of Code Snippet 9 might look like.

1 <html xmlns="http://www.w3.org/1999/xhtml">
2 <head><title>Categories</title></head>
3 <body>
4 <?php foreach($categories as $category){ ?>
5 <?php echo $category ?>
6 <?php } ?>
7 </body>
8 </html>

Code Snippet 12: The categories template

The FR Module class in the class hierarchy of the model classes contains a member variable
called presenter. The value of this variable determines the template technology used to present
the view to the user. Smarty is the default template engine used by the MVC framework but for the
examples described in this thesis it has to be set to phptpl. This is done in the constructor of each
model class.

26 Chapter 4. Requirements for the automatic Reverse Engineering Process

4.2 A Transformation into a MVC Framework Application

4.2.1 Transforming the Data Model

To be able to reasonably map the database model to WebML entities and to operate on those entities
it is necessary to normalize the database model first. There is a separate table created for the cat-
egory and for the type of the food. A cart table is created to store the items the user adds to
the cart and a shippinginfo table is created to store the data the user enters on the shipping in-
formation page. Only when the user confirms his order this temporary data is copied to the order
and to the order product table. The database schema is shown in Figure 4.2.

Figure 4.2: The transformed database model

4.2. A Transformation into a MVC Framework Application 27

4.2.2 Implementing the Model and the View

In the MVC framework all application code is placed into modules. The code of the example
application is placed into a single module called webshop. There is one model class and one
corresponding template for each page of the example application. All model classes extend from
FR Auth No. The model-template pairs shown in Table 4.4 are created.

Model element Description
categories A list of all product categories available in the webshop
types A list of all types that belong to a certain category
products A list of all products of a certain type
productDetails Detailed information about a certain product and the possibil-

ity to put the desired amount of this product into the shopping
cart

cart The shopping cart
shippingInfo A form for entering the shipping information
summary A summary of the order information to be submitted
processOrder The final script for processing an order

Table 4.4: The model and the view elements of the webshop

In the original example application the product types are displayed together with their parent
categories on one page and the user directly selects a type. To simplify the reverse engineering
process the display of the product categories and the product types is divided into two separate
pages. So the user gets to see a list of all categories first together with radio buttons to select one
of the categories and after selecting one category he gets to see a list of the corresponding types on
another page.

Categories

The categories class only implements the default event as shown in Code Snippet 13. The
primary key column id and the name columns of all records of the Categories table is queried.
In a while loop the query result is put into an array which is made available to the template as the
variable food categories.

1 public function __default(){
2 $sql = "SELECT id, name FROM Categories";
3 $result = $this->db->query($sql);
4 while ($row =& $result->fetchRow()) {
5 $food_categories[]=$row;
6 }
7 $this->set(’food_categories’,$food_categories);
8 }

Code Snippet 13: The default event in categories

The corresponding template renders a form with one input element of type radio for each
category in the food categories array as shown in Code Snippet 14. The value of each

28 Chapter 4. Requirements for the automatic Reverse Engineering Process

input element is the id of the corresponding category. The name of the category is echoed to the
user. The action attribute of the form element points to /webshop/types.

1 <html> ...
2 <form method="get" action="/webshop/types">
3
4 <?php foreach($food_categories as $category){ ?>
5 <li style="list-style: none">
6 <input type="radio" name="interest"
7 value="<?php echo $category[’id’] ?>" />
8 <?php echo $category[’name’] ?>

9

10 <?php } ?>
11
12 <p>
13 <input type="submit" name="selectCategory"
14 value="Kategorie wählen" />
15 </p>
16 </form>
17 ... </html>

Code Snippet 14: The categories template

Types

A click on the submit button on the categories page triggers a request to the default event of
types, which is shown in Code Snippet 15. The implementation of the method is very similar
to Code Snippet 13 but it is a little bit more complex. The form in Code Snippet 14 that triggers
the request to /webshop/types passes the id of the chosen category as a request parameter,
which is the primary key attribute of the Categories table and a foreign key of the Types table.
The sql query string defined is a prepared statement to select the id and the name of the types
that belong to the category with the the id passed in the request. The id is retrieved from the
GET array and the sql query is executed with this id. The rest of the code is almost the same as

in Code Snippet 13. The selected food types are passed to the template and displayed in the same
manner as in Code Snippet 14. The action attribute of the form in the types template points to
/webshop/products to select and display all products of a certain type.

Products

The products template renders a table showing id, name, description and price of each
product in the products array as well as an image of the product in a table row as shown in Code
Snippet 16. For each product there is also an a element rendered that allows to navigate to a page that
shows all details of the product. The href attribute points to /webshop/productDetails
and the information about what product to select is passed via the query string ?product=<?php
echo $product[’product id’] ?>.

4.2. A Transformation into a MVC Framework Application 29

1 public function __default(){
2 $sql = "SELECT id, name FROM types WHERE category_ID = ?";
3 $sth = $this->db->prepare($sql);
4 $interest = $_GET[’interest’];
5 $result = $this->db->execute($sth, array($interest));
6 $food_types = array();
7 while ($row =& $result->fetchRow()) {
8 $food_types[]=$row;
9 }

10 $this->set(’food_types’,$food_types);
11 }

Code Snippet 15: The default event in types

1 <html> ...
2 <table border="0" cellpadding="5" width="100%">
3 <!-- table header definitions -->
4 <?php foreach ($products as $product){ ?>
5 <tr>
6 <td><?php echo $product[’product_id’] ?></td>
7 <td><?php echo $product[’name’] ?></td>
8 <td><?php echo $product[’description’] ?></td>
9 <td><?php echo $product[’price’] ?> Euro/kg</td>

10 <td><img src="/resources/images/
11 <?php echo $product[’pix’] ?>"/></td>
12 <td><a href="/webshop/productDetails?
13 product=<?php echo $product[’product_id’] ?>">
14 Auswaehlen</td>
15 </tr>
16 <?php } ?>
17 </table>
18 <form action="/webshop/categories" method="get">
19 <p><input type="submit" value="Andere Kategorie" /></p>
20 </form>
21 <form action="/webshop/cart" method="get">
22 <p><input type="submit" name="Cart"
23 value="Warenkorb anzeigen" /></p>
24 </form>
25 ... </html>

Code Snippet 16: The products template

30 Chapter 4. Requirements for the automatic Reverse Engineering Process

ProductDetails

The default event of the productDetails class selects a single product from the database and
passes it to the template as shown in Code Snippet 17.

1 public function __default(){
2 $sth = $this->db->prepare(’SELECT * FROM Products
3 WHERE product_id=? ORDER BY name’);
4 $data = array ($_GET [’product’]);
5 $result = $this->db->execute ($sth, $data);
6 $this->set (’product’, $result->fetchRow ());
7 }

Code Snippet 17: The default event in productDetails

The productDetails template is outlined in Code Snippet 18. The product id, name,
description, price and an image of the chosen product are displayed inside a table which is
embedded inside a form. The action attribute of the form points to /webshop/productDe-
tails/addToCart. The user can add the current product to the shopping cart by clicking the
submit button. The desired amount has to be entered into the input field of type text. Further-
more the product id and the name of the product are passed as parameters on form submission.

1 <html> ...
2 <form method="post" action="/webshop/productDetails/addToCart">
3 <table border="0" cellpadding="5" width="100%">
4 <tr>
5 <td>Produkt Nummer:</td>
6 <td><?php echo $product[’product_id’] ?></td>
7 </tr>
8 <!-- The same for name, description and price. -->
9 <tr>

10 <td>Bild:</td>
11 <td><img src="/resources/images/
12 <?php echo $product[’pix’] ?>"/></td>
13 </tr>
14 <tr>
15 <td>Menge:</td>
16 <td><input type="text" name="amount"
17 value="0" size="4"></td>
18 </tr>
19 </table>
20 <input type="hidden" name="product_id"
21 value="<?php echo $product[’product_id’] ?>">
22 <input type="hidden" name="name"
23 value="<?php echo $product[’name’] ?>">
24 <p><input type="submit" value="In den Warenkorb" /></p>
25 </form>
26 <!-- Forms linking to the category and to the cart page -->
27 ... </html>

Code Snippet 18: The productDetails template

4.2. A Transformation into a MVC Framework Application 31

The addToCart event first queries the cart table to check whether this product has already
been added to the cart. If so, the record representing this product belonging to this session already
exists in the the table, so an SQL update statement is executed to adapt the amount the user has
entered into the form. Otherwise the product has not been added to the cart yet and a new record
representing this product is created. Finally the event redirects to /webshop/cart to display the
content of the shopping cart to the user.

1 public function addToCart() {
2 $session_id = session_id();
3 $product_id = $_POST [’product_id’];
4 $amount = $_POST [’amount’];
5 $name = $_POST [’name’];
6 $sth = $this->db->prepare(
7 "SELECT * FROM cart WHERE
8 product_id = ? AND session_id = ?");
9 $result = $this->db->execute($sth,

10 array ($product_id, $session_id));
11 $row = $result->fetchRow ();
12 if ($row) {
13 $sth = $this->db->prepare(
14 "UPDATE cart SET quantity = ?
15 WHERE product_id = ? AND session_id = ?");
16 $data = array ($amount, $product_id, $session_id);
17 $result = $this->db->execute ($sth, $data);
18 } else {
19 $sth = $this->db->prepare(
20 "INSERT INTO cart (product_id, name, quantity, session_id)
21 VALUES (?, ?, ?, ?)");
22 $data = array ($product_id, $name, $amount, $session_id);
23 $result = $this->db->execute ($sth, $data);
24 }
25 return "/webshop/cart";
26 }

Code Snippet 19: The addToCart event of the productDetails class

Cart

The default event of the cart class selects all records of the cart table that belong to the
current session and passes them to the template. The cart template renders a table that shows
the product id the name and the quantity of each cart item as well as a link to /web-
shop/productDetails to change the amount of a product to be ordered. The template also
renders a form with its action attribute pointing to /webshop/shippingInfo.

The default event of the shippingInfo class is an empty method because there is no data
passed to the template. The template renders a form containing several input elements of type
text that allow the user to enter data necessary for the shipping process such as name, address
or credit card information, as shown in Code Snippet 20. A click on the submit button triggers a
request to /webshop/shippingInfo/add.

32 Chapter 4. Requirements for the automatic Reverse Engineering Process

1 <form method="post" action="/webshop/shippingInfo/add">
2 <table border="0" cellpadding="5" cellspacing="0">
3 <tr>
4 <td>E-Mail-Adresse</td>
5 <td><input type="text" name="email" value="" /> </td>
6 </tr>
7 <!-- More input fields for name, street, city, zip code,
8 telephone, country, credit cart type, number
9 and expiry date are displayed here -->

10 <tr>
11 <td colspan="2">
12 <p"><input type="submit" name="Summary"
13 value="Weiter" /></p>
14 </td>
15 </tr>
16 </table>
17 </form>

Code Snippet 20: The shippingInfo template

ShippingInfo

The add method of the shippingInfo class functions similar to the addToCart method of the
productDetails class. The shipping information submitted by the user is retrieved from the
POST array and stored into variables. Then the ShippingInfo table is queried to check whether

a record that corresponds to the current session already exists or not. If a record exists the fields
are updated with the newly submitted values, otherwise a new record is created. Finally the user is
redirected to /webshop/summary.

Summary

The summary page presents the content of the shopping cart and the shipping information to the user.
In the default event of the summary class shown in Code Snippet 21 the shippingInfo table
and the cart table are queried and the results are made available in two arrays, which are passed
to the template. The shipping information is presented in a table which is nested inside a form.
The form is pointing to /webshop/shippingInfo where the user can change the shipping
information. The content of the shopping cart is presented in another table which is not nested
inside a form. There are two more forms in the template. One is pointing to /webshop/cart
which allows the user to modify the content of the shopping cart. The other one is pointing to
/webshop/summary/processOrder.

The processOrder method first queries the ShippingInfo table and then inserts this data
into the orders table. The next step is to query the cart table. In a while loop it is iterated over the
resulting array of cart items and each item is inserted into the order products table. Finally the
session is destroyed and the user is redirected to /webshop/processOrder, which displays a
message to the user that the order has been stored successfully.

4.3. Symfony 33

1 public function __default(){
2 $session_id = session_id ();
3 $sth = $this->db->prepare(
4 "SELECT * FROM ShippingInfo WHERE session_id = ?");
5 $data = array($session_id);
6 $result = $this->db->execute($sth,$data);
7 $row = $result->fetchRow();
8 $shippingInfo = $row;
9 $sth = $this->db->prepare(

10 "SELECT * FROM cart WHERE session_id = ?");
11 $data = array($session_id);
12 $result = $this->db->execute($sth, $data);
13 while($row = $result->fetchRow()){
14 $order[] = $row;
15 }
16 $this->set(’order’,$order);
17 $this->set(’shippingInfo’,$shippingInfo);
18 }

Code Snippet 21: The default event in summary

4.3 Symfony

Symfony [29] [25] is one of the most popular open-source PHP 5 MVC frameworks available at the
moment. It is in use for various real-world projects and high-demand e-business sites. According to
Potencier et al. [25] symfony fulfills the following requirements:

• Easy to install and configure on most platforms (and guaranteed to work on standard *nix and
Windows platforms)

• Database engine-independent

• Simple to use, in most cases, but still flexible enough to adapt to complex cases

• Based on the premise of convention over configuration–the developer needs to configure only
the unconventional

• Compliant with most web best practices and design patterns

• Enterprise-ready–adaptable to existing information technology (IT) policies and architec-
tures, and stable enough for long-term projects

• Very readable code, with phpDocumentor comments, for easy maintenance

• Easy to extend, allowing for integration with other vendor libraries

4.3.1 Fundamental Concepts

Symfony utilizes the same technologies and concepts as the MVC framework presented in Section
4.1. Those are PEAR, magic methods and object oriented programming (OOP). Furthermore it
introduces some new concepts which are described briefly in this Section.

34 Chapter 4. Requirements for the automatic Reverse Engineering Process

1 public function processOrder() {
2 $session_id = session_id ();
3 $sth = $this->db->prepare(
4 "SELECT * FROM ShippingInfo WHERE session_id = ?");
5 $result = $this->db->execute ($sth, array ($session_id));
6 $row = $result->fetchRow ();
7 $name = $row[’name’];
8 // the same for $street, $city, $country, $zip, $email
9 // and $telephone follows here

10 // $now is set to the current date, $user_id is set to 0
11 $order_id = $this->db->nextId ("orders");
12 $sth = $this->db->prepare("INSERT INTO orders
13 (order_id, user_id, order_date, ship_name, ship_street,
14 ship_city, ship_state, ship_zip, email, phone)
15 VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)");
16 $result = $this->db->execute($sth,
17 array($order_id, $user_id, $now, $name, $street, $city,
18 $country, $zip, $email, $telephone));
19 $sth = $this->db->prepare(
20 "SELECT * FROM cart WHERE session_id = ?");
21 $data = array ($session_id);
22 $result = $this->db->execute ($sth, $data);
23 while($row = $result->fetchRow()) {
24 $sth = $this->db->prepare(
25 "INSERT INTO order_products(order_id, product_id, quantity)
26 VALUES (?,?,?)");
27 $product_id = $row[’product_id’];
28 $quantity = $row[’quantity’];
29 $result = $this->db->execute($sth,
30 array($order_id, $product_id, $quantity));
31 }
32 $session->destroy ();
33 return "/webshop/processOrder";
34 }

Code Snippet 22: The processOrder event in summary

4.3. Symfony 35

Object-Relational Mapping

Object-Relational Mapping (ORM) is a concept to access the data stored in relational databases in
an object oriented way, by introducing an object/relational abstraction layer. This prevents the need
to write database dependent SQL queries as calls to model objects are automatically translated into
queries optimized for the current database. Each table is mapped to a model class and table records
are represented by instances of the model classes. Each field of the database table is represented by a
member variable of the corresponding model class or by accessor and mutator methods respectively.
This enables the developer to add new accessor. For instance if there is a table called Customer
with two fields called FirstName and LastName and the developer just requires a Name, it is
possible to add a new accessor as shown in Code Snippet 23.

1 public function getName(){
2 return $this->getFirstName().’ ’.$this->getLastName();
3 }

Code Snippet 23: Adding an accessor to a model class (Source: [25])

Relationships between different table records are also reflected in the object structure by ac-
cessor and mutators. For instance in a webshop application there might be a table called Shop-
pingCart and another table called Item that have a one to many relationship amongst each other.
To reflect this relationship in ORM there would be a model class called ShoppingCart with a
getItems method that returns all references to the related Item objects. All the data-related
business logic is also placed in such model classes. For instance the ShoppingCart might have
a getTotal to calculate the price of all items in the shopping cart as shown in Code Snippet 24.

1 public function getTotal(){
2 $total = 0;
3 foreach ($this->getItems() as $item){
4 $total += $item->getPrice() * $item->getQuantity();
5 }
6 return $total;
7 }

Code Snippet 24: Adding an accessor to a model class (Source: [25])

The default ORM framework bundled with symfony is Propel [50] but it is also possible to use
Doctrine [57].

Rapid Application Development (RAD)

Symfony applies the programming strategy of rapid application development (RAD) [21]. One of
the ideas of RAD is to start developing as soon as possible, without producing tons of documents
for requirement analysis first of all. This idea is supported through symfony’s ability to generate
much of the application code automatically, based on simple text files.

36 Chapter 4. Requirements for the automatic Reverse Engineering Process

YAML

YAML is an acronym for ”YAML Ain’t Markup Language” According to the YAML website [59],
”YAML is a human friendly data serialization standard for all programming languages.” In other
words, YAML is a language to describe data structures in a way similar to XML but with a simpler
syntax. For instance it can be used to describe data that can be translated into array as shown in
Code Snippet ??.

1 house:
2 family:
3 name: Doe
4 parents:
5 - John
6 - Jane
7 children:
8 - Paul
9 - Mark

10 - Simone
11 address:
12 number: 34
13 street: Main Street
14 city: Nowheretown
15 zipcode: "12345"

1 $house = array(
2 ’family’ => array(
3 ’name’ => ’Doe’,
4 ’parents’ => array(
5 ’John’, ’Jane’),
6 ’children’ => array(
7 ’Paul’, ’Mark’, ’Simone’)
8),
9 ’address’ => array(

10 ’number’ => 34,
11 ’street’ => ’Main Street’,
12 ’city’ => ’Nowheretown’,
13 ’zipcode’ => ’12345’
14)
15);

Code Snippet 25: A data structure in YAML (Source: [25])

The hierarchy of data in YAML is described by indentation, sequence items are indicated by a
dash and key/value pairs are separated by a colon. YAML also has a shorthand syntax where arrays
are described with [] and hashes with {}. Thus, the data described in Table ?? can also be written
as shown in Code Snippet 26.

1 house:
2 family: {
3 name: Doe, parents: [John, Jane],
4 children: [Paul, Mark, Simone]
5 }
6 address: {
7 number: 34, street: Main Street,
8 city: Nowheretown, zipcode: "12345"
9 }

Code Snippet 26: The shorthand syntax for Code Snippet ?? (Source: [25])

4.3.2 Symfony’s MVC Implementation

Symfony’s MVC implementation is based on the same principles as described in Subsection ?? but
the pattern is further subdivided.

4.3. Symfony 37

The model is separated into a data access layer and a database abstraction layer so the devel-
oper does not have to write database-dependent query statements. The database abstraction layer
which performs the queries transparently is used for this purpose instead.

The view is split into a layout and a template. The layout usually contains parts of the view
that re-occur on several pages, such as the header, the footer or the global navigation bar. It is
typically applied to the whole application or to a group of pages. The template renders the variables
made available by the controller. The logic used to combine the functionality of the layout and the
template is referred to as the view.

The controller is devided into a front controller which performs tasks unique to the whole ap-
plication and into actions which contain only code specific to one page.

Figure 4.3 illustrates how the MVC pattern is realized in symfony.

Figure 4.3: The MVC pattern in symfony (Source: [25])

4.3.3 The Project and Code Organization

All code in symfony is organized into a predefined structure as follows:

• A project is the directory that contains all artifacts of a symfony website. According to
Potencier et al. [25] ”a project is a set of services and operations available under a given

38 Chapter 4. Requirements for the automatic Reverse Engineering Process

domain name, sharing the same object model.”.

• A project contains one or more applications. Very often there is a backend application for
administrative tasks and a frontend application for the users of the website.

• Each application is subdivided into modules A module is responsible for one page or a group
of related pages.

• Modules provide actions that perform different tasks. For instance a ShoppingCart module
might contain an add action which adds a new item to the cart.

An example of code organization is given in Figure 4.4. The sub directories contained in the
root directory of a project are described in Table 4.5.

Figure 4.4: Example of code organization (Source: [25])

Directory Description
apps Contains one directory for each application.
cache Holds chached versions of the project configuration, the actions

and the templates.
config Stores configuration files for the whole project.
data Contains data files such as a database schema or SQL scripts.
doc Holds the project documentation.
lib Stores foreign classes or libraries and the code that is shared

amongst all applications. The model classes also belong to this
directory.

log Contains log files generated by symfony.
plugins Stores plugins (this is not discussed in this thesis).
test Contains unit tests (this is not discussed in this thesis).
web Only files in this directory are accessible from the web.

Table 4.5: Sub directories inside the project root directory

4.3. Symfony 39

4.3.4 The Controller Layer

The controller layer is connecting the business logic and the presentation. According to Potencier
et al. [25] it is subdivided into different components:

• The front controller is the unique entry point to the application. It loads the configuration and
determines the action to execute.

• Actions contain the applicative logic. They check the integrity of the request and prepare the
data needed by the presentation layer.

• The request, response, and session objects give access to the request parameters, the response
headers, and the persistent user data. They are used very often in the controller layer.

• Filters are portions of code executed for every request, before or after the action. For example,
the security and validation filters are commonly used in web applications. You can extend the
framework by creating your own filters.

The Front Controller

The front controller uses a routing system to match an URL submitted by the user with a module and
an action. For example the URL http://localhost/index.php/mymodule/myAction
is addressed to the front controller index.php and will be translated into a call to the action
myAction of myModule

Actions

Actions contain the logic of the application. They retrieve request parameters, work with the
model and hand over variables to the view. Each module has a corresponding action class called
<my module name>Actions that has to extend from symfony’s sfActions class. Actions
are public member functions inside this class called execute<ActionName>. A web request in
symfony is always addressed to an action of a module.

The return value of an action method determines which template is used for rendering the
view. The return value sfView::SUCCESS causes symfony to call the default view by look-
ing for a template called <action name>Success.php This behavior is also triggered if the
return value is omitted. In case of an error, the action might return sfView::ERROR which
causes symfony to look for a view called <action name>Error.php. A custom view can be
called by returning ’<my view>’ which causes symfony to look for a template called action-
Name<my view>.php.

In some cases an action requests another action after its execution. The action class provides
two ways to execute another action:

• A call can be forwarded to another action by calling
$this->forward(’otherModule’, ’index’);

40 Chapter 4. Requirements for the automatic Reverse Engineering Process

• A call can be redirected by calling
$this->redirect(’otherModule/index’); or
$this->redirect(’http://www.tuwien.ac.at/’);

In case of a forward the URL displayed in the user’s browser stays the same whereas a redirect
triggers the browser to submit a new request resulting in a change of the displayed URL. A redirect
instead of a forward should always be done if the action is called from a form submitted with the
post method. The advantage is that a refresh of the resulting page or a click on the back button by
the user does not cause a resubmit of the post request.

The way to access controller-related information and the core symfony objects is demonstrated
in Code Snippet 27.

1 class mymoduleActions extends sfActions {
2 public function executeIndex($request){
3 // Retrieving request parameters
4 $password = $request->getParameter(’password’);
5 // Retrieving controller information
6 $moduleName = $this->getModuleName();
7 $actionName = $this->getActionName();
8 // Retrieving framework core objects
9 $userSession = $this->getUser();

10 $response = $this->getResponse();
11 $controller = $this->getController();
12 $context = $this->getContext();
13 // Passing information to the template
14 $this->setVar(’foo’, ’bar’);
15 $this->foo = ’bar’; // Shorter version
16 }
17 }

Code Snippet 27: Accessing application objects and context information in an action (Source: [25])

4.3.5 The View Layer

The view renders the output of a certain action. It is separated into different parts:

• The actual presentation of a web site is the job of the templates, which render the data of
current action and the layout which is usually globally used for all pages.

• Recurring parts of templates can be put into partials or components that can be reused in
different templates (this is not discussed in this thesis).

• The view can be configured by the means of YAML configuration files.

Templating

Code Snippet 28 shows a simple template, containing mostly HTML code and some basic PHP
statements. The name variable echoed in line two has to be set in the corresponding action via

4.3. Symfony 41

$this->name = ’foo’;. The link to function is a so called helper. Helpers are functions
that return HTML code. They can be used in templates. The call to link to(’Read the last
articles’, ’article/read’) renders an HTML anchor. The second argument indicates
that the link is directed to the read action of the article module. The first argument is the
text inside the anchor tag. The url for function works similarly but it only takes a string as an
argument, which contains the target to which the URL should be directed.

1 <h1>Welcome</h1>
2 <p>Welcome back, <?php echo $name ?>!</p>
3 What would you like to do?
4 <?php
5 echo link_to(’Read the last articles’, ’article/read’)
6 ?>
7 <?php
8 echo link_to(’Start writing a new one’, ’article/write’)
9 ?>

10

Code Snippet 28: An example template (Source: [25])

The template in Code Snippet 28 is not a valid XHTML document. Therefore it has to be
decorated with a layout. The default layout is shown in Code Snippet 29.

1 <html>
2 <head>
3 <?php include_http_metas() ?>
4 <?php include_metas() ?>
5 <?php include_title() ?>
6 <link rel="shortcut icon" href="/favicon.ico" />
7 </head>
8 <body>
9 <?php echo $sf_content ?>

10 </body>
11 </html>

Code Snippet 29: The default layout (Source: [25])

The content of a template is inserted via the echo $sf content statement in the source code
of the layout.

4.3.6 The Data Access Layer

As discussed in Subsection 4.3.1, in a symfony project, all data stored in the database is accessed
and modified via objects.

42 Chapter 4. Requirements for the automatic Reverse Engineering Process

Figure 4.5: A template decorated with a layout (Source: [25])

The Database Schema

The database schema tells symfony how to create a mapping between the relational data model of
the database and the PHP object data model to be used. The tables, their relationships and columns
are described in the schema, using the YAML syntax. The file schema.yml that contains the
schema is located in the myproject/config/ directory.

For instance in a webshop application there might be two tables: Products - storing all prod-
ucts of the webshop and Types - dividing the products into types. A schema description for these
tables might look like the one shown in Code Snippet 30.

1 propel:
2 type:
3 id: ˜
4 name: { type: varchar(255), required: true,
5 index: unique }
6 product:
7 id: ˜
8 type_id: { type: integer, foreignTable: type,
9 foreignReference: id, required: true }

10 name: { type: varchar(255), required: true,
11 index: unique }
12 description: { type: longvarchar, required: true }
13 price: { type: float, required: true }

Code Snippet 30: A sample database schema

The first key in the file is the connection name, propel in this example, referencing a connec-
tion to a database, defined in a different file in the same directory, called databases.yml. The
type and the product keys are denoting the two tables. In YAML, the keys end with a colon, and
the structure is described through indentation. The keys under the table keys denote their attributes.
The ˜ character tells symfony to guess the definition of the attribute. In the case of the id attribute
it is interpreted as the primary key with an auto-incremented integer value. The name attribute is
typed as varchar(255) and defined as a required attribute with a unique index. The product
table has a type id attributed defined as a foreign key for the type table. This is done by the
foreignTable: type and foreignReference: id statements.

4.3. Symfony 43

Model Classes

The model classes are generated automatically using the schema definition. This is done by exe-
cuting the command line task php symfony propel:build-model. The following classes
are generated into the lib/model/om/ directory when using the schema shown in Code Snip-
pet 30: BaseProduct.php, BaseProductPeer.php, BaseType.php and BaseType-
Peer.php. There are four more classes generated into the lib/model/ directory: Prod-
uct.php, ProductPeer.php, Type.php and TypePeer.php.

The classes generated into the lib/model/om/ contain code the should not be modified
by the developer whereas the classes in lib/model/ are provided to the developer for adding
custom business logic. For instance the BaseProduct and the BaseType class already con-
tain accessors, mutators and instance variables for the table fields, as well as some other methods.
Product extends BaseProduct and ProductPeer extends BaseProductPeer. Objects
of the Product class for instance represent database records whereas ProductPeer provides
static methods to perform data access and manipulation operations.

To create a new database record a new instance of the corresponding model class has to be
created and the properties of the object can be set via the accessor methods. A call to the save
method commits the instance values to the database.

Each model class has a corresponding peer class that is used for object retrieval. A peer class has
a retrieveByPk method that takes a primary key value as argument and returns the object to the
corresponding database record. If several objects should be retrieved the doSelect method has to
be used. This method takes a Criteria object as an argument. With an empty Criteria object
all instances of the class are retrieved. To restrict a query by value comparison the add method is
used. The method takes two or three arguments respectively. The first argument is a column, the
second argument is a value and the third argument is a comparison operator. If the third argument
is omitted, the equal operator is used.

A database record can be deleted via a call to the delete method of the corresponding model
instance.

Code Snippet Code Snippet 31 gives an example of how to work with the model.

1 // Create and save a new Product instance
2 $product = new Product();
3 $product->setName(’Pizza Margarita’);
4 $product->save();
5 // Retrieve a Product object by primary key
6 $product = ProductPeer::retrieveByPk(7);
7 // Delete a product
8 $product->delete();
9 // Retrieve a Products by name

10 $c = new Criteria();
11 $c->add(ProductPeer::NAME, ’Pizza Margarita’, Criteria::LIKE);
12 $products = ProductPeer::doSelect($c);

Code Snippet 31: Working with the model

44 Chapter 4. Requirements for the automatic Reverse Engineering Process

Populating Data to a Database

When developing a web application it is necessary to fill the database with some test records. In
symfony this can be done by providing a text file that contains data structured with a simple YAML
syntax. The file has to be stored in the data/fixtures directory.

The data is organized class-wise. Each class section starts with the class name and contains
several records, each one labeled with a unique string. A record consists of fieldname-value pairs.
Foreign key references can be expressed by writing the label of the referenced record as the value
of the foreign key attribute. The example in Code Snippet 32 defines two class sections, Cate-
gory and Type. Two records are defined for the Category table, category one and cate-
gory two, each one defining some data for the name and the description field. In the Type
class section two records are defined, each of them having their category id field pointing to
the Fruit category, labeled with category one.

1 Category:
2 category_one:
3 name: Fruit
4 description: Lorem ipsum
5 category_one:
6 name: Vegetables
7 description: Lorem ipsum
8 Type:
9 type_apple:

10 category_id: category_one
11 name: Apple
12 type_citrus_fruit:
13 category_id: category_one
14 name: Citrus Fruit

Code Snippet 32: A database fixture in YAML syntax

4.3.7 Setting up an Example Project in Symfony

Symfony supports the RAD programming strategy described in Subsection 4.3.1 by providing a
command line interface (CLI) to perform common tasks required for the building and the main-
tenance of a web application. A good overview of how to use the CLI is given in the symfony
cookbook [30]. The CLI is implemented as the symfony PHP script that lies at the root of a a
project. The script requires a task name as a commandline argument and possibly some additional
parameters. The syntax is php symfony <TASK> [parameters].

Structure Generation

• A new project is initialized by executing php symfony init-project <PROJECT-
NAME>.

• A new application is initialized by executing php symfony init-app <APPLICATION-
NAME>.

4.4. A Transformation into a Symfony Application 45

• php symfony init-module <APPLICATION NAME> <MODULE NAME> initializes
a new module.

Model Generation

The connection settings for database related tasks are specified in config/propel.ini.

• The Propel model classes are generated based on the YAML schema file in the config
directory of the current project by executing php symfony propel-build-model

• The SQL code to create the tables described in schema.yml is generated by executing php
symfony propel-build-sql. The SQL code is written to data/schema.sql.

• An empty database is created by executing php symfony propel-build-db.

• The sql code form data/schema.sql is inserted into the database by executing php
symfony propel-insert-sql.

• The tasks propel-build-model, propel-build-sql and then propel-insert-
sql are all executed when php symfony propel-build-all is executed.

Data Management

• php symfony propel-load-data <APPLICATION NAME>
[<ENVIRONMENT NAME>] [<FIXTURES DIR OR FILE>] loads all fixtures contained
in data/fixtures if not specified differently.

• php symfony propel-build-all-load <APPLICATION NAME> [<ENVIRON-
MENT NAME>] [<FIXTURES DIR OR FILE>] first executes propel-build-all and
then propel-load-data.

4.4 A Transformation into a Symfony Application

The first step in transforming the web application into a symfony project is to define the database
schema in the YAML format, which is placed into the the schema.yml file. The schema used is
the same as described in Section 4.2.1. The YAML format to define a database schema is described
in Subsection 4.3.6. The propel model classes are generated using the symfony CLI tool. All the
application code is put into a single application called frontend which contains one module for
each model class.

The entry point to the application is the Categories module. The categoriesAction
class only contains a single index action that performs a query of all categories available. The
result of the query is made available to the template as category list. The content of the
executeIndex method is shown in Code Snippet 33.

The template displays the content of category list in a table. The category’s name and
a link to the index action of the module types are echoed. The value of the category id field
is attached to the query string. A part of the template is shown in Code Snippet 34.

46 Chapter 4. Requirements for the automatic Reverse Engineering Process

1 $this->category_list = CategoryPeer::doSelect(new Criteria());

Code Snippet 33: The Category index action

1 <?php foreach ($category_list as $category): ?>
2 <tr>
3 <td><?php echo $category->getName() ?></td>
4 <td><a href="<?php echo url_for(’types/index?category_id=
5 ’.$category->getId()) ?>">Kategorie auswaehlen</td>
6 </tr>
7 <?php endforeach; ?>

Code Snippet 34: The Category index action

As the categories module the types module only contains an index action. The cat-
egory table is queried for all types of the category whose category id has been passed as a
request parameter. The content of the executeIndex method is shown in Code Snippet 35.

1 $criteria = new Criteria();
2 if($request->hasParameter(’category_id’)){
3 $criteria->add(TypePeer::CATEGORY_ID,
4 $request->getParameter(’category_id’), Criteria::EQUAL);
5 }
6 $this->types_list = TypePeer::doSelect($criteria);

Code Snippet 35: The Types index action

The template looks very similar to the category index template outlined in Code Snippet 34.
The user may follow a link to see all products of a certain type.

The products module contains an index action to query all products of a certain type and
a show action to show the details of a certain product. The content of executeShow is shown in
Code Snippet 36.

The template displays all the information about the chosen product and it renders a form that
points to the addToCart action of the cart module. The form contains an input element
of type text to enter the desired amount of the product and two hidden fields for passing the
product id and the name. The template is outlined in Code Snippet 37.

The addToCart action queries the cart table for the product id submitted and the current
session id. If the query returns a result, the quantity is updated, otherwise a new object
instance is created and saved. Finally a redirect to the index action is performed. The content of
the executeAddToCart is shown in Code Snippet 38.

The index action queries all cart items that belong to the current session and passes them to
the template as the cart list variable. The template displays the content of the cart in a table
and renders a link to the show action of the product module, which allows the user to change the
amount of the product. Furthermore a link to the displayForm action of the shippingInfo

4.4. A Transformation into a Symfony Application 47

1 $this->products = ProductsPeer::retrieveByPk(
2 $request->getParameter(’id’));

Code Snippet 36: The Types index action

1 <table>
2 <tbody>
3 <tr>
4 <th>Id:</th>
5 <td><?php echo $products->getId() ?></td>
6 </tr>
7 <!-- More table rows for type_id, name, added date
8 and description -->
9 </tbody>

10 </table>
11 <form action="<?php echo url_for(’cart/addToCart’) ?>"
12 method="post">
13 <input type="text" name="amount" value="0" />
14 <input type="hidden" name="product_id"
15 value="<?php echo $products->getId() ?>" />
16 <input type="hidden" name="name"
17 value="<?php echo $products->getName() ?>" />
18 <input type="submit" value="In den Warenkorb" />
19 </form>

Code Snippet 37: The Show template

1 $criteria = new Criteria();
2 $criteria->add(CartPeer::PRODUCT_ID,
3 $request->getParameter(’product_id’), Criteria::EQUAL);
4 $criteria->add(
5 CartPeer::SESSION_ID, session_id(), Criteria::EQUAL);
6 $cart = CartPeer::doSelectOne($criteria);
7 if($cart){
8 $cart->setQuantity($request->getParameter(’amount’));
9 $cart->save();

10 } else {
11 $cart = new Cart();
12 $cart->setProductId($request->getParameter(’product_id’));
13 // more setters
14 $cart->save();
15 }
16 $this->redirect(’cart/index’);

Code Snippet 38: The addToCart action

48 Chapter 4. Requirements for the automatic Reverse Engineering Process

module is rendered.
executeDisplayForm is an empty method. The corresponding template renders a form to

enter the shipping information. The form points to the addShippingInfo action of the ship-
pingInfo module. The executeAddShippingInfo method queries the ShippingInfo
table that corresponds to the current session. If a record is found, the fields are updated, otherwise
a new record is created. Finally a redirect to the show action of the shippingInfo module is
performed and the id of the record is passed in the query string. The executeShow method
selects the ShippingInfo record that corresponds to the id passed in the request. The template
simply displays the data entered by the user and renders two links: One link to the addShipping-
Info action of the shippingInfo module, which allows the user to change the data entered and
another link to the processOrder action of the order module.

The executeProcessOrder method of the orders module first queries the Shipping-
Info table for the record that belongs to the current session. A new Order object is created and
populated with the data of the ShippingInfo object. Then the Cart table is queried for the
items that belong to the current session and it is iterated over all the resulting collection. For each
Cart object a new OrdersProduct object is created and populated with the data of the Cart
object. The order id, which is the foreign key to link the ordered products to the order, is also
set for each OrderProduct object. Finally the session is destroyed. The template only displays
a message to the user that the order has been saved successfully.

4.5 A Comparison between the MVC Framework and Symfony

Symfony is a much more elaborated framework than the MVC framework, although the basic prin-
ciples are similar. This Section gives an overview of the most significant similarities and differences.

The MVC framework organizes the code into modules. Within a module there are only two
types of code artifacts: Model classes and templates. For each model class there is always exactly
one template. Each request is handled by one function of a model class. The request parameters are
directly retrieved from the GET or from the POST array. The database access is done by executing
plain SQL statements. The framework provides a method to pass variables to the template that
belongs to the model class. Redirects are done by returning a string with the path to the target event.

Symfony organizes the code into applications and modules. Within a module there is an ac-
tion class and one or more templates. Each request is handled by an action method in the action
class. As opposed to the MVC framework the functions handling a request are not considered to be
part of the model but rather an extension to the controller, called frontend controller. The model is
stored separately and it is shared amongst all applications. The database access is not done using
SQL statements but via ORM. The business logic is supposed to be placed inside the model classes.
Request parameters are retrieved from the request object passed to the action method. The frame-
work also provides a method to pass variables to a template. Other than in the MVC framework in
Symfony there is one template for each action method. Redirects are done via a redirect function.

As shown before in Subsection 4.4 it is possible to implement the example application using
almost the same patterns as for the MVC framework. The most important difference is that the
database access is done using an ORM mapping instead of SQL queries and that the functions and
objects used are named differently. The patterns presented in Chapter 6 and the transformation

4.5. A Comparison between the MVC Framework and Symfony 49

program presented in Chapter 8 could be easily transformed to work with the Symfony version of
the example application by simply slightly modifying the visitors used. Still, a real world Symfony
application might be written using different patterns so a different transformation program would
be necessary.

Chapter 5

Ingredients for the Conceptual Design

In this chapter the ingredients for the conceptual design of the reverse engineering process are
presented. The most important elements of the Web Modeling Language (WebML), used for the
target model, are described. Furthermore the XML and HTML processing tools used to implement
the intermediate MVC meta model are introduced.

5.1 WebML

The Web Modeling Language (WebML) is a graphical language with a formal specification for
modeling data intensive web applications. A complete WebML Model can be subdivided into the
Data Model, the Hypertext Model and the content management model. There is also a commercial
tool called Web Ratio [58] available, which supports modeling of WebML models and automatic
code generation for Apache Struts [44].

5.1.1 The Data Model

According to Ceri et al. [5] The Data Model aims to provide a conceptual schema of the data used
by the application. Therefore the Entity-Relationship model (ER model) [6] is used. The central
concept of the ER model are entities.

Entities

An entity describes common properties of similar objects in the real world. The actual objects (or
instances) described by the entity are called population. The ER model uses a graphical notation
for all its concepts. An entity is represented as a rectangle with the entity name at the top.

Attributes

The properties of an entity are modeled via attributes. They are graphically represented inside the
rectangle of the entity, below the name. In order to distinguish certain instances of an entity one or
more attributes must be denoted as part of the primary key. If this is only one attribute, its value must
be unique for each instance. If the primary key is made up of several attributes, the combination of

51

52 Chapter 5. Ingredients for the Conceptual Design

those attributes must be unique. In WebML it is common practice to model a certain attribute called
the object identifier (OID) whose only purpose is to serve as a unique identifier for each instance of
the entity.

Furthermore attributes may be typed meaning that they assume values form well defined do-
mains. WebML supports the following well known data types, common to many programming
languages and database systems: blob, boolean, date, decimal, float, integer, pass-
word, string, text, time, timestamp and url.

Relationships

Relationships are named semantic connections between entities. A connection between two entities
is called a binary relationship. A relationship with more than two entities involved is called N-ary
relationship. However it is possible and encouraged to equivalently express an N-ary relationships
by the means of several binary relationships.

A binary relationship has two relationship roles, expressing the role each entity plays in the
relationship. It can be seen as a directed association from the source entity to the target entity. For
example the entity Book and the entity Author could be connected via a Relationship named Publi-
cation. The relationship role from book to author could be named Published by and the relationship
role from author to book could be named Publishes.

Relationship roles can be annotated with minimum and maximum cardinality constraints, ex-
pressing the minimum and the maximum number of objects of the target entity to which any object
of the source entity can be related. Possible values for the minimum cardinality are zero or one.
Zero denotes the relationship as optional whereas one expresses a mandatory relationship, meaning
that an object of the source entity can not exist without at last an object of the target entity. Possible
values for the maximum cardinality are one ore many, the latter depicted as N.

Figure 5.1 is an example for a relationship between the two entities Category and Product,
modeled with Web Ratio. Each entity has several attributes with certain data types, written after
the name of each attribute and the : character. Both entities have an attribute named OID, denoted
as the primary key, symbolized by a little key symbol on the left side of the attribute’s name. The
relationship role from product to category is annotated with the maximum cardinality 1 and the
relationship role from category to product is annotated with the maximum cardinality N.

Figure 5.1: A part of an ER diagram with two entities

5.1. WebML 53

5.1.2 The Hypertext Model

”The goal of Hypertext Modeling is to specify the organization of the front-end interfaces of a Web
application (...) the specification of the hypertext should be maintained at the conceptual level,
which means that it should not commit too much to design and implementation details, such as the
actual distribution of functionality between the various tiers of a Web application” [5] (pages 77,78).

For the Hypertext Model WebML uses the concepts of Pages, Units and Links, which are orga-
nized into areas and site views. Units represent pieces of publishable content that can be placed on
a Page. From a user’s perspective they could be seen as extensions to the Data Model. Pages and
Units can be connected amongst each other via Links.

Units

There are five types basic types of Units available in WebML:

• DataUnit: Refers to a single object of the Data Model.

• Multidata Unit: Refers multiple objects of the Data Model.

• IndexUnit: Shows a list of objects without showing detailed information.

• EntryUnit: Represents a form for the user to enter data.

• ScrollerUnit: Provides functionality to browse through lists of objects.

The DataUnit, the MultidataUnit, the IndexUnit and the ScrollerUnit are used to publish content,
whereas the EntryUnit is used for content acquisition. The DataUnit and the multidata unit represent
the actual content of an object, the IndexUnit’s and the ScrollerUnit’s purpose is to select objects.
The DataUnit shows the content of one object, the MultidataUnit shows the content of a set of
objects.

The content published by the units is extracted from the Data Model. There are two concepts
used in WebML for selecting the content presented by a unit: the Source and the Selector.

• The Source is the name of the entity where the content of a unit comes from. The source
entity determines the object type to be presented.

• The Selector is a conjunctions of elementary conditions taken from the entity attributes and
the relationship roles in which the entity might be involved. It is used for selecting the Actual
Objects to be presented.

In Web Ratio units are displayed as rectangles containing the symbol of the unit and some
textual information. Each instance of a unit typically has a name which is shown at the top of the
rectangle. The symbol of the unit is shown in the middle. In the lower part of the rectangle the
name of the entity to which the unit is assigned to is displayed, followed by the Selector conditions
displayed in square brackets. Figure 5.2 shows the graphical representation of the five basic units.

The current version of Web Ratio supports some more units for special purposes, but they will
not be used in the example application.

54 Chapter 5. Ingredients for the Conceptual Design

Figure 5.2: The five basic WebML Units. From left to right: DataUnit, MultidataUnit, IndexUnit,
ScrollerUnit and EntryUnit

Pages

Pages are the elements delivered to the user who browses the hypertext. Units with a related com-
munication purpose are typically grouped together into Pages. A unit may not be placed outside a
Page. There must be one special Page marked as HomePage which is the entry point to the applica-
tion for the user. Figure 5.3 shows the graphical representation of a Page containing two IndexUnits
in Web Ratio.

Figure 5.3: A WebML Page

Links

Links are the connection between Pages and units which facilitate the navigation in the hypertext.
A Link may contain certain LinkParameters in order to transport information from the source to the
target of the Link. A unit may have a Parametric Selector whose predicates refer to the LinkParam-
eters.

In HTML a Link is either an anchor tag with a href attribute or a submit button of a form.
WebML distinguishes between Inter-Page Links which connect two different Pages and Intra-Page
Links that have their source and their target located on the same Page. Links with LinkParameters
that transport information are called contextual Links, whereas non-contextual just trigger naviga-
tion but do not transport any information.

Site Views

Large and complex hypertext can be organized into site views. A site view is a container for Pages,
units and Links.

5.1. WebML 55

5.1.3 The Content Management Model

Many web applications perform operations on data. Modeling operations in WebML requires two
extensions to the Hypertext Model presented so far. The first extension is the notion of opera-
tion units which denote either data manipulation operations or the executions of external services.
Operation units are triggered via Links coming from different hypertext elements. The second ex-
tension applies to the outgoing Links of operation units, which are subdivided into OKLinks and
KOLinks. OK Links are followed after the successful execution of an operation whereas KO Links
are followed if the operation fails.

Predefined Operations

There are six basic units for operations on data available in WebML:

• CreateUnit: Creates a new instance of an entity.

• DeleteUnit: Deletes an instance of an entity.

• ModifyUnit: Changes certain attribute values of an entity instance.

• ConnectUnit: Creates a new instance of a relationship between two entities.

• DisconnectUnit: Deletes an instance of a relationship between two entities.

• ReconnectUnit: Changes the source or the target instance of a relationship between two enti-
ties.

In order to perform their task of object manipulation, the CreateUnit, the DeleteUnit and the
update unit have to be related to a source entity. A Selector is only needed for the DeleteUnit and
the update unit as the set of objects to which these operations apply has to be selected.

The ConnectUnit, the DisconnectUnit and the ReconnectUnit do not operate on objects of en-
tities but on relationships between objects of different entities. Therefore they need to be provided
with the source relationship role where the operation applies to, a Selector for objects of the source
entity and a Selector for the objects of the target entity.

Beside the six operation units mentioned so far there are two more important types of operation
units: The SelectorUnit and the IsNotNullUnit.

• The SelectorUnit is used to preselect entity objects to be used by other units.

• The IsNotNullUnit checks if a certain input parameter has a value or not.

Operation units are placed on a site view, always outside Pages.

56 Chapter 5. Ingredients for the Conceptual Design

Figure 5.4: WebML operation units. From left to right: CreateUnit, DeleteUnit, ModifyUnit, Con-
nectUnit, DisconnectUnit, ReconnectUnit.

Figure 5.5: A SelectorUnit and an IsNotNullUnit

5.2. XML and HTML Processing Tools 57

Module View

I is also possible to separate operation units from the site view by putting them into a special Mod-
uleView with certain LinkParameters for encapsulating flows of operation executions. Therefore the
content management model is extended with three additional modeling elements.

• OperationModule: A container for encapsulation operation units.

• InputCollectorUnit: Collects incoming LinkParameters.

• OutputCollectorUnit: Collects outgoing LinkParameters.

• OKCollectorUnit: Collects outgoing OK LinkParameters.

• KOCollectorUnit: Collects outgoing KO LinkParameters.

An OperationModule could be compared to a function in a programming language. InputCol-
lectorUnits in OperationModules represent a similar concept as function parameters. OutputCollec-
torUnit, OKCollectorUnit and KOCollectorUnit can be compared to return values of functions.

Figure 5.6: An OperationModule with an InputCollectorUnit, a OKCollectorUnit and several oper-
ation units.

5.2 XML and HTML Processing Tools

The input sources used for the transformation process described in this thesis are a mixture of SQL,
PHP and HTML code. The generated output artifact is an XML file. Hence it is necessary to be able

58 Chapter 5. Ingredients for the Conceptual Design

to process four different languages within one process. The processing of the PHP source code, the
SQL DDL and DML code is done by JavaCC. For processing the HTML sources the Jericho HTML
Parser [16] is used. To create the XML output file the Java Architecture for XML Binding (JAXB)
[33] is used.

5.2.1 Jericho

Most of the HTML parsers available are either tree based, such as the Document Object Model
(DOM) [4] or event based, such as the Simple API for XML (SAX) [3]. According to the Jericho
website [16] Jericho is non of both but ”rather uses a combination of simple text search, efficient
tag recognition and a tag position cache”. The main reason why it is used for this thesis is that it is
able to recognize different kinds of server tags, including PHP server tags. None of the other parsers
tested were able to work with PHP tags as desired. Another advantage of Jericho is that compared to
other parsers the interface to query and manipulated tags and elements is easier and more intuitive
to use.

In this thesis Jericho is used to transform template files that contain a mixture of HTML and PHP
code into a custom XML representation. Therefore a short overview of the classes and methods used
is given here.

• An HTML document is represented via an instance of the Source class. The constructor
takes an InputStream delivering the HTML document as an argument.

• A call to the static register method of the class PHPTagTypes tells the parser to recog-
nize PHP tags.

• An instance of the class OutputDocument represents the document resulting from a trans-
formation performed on the Source object. The constructor of the OutputDocument
class takes a Source as an argument.

• The Source object provides a getNodeIteratormethod to get an iterator over all nodes
of the document. All instances returned by the node iterator are of the type Segment, which
is the superclass for Element, Tag and Attribute.

• An Element object represents an HTML element which consists of a start tag, an optional
end tag and all the content in between.

• The abstract Tag class is the superclass for StartTag, which represents a tag such as <p>,
and for EndTag, which represents a tag such as </p>.

• The OutputDocument class provides a replace method with two parameters. The first
parameter is the Segement to be replaced, the second parameter is the character sequence
that replaces the Segement passed as the first parameter.

• The OutputDocument class also provides a remove method that simply removes the
Segment passed as an argument.

5.2. XML and HTML Processing Tools 59

• Another useful method of the Segment class is findAllElements, which returns all
Elements of the StartTag type passed as an argument.

With the classes and methods described in this Section it is very easy to transform an HTML
file containing PHP tags into any desired representation.

5.2.2 JAXB

The Java Architecture for XML Binding (JAXB) is an Interface used to create mappings between
Java objects and XML documents without the need to directly process the XML code. The mapping
works in two directions:

1. The creation of an XML document that represents a Java object structure is called mar-
shalling.

2. The process of creating a Java object structure based on a XML document is called unmar-
shalling.

JAXB 2.0 is part of the JDK 6 [37]. In this version the rules for the mapping of object states to
XML documents can be defined via annotations. Another way to define the mapping is via an XML
schema definition. This is not discussed in this thesis.

Mapping and serializing an Object Structure to XML

Code Snippet 39 is an example for a simple Java Bean class as described in the JavaBeans 1.01
specification [42], called Person, annotated with the JAXB annotation @XmlRootElement and
another simple Java Bean called Address. The @XmlRootElement annotation is required if the
class represents the root element of an XML tree.

The core class of JAXB is JAXBContext. It is used to create either a Marshaller object
for writing or an Unmarshaller object for reading. The newInstance method takes the class
that represents the root element of the XML tree as an argument. The marshall method takes
the root object of the object tree and an OutputStream to which the object structure should be
written to as arguments. Code Snippet 40 shows a little test program for creating and marshalling a
Person with an Address and the XML output it creates. By default all attributes of a bean object
are serialized to XML.

The way of accessing bean attributes for serialization can be configured with the @XmlAcces-
sorType annotation, which has to placed on class level. There are three values of interest.

• @XmlAccessorType(XmlAccessType.FIELD): All non-static attributes.

• @XmlAccessorType(XmlAccessType.PROPERTY): Each JavaBean property.

• @XmlAccessorType(XmlAccessType.PUBLIC MEMBER): Only public JavaBean prop-
erties or public attributes.

60 Chapter 5. Ingredients for the Conceptual Design

1 import javax.xml.bind.annotation.XmlRootElement;
2 @XmlRootElement(namespace = "http://tuwien.ac.at/")
3 public class Person {
4 private String name;
5 private Address address;
6 public String getName(){return name;}
7 public void setName(String name){this.name = name;}
8 @XmlElement(name="homeAddress")
9 public Address getAddress(){return address;}

10 public void setAddress(Address address){
11 this.address = address;}
12 }
13
14 public class Address {
15 private String street;
16 private String ZIP;
17 public String getStreet(){return street;}
18 public void setStreet(String street){this.street = street;}
19 public String getZIP(){return ZIP;}
20 public void setZIP(String zip){ZIP = zip;}
21 }

Code Snippet 39: Two Java Beans with JAXB annotations

1 public static void main(String[] args) throws JAXBException {
2 Person person = new Person();
3 person.setName("Tom Turbo");
4 Address address = new Address();
5 address.setStreet("Operngasse 22");
6 address.setZIP("1010");
7 person.setAddress(address);
8 JAXBContext context = JAXBContext.newInstance(Person.class);
9 Marshaller m =

10 context.createMarshaller().marshall(person,System.out);
11 }
12
13 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
14 <ns2:person xmlns:ns2="http://tuwien.ac.at/">
15 <homeAddress>
16 <street>Operngasse 22</street>
17 <ZIP>1010</ZIP>
18 </homeAddress>
19 <name>Tom Turbo</name>
20 </ns2:person>

Code Snippet 40: A test program to create the XML document

5.2. XML and HTML Processing Tools 61

1 class Book {
2 public String name;
3 public @XmlAttribute int id;
4 }

1 <book id="123">
2 <name>Blackmoor</name>
3 </book>

Code Snippet 41: Using the @XmlAttribute annotation

The @Transient annotation is used to exclude an attribute from serialization. Attributes
annotated with @XmlAttribute are serialized as XML attributes and not as XML elements as
shown in Code Snippet 41.

Collections are by default serialized as shown in Code Snippet 42. When using the @XmlEle-
mentWrapper annotation the output looks as shown in Code Snippet 43.

1 class Person {
2 public List<String> emails;
3 }

1 <person>
2 <emails>abc@def.com</emails>
3 <emails>xy@big.at</emails>
4 </person>

Code Snippet 42: Marshaling collections

1 class Person {
2 @XmlElementWrapper(name = "

emails")
3 @XmlElement(name = "email")
4 public List<String> emails;
5 }

1 <person>
2 <emails>
3 <email>abc@def.com</email>
4 <email>xy@big.at</email>
5 </emails>
6 </person>

Code Snippet 43: Marshaling collections using the @XmlElementWrapper annotation

Sometimes when a Java object references another object the referenced object should not be a
nested child element of the referencing object in the XML representation. The reference should
rather be expressed via an attribute or element in the referencing object that contains the id of the
referenced object. This can be achieved by using the @XmlID and the @XmlIDREF annotations.
The @XmlID annotation is placed on the field that stores the id of an element and the @XmlIDREF
is placed on the field that references this element.

Chapter 6

Conceptual Design

In this Chapter a conceptual design for the mapping of the MVC web application, created in Chapter
4, to a WebML model is defined. This includes several steps.

• A meta model for the WebML target data structure is defined.

• A meta model for the intermediate MVC data structure is defined.

• Patterns used in the view and in the model are identified and mapped to WebML concepts.

6.1 Defining the Target Data Structure

The target data structure is an XML document that can be viewed and modified with WebRatio. It is
convenient to build a graph of Java objects that reflect the target data structure and marshall them to
XML using JAXB. In this Section the target data structure is presented using UML class diagrams.
References between classes are depicted as directed associations, properties of primitive or built
in Java types are modeled as class attributes. Unfortunately the class diagram does not give any
information about the JAXB annotations used to map the Java objects to XML, so this information
can be found in the descriptions of the class diagrams. If it does not say differently the associations
between classes are mapped as elements using the @XmlElement annotation. If they are mapped
as attributes, using the @XmlAttribute annotation, it is mentioned in the description. The class
attributes are always mapped as XML element attributes.

Each model element in a WebML model except WebProject, WebModel and DataModel
has an id attribute and a name attribute. Thus an abstract class WebMLElement is defined, which
contains an id and a name property, both of type String. In the constructor of WebMLEle-
ment the id is initialized with a default universally unique identifier (UUID) provided by the
java.util.UUID class, via the statement id = UUID.randomUUID().toString();.
The id and the name are mapped as attributes and the id also has the @XmlID annotation. All
classes that are used in the target data structure, except the three mentioned above, extend WebM-
LElement. Some of those classes override the idwith a more meaningful value then the generated
UUID.

63

64 Chapter 6. Conceptual Design

The root element of a WebML model instance is WebProject which consists of a Web-
Model and a DataModel as shown in Figure 6.1. The showUnitContent and the show-
Tooltip attributes are not part of the actual WebML model, but they are needed for the graphical
representation in WebRatio. Therefore they are part of a different namespace which is http://-
www.webratio.com/2006/WebML/Graph.

Figure 6.1: The WebProject element

6.1.1 The Data Model

The DataModel is shown in Figure 6.2. It contains a collection of Entity elements and a collec-
tion of Relationship elements. An Entity has several EntityAttributes with a key
to indicate whether the attribute is part of the primary key. A Relationship has two refer-
ences to Entity objects, one for the source entity and one for the target entity of the relationship.
Those two properties are annotated with @XmlIDREF. A Relationship has two Relation-
shipRoles, one for the source and one for the target of the relationship. The Relationship role
has a single attribute called maxCard which is not shown in the diagram. It is an enum type that
can take the values 1 or N and it represents the cardinality of a relationship role.

Figure 6.2: The DataModel element

6.1.2 The Web Model

The web model is more complex than the data model. Therefore it is described by several class
diagrams. In Figure 6.3 it is shown that a WebModel contains SiteViews and ModuleViews.
One of the site views has to be the home site view.

6.1. Defining the Target Data Structure 65

Figure 6.3: The WebModel element

SiteView

A SiteView contains Pages and OperationUnits. One Page has to be the HomePage. The
OperationUnit class is declared to be abstract as there are different concrete types of Operatio-
nUnit extending from OperationUnit.

Figure 6.4: The SiteView element

OperationUnits

The type hierarchy and the classes related to the OperationUnits are shown in Figure 6.5. The
EntityOperationUnit class has a reference to Entity, which is not shown in the diagram,
as The CreateUnit, the ModifyUnit and the SelectorUnit operate on a certain entity.
The ModifyUnit and the SelectorUnit may also have a Selector. The InputCol-
lectorUnit has several InputCollectorParameters and the OKCollectorUnit has
several OutputCollectorParameters.

ContentUnits

In Figure 6.6 it is shown that a Page has several ContentUnits. ContentUnit is an abstract
class which is extended by EntryUnit and EntityContentUnit. As the DataUnit, the
MultiDataUnit and the IndexUnit all display the fields of a certain entity instance, Enti-
tyContentUnit has a reference to Entity, which is not shown in the diagram. The EntryU-

66 Chapter 6. Conceptual Design

Figure 6.5: The OperationUnit element

nit has several Fields, which represent HTML text input fields. A field can be modifiable
or not.

Figure 6.6: The ContentUnit element

ModulView

Figure 6.7 shows that the ModuleView can have several OperationModules. There are other
types of Modules beside the OperationModules available in WebML, but they are not relevant
for this thesis.

Links

A Link has a target that can be any WebMLElement as shown in Figure 6.8. A Link has a type
which is either normal or transport (this is not shown in the diagram). If automaticCou-

6.1. Defining the Target Data Structure 67

Figure 6.7: The ModuleView element

pling is set to true, it means that no LinkParameters are explicitly modeled but that the
parameter coupling is assumed implicitly. A LinkParameter has a source and a target,
which is the id of the corresponding elements. The OKLink and the KOLink are extended from
Link.

Figure 6.8: The Link element

Conditions

Conditions are used by a Selector to restrict the number of the selected entity instances to
those that fulfill the condition. Condition is an abstract class and has to be an AttributesCon-
dition, KeyCondition or RelationshipRoleCondition. The AttributesCondi-
tion references the EntityAttributes to be evaluated in the selection. An AttributesCon-
dition also has an enum value for the predicate which has to be either eq for equal, neq for
not equal, gt for greater than or lt for lower than. The KeyCondition is used to select en-
tity instances if they either have the primary key passed, using the predicate value in or if
they don’t have the primary key passed, using the predicate value not in. The Relation-
shipRoleCondition references a RelationshipRole to either select all entity instances in
this role, using the predicate value in, or to select all entity instances not in this role, using the

68 Chapter 6. Conceptual Design

predicate value not in. The class diagram is shown in Figure 6.9.

Figure 6.9: The Condition element

6.2 Defining a Mapping between the Web Application and the Web
Model

After the target data structure is defined the next step is to identify typical patterns in the web
application’s code and to find suitable patterns in WebML for them.

A challenging aspect of the source platform is that it is made up of two languages: PHP and
HTML. The model part of the source application is pure PHP whereas the view part mostly consists
of HTML but contains some PHP statement that are crucial for the functionality of the web appli-
cation. This raises a practical problem in the parsing process of the view: Two different parsers
written for two different grammars have to be combined. The approach discussed here is to merge
the important elements of the view templates into a third language: XML. This XML representation
can easily be mapped to a Java data structure using JAXB.

The model part of the application is pure PHP code that follows certain patterns specified by
the MVC framework. When parsing the model code it is suitable to put it into an intermediate Java
data structure that reflects those framework patterns. This model data structure and the view data
structure can be easily combined to form a data structure that represents the whole web application.
The final step is to transform this structure to a WebML model.

6.2.1 Identifying View Patterns

In this Section it is described how certain template patterns can be mapped to WebML elements
and how the corresponding intermediate XML representation looks like. The structure of the XML
format is depicted in Figure 6.10 and described in the paragraphs below. Elements are shown as
classes, element attributes are shown as class attributes.

6.2. Defining a Mapping between the Web Application and the Web Model 69

Figure 6.10: The XML data structure for view templates

One thing that most types of templates have in common is that they have a title element in
the HTML head section, containing the title of the web page. This can be directly mapped to the
name of a WebML Page and is used for all the patterns described below.

Pattern 1: Index Unit - Version 1

The first pattern to be considered can be found in the categories template presented in Code Snippet
14. The purpose of this template is to display a list of categories that were selected from the cate-
gory table. Each category is rendered inside a foreach loop, which is nested inside a form. For
each category, every attribute is printed out using an echo statement. There is also one input of
type radio per category. The type and the name attributes of the input have hardcoded values,
but the value attribute is dynamically set, using an echo statement. This is a common pattern to
represent a WebML IndexUnit.

The first element of interest is the form. The action is important to create a Link in the target
WebML model. The element is also directly mapped to the XML document. Inside the form
element there is a foreach loop and an input element. The input element in HTML has
a type, a name and a value attribute. A common pattern used with input elements is that
the type and the name attributes are hardcoded values, but the value of the value attribute is
dynamically printed, using an echo statement. Thus the HTML input is mapped to an input
element that only contains a name and a type attribute to take the hardcoded values. The value
attribute is mapped to a value element nested inside the input element. A value can either be

70 Chapter 6. Conceptual Design

a hardcoded value that is mapped to a literal element or an echo statement mapped to an echo
element.

The other element inside the form element is a foreach loop which is mapped to an iter-
ator element. The name of the array variable over which it is iterated in the loop is mapped to
the variable attribute, food categories in the example. The as attribute holds the name
of the iteration variable, which is category. The category variable itself is an array. Inside
the loop there are two echo statements, echoing the name and the id values of the category
variable. Each echo statement is mapped to an echo element. The variable name is mapped to the
variable attribute. In the case of an array value, the echo element has a nested array element
with an index attribute that holds the name or number of the array index. There is also an input of
type radio rendered for each category. The category’s id is echoed as the value of the input.
This is mapped to an echo element nested inside the value element. The XML representation of
the categories template is shown in Code Snippet 44.

1 <template>
2 <title>Categories</title>
3 <form method="get" action="/webshop/types">
4 <input type="submit" name="selectCategory">
5 <value>
6 <literal>Kategorie waehlen</literal>
7 </value>
8 </input>
9 <iterator variable="food_categories"

10 as="category">
11 <echo variable="category">
12 <array index="name"/>
13 </echo>
14 <echo variable="category">
15 <array index="id"/>
16 </echo>
17 <input type="radio" name="category_id">
18 <value>
19 <echo variable="category">
20 <array index="id"/>
21 </echo>
22 </value>
23 </input>
24 </iterator>
25 </form>
26 </template>

Code Snippet 44: The categories template XML representation

Pattern 2: Index Unit - Version 2

Pattern 2 is applied in the products template presented in Code Snippet 16. It is similar to pattern 1
as it also renders a list of elements that can be selected, but this time instead of using a form, a Link
is rendered for each element.

Again, the foreach loop is mapped to an iterator element and the echo statements in the

6.2. Defining a Mapping between the Web Application and the Web Model 71

HTML table row inside the loop are mapped to echo elements. The new and interesting part is the
HTML a element. Its href attribute contains the URL path to the target model class and query
string containing an echo statement. In order to be able to reasonably work with the information
provided, the URL has to be split into several components. The HTML a element is mapped to
an anchor element with a href attribute. Other than the href attribute of the a element, the
href attribute of the anchor only contains the URL path without the query string. The query
string starts after the ? character. It is a list of name-value pairs, separated by the & character.
Each name-value pair is mapped to an argument element. The name is mapped to to the nested
name element, the value is mapped to a value element. Finally the text contained in an a element
is mapped to the text element, nested inside anchor. The iterator element and its content is
outlined in Code Snippet 45.

1 <iterator variable="products" as="product">
2 <anchor href="/webshop/productDetails">
3 <text>Auswaehlen</text>
4 <queryArguments>
5 <argument>
6 <name>product</name>
7 <value>
8 <echo variable="product">
9 <array index="product_id"/>

10 </echo>
11 </value>
12 </argument>
13 </queryArguments>
14 </anchor>
15 <echo variable="product">
16 <array index="product_id"/>
17 </echo>
18 <!-- more echo elements follow here -->
19 </iterator>

Code Snippet 45: The products template XML representation

Pattern 3: Data Unit

Pattern 3 describes a set of echo statements that are not nested inside an iterator. This pattern is
used to render the content of a single table row in the database and can be found in the product details
template presented in Code Snippet 18 and in the summary template. In WebML it is represented
as a DataUnit. In the intermediate XML representation the echo statement might be mapped as
echo elements that are directly nested inside the template element or they might be mapped
as children of a form element. In the example the echo statements are all children of the form
element as shown in Code Snippet 46.

72 Chapter 6. Conceptual Design

Pattern 4: Multidata Unit

The pattern that describes a MultidataUnit is very similar to the IndexUnit. It consists of an iter-
ator with nested echo elements. The difference to the IndexUnit is that is neither nested inside a
form nor does it have any outgoing Links.

Pattern 5: Entry Unit

In a template a WebML EntryUnit is implemented as a HTML form containing input elements of
the type text. In the intermediate XML representation this is mapped to input elements that
have the type attribute set to text. This pattern is applied in the product details and the shipping
info template. The XML representation of the product details template is outlined in Code Snippet
46.

1 <form method="post"
2 action="/webshop/productDetails/addToCart">
3 <!-- echo elements follow here -->
4 <input type="text" name="amount">
5 <value>
6 <literal>0</literal>
7 </value>
8 </input>
9 <input type="hidden" name="product_id">

10 <value>
11 <echo variable="product">
12 <array index="product_id"/>
13 </echo>
14 </value>
15 </input>
16 <!-- another hidden field for the name follows here -->
17 <input type="submit" name="null">
18 <value>
19 <literal>In den Warenkorb</literal>
20 </value>
21 </input>
22 </form>

Code Snippet 46: The products template XML representation

6.2.2 Identifying Model Patterns

After having defined mappings between the view templates and the WebML ContentUnits the next
step is to define mappings between certain patterns found in the business logic of the model classes
and the WebML OperationUnits.

Pattern 1: Operation Module

The first thing to strike is that a public function in a model class is a self-contained block of opera-
tions that handles a request triggered by an event in the view or by another function. This matches

6.2. Defining a Mapping between the Web Application and the Web Model 73

quite well to the WebML concept of an OperationModule. In WebML models it is possible to
place OperationUnits either directly on a site view or inside OperationModules. As all the code that
makes the business logic has to be inside a model function, all the OperationModules to be reverse
engineered are always situated inside an OperationModule and never directly on a site view.

An OperationModule has incoming and outgoing Links that transfer certain parameters. The
parameters passed via incoming Links are gathered in an InputCollectorUnit that dispatches the
parameters to the OperationUnits inside the OperationModule. Parameters that should leave the
OperationModule are passed via OKLinks or KOLinks and can be gathered via OKCollectorUnits or
in KOCollectorUnits respectively. In the reverse engineering process it is assumed that all operations
terminate successfully so the KOCollectorUnit is not used.

The mapping of the source code to the InputCollectorUnit is straightforward. There is exactly
one InputCollectorUnit created for each function. Each parameter taken from the GET or from the
POST array is mapped to a parameter of the InputCollectorUnit. For the outgoing Links there is

exactly one OKCollectorUnit created per function. The outgoing parameters can be identified by
statements of the type $this->set(’somename’,$somevariable);. Those are the values
passe to the view template. The simplest example can be found in the default functions of the
shippingInfo and the processOrder classes as those functions are empty. In this case the
operation modul only contains the InputCollectorUnit and the OKCollectorUnit and no other Oper-
ationUnits. An OKLink generated that points from the InputCollectorUnit to the OKCollectorUnit.
This pattern is shown in Figure 6.11.

Figure 6.11: An OperationUnit with the default InputCollectorUnit and OKCollectorUnit

Pattern 2: Selector Unit without Input Parameters

One of the simplest patterns used in the example application can be found in the defaultmethod
of the categories class presented in Code Snippet 13. In the first line of the function an SQL
select statement that selects all entries in the category table is assigned to a variable. This state-
ment can be directly mapped to a SelectorUnit. A SelectorUnit has a reference to an Entity object
that can be mapped by analyzing the identifier in the FROM part of the query, which is category
in this case. In line two the statement is executed and in the while loop that follows the content of
the result is written food categories array. Finally the food categories array is passed
to the template under the name food categories. This represents a Link from the SelectorUnit
to the OKCollectorUnit. This time the parameter coupled is the primary key of the objects that
were selected, which is the id attribute in the example. The primary key attribute is used by the

74 Chapter 6. Conceptual Design

ContentUnits that were reverse engineered from the templates to determine which object or which
objects to display. The OperationModule that represents this example function is depicted in Figure
6.12.

Figure 6.12: A SelectorUnit without input parameters

Pattern 3: Selector Unit with Input Parameters

An extended version of pattern 2 can be found by analyzing the source code of the default
function in the types model class, presented in Code Snippet 15. Again, in the first line of the
function an SQL select statement is assigned to a variable but this time the query contains a WHERE
part. The whole WHERE clause is mapped to a Selector and each comparison operation between
column values in the WHERE clause is mapped to a Condition. Depending on the column that
is compared this could be either a RelationshipRoleCondition, a KeyCondition or an
AttributeCondition. In the example the value of the category id column is checked,
which is a foreign key attribute for the category table. Therefor the condition to be created is a
RelationshipRoleCondition. If the attribute to be evaluated would have been part of the
primary key the condition to be used would have been a KeyCondition. The third possibility is
that an attribute is evaluated, which is neither part of the primary key nor part of a foreign key. For
those cases the AttributeCondition is used.

The SQL statement is a prepared statement as it contains a ? character in the comparison opera-
tion with the category id column. In the next line the statement is transformed into a statement
object. In line three the category id is retrieved from the GET array, which is mapped to the
parameter category id of the InputCollectorUnit. In line four the statement is executed with
the category id. This is mapped to a Link between the OKCollectorUnit and the Se-
lectorUnit. The category id parameter is mapped to a LinkParameter of the Link
and coupled to the categories2types relationship role via a RelationshipRoleCondi-
tion.

Finally all the result rows are written into the food types array which is than passed to
the template under the name food types. Again this represents a Link from the SelectorUnit
to the OKCollectorUnit. This time the parameter coupled is the primary key of the objects that
were selected, which is the id attribute in the example. The primary key attribute is used by the
ContentUnits that were reverse engineered from the templates to determine which object or which
objects to display. OperationModule that represents this example function is depicted in Figure
6.13.

6.2. Defining a Mapping between the Web Application and the Web Model 75

Figure 6.13: A SelectorUnit with input parameters

Pattern 4: Two Selector Units

The default function of the summary class presented in Code Snippet 21 is an example for a
pattern with two SelectorUnits. The function contains two SQL select statements that are prepared
and executed. The first statement queries the shippingInfo table, the second statement queries
the cart table. Both queries compare the the session id field with the current session id.
Finally the query results are passed to the template. As the session id is not passed as a request
parameter there is no reasonable way to model it as WebML LinkParameter. The code is simply
mapped to two SelectorUnits. There is a Link created from the InputCollectorUnit to each
one of the two SelectorUnits and there is a OKLink created from each one of the SelectorUnits to
the OKCollectorUnit. The pattern is shown in Figure 6.14.

Figure 6.14: Two SelectorUnits

Pattern 5: Selector Unit, IsNotNullUnit, CreateUnit and ModifyUnit

The next pattern is a bit more complicated than the patterns before. It can be found in the ad-
dToCart function in the productDetails class, presented in Code Snippet 19 and in the add
function in the shippingInfo class. The mapping is described by means of the addToCart
function.

The first statement retrieves the current session id and stores it into the session id variable.
In line two, three and four, the values of the amount, name and product id parameters are
retrieved from the POST array and stored into equally named variables. Again these parameters
are mapped to parameters of the InputCollectorUnit. In line five an SQL select statement
is directly passed as a parameter to the prepare function. The SQL statement is mapped to
a SelectorUnit for the cart entity with a Selector. This time the Selector has two

76 Chapter 6. Conceptual Design

conditions. Both are comparisons with columns that are neither part of the primary key nor part
of a foreign key, so they are both mapped to an AttributeCondition. The mapping of the
correct variables to parameters of the prepared statement can be done by comparing the order of the
comparison operations in the SQL statement with the order of the variables passed to the array that
is the second argument for the execute function.

The query returns a single row, which is fetched in line seven and put into the row variable.
In an if statement it is checked whether the row already exists or not. This is mapped to an
IsNotNullUnit. A OKLink is created, that points from the SelectorUnit to the IsNot-
NullUnit.

The if part is executed when the row already exists. In this case an SQL update statement
is prepared and executed. The update statement is mapped to a ModifyUnit and an OKLink
from the IsNotNullUnit to the ModifyUnit. The Entity to be updated is taken from the
identifier after the UPDATE keyword. The WHERE part is mapped to a Selector in the same way
as it is done for the SelectorUnit. To map the values of a selector a TransportLink from
the SelectorUnit to the ModifyUnit is created and for each value a coupled parameter is
defined. For the values that are taken from the request a TransportLink from the InputCol-
lectorUnit to the UpdateUnit is created and the parameters are coupled to the Link.

The else part is executed when the row does not exist yet. In this case an SQL insert statement
is prepared and executed. The insert statement is mapped to a CreateUnit and a KOLink from
the IsNotNullUnit to the CreateUnit is created. The Entity is taken from the identifier
after the INSERT keyword. The parameters to be inserted are taken from the product id, the
name, the quantity, and the session id. The parameter that are taken from the request are
coupled to the TransportLink between the InputCollectorUnit and the CreateUnit.

There are no parameters passed to the template but the function returns a value instead. The
value determines the next navigation goal. This is needed later for mapping Links between Op-
erationModules. Finally there is an OKLink created between the CreateUnit and the OK-
CollectorUnit and one OKLink is created between the ModifyUnit and the OKCollec-
torUnit.The pattern is shown in Figure 6.15.

Pattern 6: Two Selector Units and two Create Units

There is one more pattern left that can be found in the example application. It is used in the pro-
cessOrder function of the summary class presented in Code Snippet 22 and is an extension
of pattern 4. Again the shippingInfo table and the cart table are queried. The results of
the query of the shippingInfo table is inserted into the order table. Then the cart table is
queried and in a while loop it is iterated over all the cart items. For each item an insert statement
into the order product table is executed using the same order id as for the insert into the
order table. Finally the function returns a Link to /webshop/processOrder. This pattern
is mapped to two SelectorUnits, one for the cart entity and one for the shipping info
entity. Then there are two CreateUntis created, one for the order entity and one for the or-
der product entity. An OKLink is is created that goes from the cart SelectorUnit to the
order product CreateUnit. Another OKLink is is created that goes from the shipping-
Info SelectorUnit to the order CreateUnit. The InputCollectorUnit has four
outgoing TransportLinks that go to the four Units. Finally there is an OKLink from each one

6.2. Defining a Mapping between the Web Application and the Web Model 77

Figure 6.15: A SelectorUnit, an IsNotNullUnit, a CreateUnit and a ModifyUnit

of the CreateUnits to the OKCollectorUnit. The pattern is shown in Figure 6.16.

6.2.3 Defining an intermediate Data Structure for the Web Application

After having identified the patterns used in the model and in the view of the web application the
next step is to define an intermediate data structure that helps implementing the transformation into
a WebML model. The goal is to define a data structure that represents the user provided functionality
of the web application in a structure that combines the platform and language elements of the MVC
framework and the corresponding elements of the WebML target language. This includes also the
template data structure presented in Subsection 6.2.1.

The whole web application is represented by the WebApp class. Each web application written
for the MVC framework consists of several model class - template pairs. To reflect this specification
the Template class presented in Subsection 6.2.1 is augmented with a property of type Model-
Class. A ModelClass represents a model class file of the MVC framework. The business logic
that makes up a model class is contained in its functions. So a Function class is introduced that
maps to a model class function and each ModelClass references a list of Function objects. To
build the bridge to WebML the data structure also needs references to WebML model elements. A
WebApp object references the DataModel of the web application, the SiteView and a Mod-
uleView object where the WebML elements are placed. A ModelClass object also references
the DataModel and a Template references a Page. Each function has a reference to an Op-
erationModule and a ModuleInstanceUnit. The reason for this is described in Chapter 8.
The class diagram of the data structure is shown in Figure 6.17.

78 Chapter 6. Conceptual Design

Figure 6.16: Two SelectorUnits and two CreateUnits

Figure 6.17: The intermediate data structure for describing the MVC application

6.2. Defining a Mapping between the Web Application and the Web Model 79

Tracing Variable Values

To be able to create Links between the OperationUnits and to set the parameter passed it is necessary
to trace the values of the variables used in the statements. For example in the default function
of the types class presented in Code Snippet 15, all statements except the while statement and
the last statement are assignments of values to variables. For the compilation process it is necessary
to subdivide the values in certain types. But other than typical data types used in many programming
language such as Integer or String, the types used here should reflect a different aspect that is related
to the domain of web applications. For example the first statement is an assignment of a String value.
But the interesting thing here is not that the value is a String but rather that the value represents an
SQL select query. The third statement on the other hand is an assignment of a value submitted with
a get request. For the transformation process, the actual String representation of the value is not
important, but it is necessary to know that this value is a request parameter called category id.

The Function class has to keep track of all variables and their values defined in the function.
Therefor a Variable class is created, that has a name property and a reference to an object of
type IValue. The IValue interface represents the value of a variable and is implemented by the
types AbstractStringValue, RequestParameterValue and QueryResultColumn-
Value.

The abstract class AbstractStringValue represents a string value and has a value prop-
erty to store the corresponding string. It is extended by SQLStatementValue which represents
a string that is a statement of the SQL data manipulation language. Any other string is considered as
a value of type ArbitraryStringValue. SQLStatementValue is also declared to be ab-
stract as it is further extended by the classes InsertValue, UpdateValue and QueryValue.
InsertValue represents an SQL insert statement, UpdateValue represents an SQL update
statement and QueryValue represents an SQL select statement.

The RequestParameterValue class represents a value passed via a get or a post request.
The QueryResultColumnValue class represents the value of a single field of a selected

table row.
Each Function object references a map with a String representing the variable name as

key and an IValue object as value. The class diagram in Figure 6.18 shows this structure.

Mapping the Selector Unit via the QueryValue Class

In the compilation process the QueryValue class is used as value object that helps to build a
SelectorUnit. The abstract SQLStatementValue class has a reference to the Entity object
that represents the table that is effected by the SQL statement. A QueryValue object references a
list of EntityAttribute objects that are selected, a Selector object and a SelectorUnit
object. The structure is shown in Figure 6.19.

Mapping the CreateUnit via the InsertValue Class

The InsertValue class is used for building a CreateUnit. The effected entity is inherited from
SQLStatementValue and the effected attributes are referenced in a list of EntityAttribute
objects. The structure is shown in Figure 6.20

80 Chapter 6. Conceptual Design

Figure 6.18: The Function class and its Variable map

Figure 6.19: The QueryValue class

Figure 6.20: The InsertValue class

6.2. Defining a Mapping between the Web Application and the Web Model 81

Mapping the Modify Unit to the UpdateValue Class

The ModifyUnit is represented by the UpdateValue class. Again the effected entity is inherited
from SQLStatementValue and the attributes to be updated are referenced in a list of Entity-
Attribute objects. The UpdateValue also has a reference to a Selector. The structure is
shown in Figure 6.21.

Figure 6.21: The UpdateValue class

Chapter 7

Ingredients for the Implementation

In this Chapter the ingredients for the automatic transformation steps in the reverse engineering
process are presented. This requires the understanding of the basic principles of how a compiler
works, the writing of a parser for the source code and the building of an abstract syntax tree.

7.1 Introduction on how a Compiler works

The major work of a compiler can be subdivided into three major phases:

1. Lexical analysis

2. Syntactic analysis

3. Code generation or execution

7.1.1 The lexical Analysis Phase

In the lexical analysis phase, which is performed by the scanner, the source code is split into atomic
pieces called tokens. Examples for tokens are keywords, numbers, strings or operators. Nontokens,
e.g. whitespaces, are character sequences that are ignored but that are often used to separate tokens.

7.1.2 The syntactic Analysis Phase

The parser is responsible for the syntactical analysis phase. It is checked whether the source code
is syntactical correct meaning that it conforms to the grammar of the source language. The input is
transformed into a syntax tree representation. If a grammar rule is violated the parser raises a syntax
error.

The grammar of a programming language can be specified unambiguously with the Extended
Backus-Naur-Form (EBNF) notation. An overview of how EBNF works is given by M. Garshol
[15]. In the EBNF the atomic elements of a text are called terminal symbols. A production rule
assigns a sequence of terminal symbols to a non terminal via the = operator. The non terminal
is written on the left side of the =. The symbols on the right side can be either terminal symbols

83

84 Chapter 7. Ingredients for the Implementation

that are enclosed by quotation marks or non terminals that can be further evaluated via another
production rule. The | operator represents alternatives. Symbols can be grouped to compound
expressions by putting them into parentheses. An expression may have the quantifiers + or
?. + means that the expression must occur at least once or that it might occur several times. ?
means that the expression might occur zero or several times. An expression inside square brackets
is optional. Code Snippet 47 describes a language to specify the basic arithmetic expressions in
EBNF.

1 expr = number | expr ’+’ expr | expr ’-’ expr |
2 expr ’*’ expr | expr ’/’ expr | ’(’ expr ’)’ | ’-’ expr
3 number = digit+ (’.’ digit+)?
4 digit =
5 ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

Code Snippet 47: The basic arithmetic expressions described in EBNF (Source: [12])

The example defines three production rules: expr, number and digit. An expr can be
a number, two exprs connected with an infix operator, an expr enclosed by parentheses or an
expr preceded by a negation operator. A number has to consist of at least one digit and can be
followed by a decimal point and one or more digits. A digit is one of the decimal digit symbols.

7.1.3 The Code Generation or Execution Phase

After the syntactic analysis phase is finished an internal representation of the program exists. The
compiler can now generate the code that conforms to the target language or, in case of interpreters,
execute the internal representation directly.

7.2 Working with JavaCC

The Java Compiler Compiler (JavaCC) [34] is a popular parser/scanner generator for Java that en-
ables the writing of compilers or interpreters. A compiler performs a transformation from a program
written in a source language into a semantically equivalent program in a target language. O. Ensel-
ing [12] gives a good overview on how to write a compiler with JavaCC.

JavaCC allows the programmer to define grammars in a way similar to EBNF mixed with lan-
guage elements of the Java programming language. Code Snippet 48 is an example of how to write
a simple calculator program with JavaCC. A JavaCC grammar file has the file extension jj.

The options section at the beginning contains different configuration options for the grammar.
In this example the LOOKAHEAD option is set to 2, telling the parser to always look ahead two
tokens further in the input stream. This is necessary if the choice which rule to evaluate next is not
clear to the parse by only considering the next token.

The block between PARSER BEGIN and PARSER END contains the definition of the parser
class which is called Calculator in this example. The parser class contains a main method to
initiate the parsing process by creating an instance of the parser class. The argument passed to the
constructor must be an InputStream. By passing System.in the parser takes its input from

7.2. Working with JavaCC 85

1 options{LOOKAHEAD=2;}
2 PARSER_BEGIN(Calculator)
3 public class Calculator {
4 public static void main(String args[])
5 throws ParseException {
6 Calculator parser = new Calculator(System.in);
7 while (true){ parser.parseOneLine(); }
8 }
9 }

10 PARSER_END(Calculator)
11 SKIP : { " " | "\r" | "\t" }
12 TOKEN:
13 { < NUMBER: (<DIGIT>)+ ("." (<DIGIT>)+)? >
14 | < DIGIT: ["0"-"9"] > | < EOL: "\n" > }
15 void parseOneLine():
16 { double a; }
17 { a=expr() <EOL> { System.out.println(a); }
18 | <EOL> | <EOF> { System.exit(-1); } }
19 double expr(): { double a; double b; }{
20 a=term()
21 ("+" b=expr() { a += b; }
22 | "-" b=expr() { a -= b; })*
23 { return a; }
24 }
25 double term(): {double a; double b;}{
26 a=unary()
27 ("*" b=term() { a *= b; }
28 | "/" b=term() { a /= b; })*
29 { return a; }
30 }
31 double unary():{double a;}{
32 "-" a=element() { return -a; }
33 | a=element() { return a; }
34 }
35 double element():{Token t; double a;}{
36 t=<NUMBER> {return Double.parseDouble(t.toString());}
37 | "(" a=expr() ")" {return a;}
38 }

Code Snippet 48: A simple calculator written in JavaCC [12]

86 Chapter 7. Ingredients for the Implementation

the command line. All the Java code needed for the scanning and the parsing process is generated
out of the grammar definition that follows

The SKIP section contains all nontokens that should be ignored by the parser which are whites-
paces in this case. The TOKEN section contains the tokens of the language which are digits and
numbers, as well as the end of line character.

The rest of the file contains the production rules. There are more production rules in Code
Snippet 48 then in the EBNF grammar in Code Snippet 47. This is because the grammar in Code
Snippet 47 is ambiguous. For instance the expression 1+2*3 could be either matched as expr*3
or as 1+expr. As JavaCC grammars have to be unambiguous the expr rule is split into four rules
called expr, term, unary, and element.

All the production rules are transformed into methods of the parser class by JavaCC. Therefore
production rules have return values and might also have parameters. They can also contain Java
arbitrary statements. All Java statements have to be written inside curly braces. All variables used
have to be declared inside the curly braces coming after the colon.

The first production rule is called parseOneLine. It matches three possible input sequences:

1. An expr followed by an end of line character. In this case the return value of expr is stored
into the variable a and its value is written to System.out.

2. An empty line. In this case nothing happens.

3. An end of file character. In this case the program terminates.

The calculation of the expressions is directly performed inside the production rules.

7.2.1 Lexical States

The lexical analysis phase in JavaCC is done by the token manager. The lexical specification of
JavaCC is organized into lexical states and the token manager is in one lexical state at any moment.
Each lexical state has a name and defines different tokens with different regular expressions. There
is a standard lexical state called DEFAULT and the token manager is initially in this state. After
consuming a token the token manager might be switched to another state. The benefit of different
lexical states is that special parts in a source document that follow different grammar rules than
the rest of the document can be handled differently. A good example for the use of lexical states
are comments inside program code. Comments usually contain arbitrary text, that does not have
to match to any specific grammar rules. In Java and PHP a block comment is everything between
the characters /* and */. A lexical state called COMMENT could be defined. If the token manager
consumes the token /* it switches to from the DEFAULT lexical state to the COMMENT state. In
this state it matches any text that does not contain the character sequence /* or */ as one token.
If it consumes the token */ it switches back to the DEFAULT state. A detailed description about
lexical states and the token manager can be found in the TokenManager MiniTutorial on the JavaCC
website [36].

7.3. Working with JJTree 87

7.3 Working with JJTree

In the example presented in Subsection 7.1 any input sequence is directly interpreted during the
parsing process. Very often it is necessary to build an abstract syntax tree (AST) first and then
generate the target data structure out of it. In JavaCC this is supported via JJTree [35].

7.3.1 Building an Abstract Syntax Tree

JJTree works as a pre-processor for the actual JavaCC processor. The grammar file is written as
usual but put into a file with the extension jjt. This file is passed to the JJTree preprocessor,
which produces a JavaCC file, enhanced with the code to build a syntax tree. For each non terminal
symbol an instance of the class SimpleNode is created by default when parsing the source code.
The result is an object tree reflecting the structure of the parsed document, but this tree does not
contain any information about the actual values that where parsed.

To get a useful tree structure it is necessary to have custom node objects. JJTree is able to
generate and use the necessary classes automatically by enhancing the production rules with the
class name to be generated. Furthermore the option MULTI in the options block has to be set to
true. For example in Code Snippet 49 the #ColumnDeclaration part triggers the generation
of a ASTColumnDeclaration class that extends from SimpleNode. The prefix AST can be
changed via an option. Often it is not necessary to create a node in the AST for every production
rule. To avoid the creation of an AST object for production rules that do not declare a custom AST
class the option NODE DEFAULT VOID has to be set to true.

1 void ColumnDeclaration() #ColumnDeclaration : {Token t;}{
2 t = <NAME> {jjtThis.setColumnName(t.image);}
3 }

Code Snippet 49: A production rule that defines a custom class for the AST

The generated class can no be supplemented with custom methods and properties as shown in
Code Snippet 50.

1 public class ASTColumnDeclaration extends SimpleNode {
2 ...
3 private String columnName;
4 public String getColumnName() {
5 return columnName;
6 }
7 public void setColumnName(String columnName) {
8 this.columnName = columnName;
9 }

10 }

Code Snippet 50: A production rule that defines a custom class for the AST

The production rule in Code Snippet 49 declares the variable t of the type Token. The line t =

88 Chapter 7. Ingredients for the Implementation

<NAME> assigns the actual value of the token <NAME> to t. The string representation of the token is
retrieved via t.image. The jjtThis variable references the current node object, ASTColumn-
Declaration in this case. So the statement jjtThis.setColumnName(t.image); stores
the value of the current token in the current node object.

7.3.2 The Visitor Pattern

Although it would be possible to use the node objects directly to create the target data structure, this
option often comes with some drawbacks:

• Very often it is quite complex to write the grammar in a way that it is very similar to the target
data structure.

• Changes in the target data structure influence the grammar.

• The syntax tree should be as lightweight as possible to speed up the parsing process.

Another problem is that the objects in the syntax tree are of different types. For instance a node
object representing a column in a database table definition might have a DataType property and a
corresponding getDataType method. Another node object representing a database table does not
have a DataType property but might have a TableName property. When traversing the syntax
tree it would be necessary to cast the objects to their actual type before being able to call their
special methods, which is not a good programming style.

A solution to this problem is to apply the visitor pattern presented by Gamma et al. [14]. First
of all each class used in the syntax tree needs an accept method that takes an object of a visitor
class as an argument. This visitor class has to contain a visit method to which the visited object
passes itself as an argument. JJTree supports the visitor pattern. To generate the required classes
automatically the VISITOR option in the options block has to be set to true. This triggers the
JJTree pre-processor to add the method jjtAccept to the SimpleNode class and to generate an
interface for the visitor called <NameOfTheParser>Visitor. This interface declares a visit
method for each node class. An example is given in Code Snippet 51.

1 public interface DDLVisitor {
2 public Object visit(SimpleNode node, Object data);
3 public Object visit(DDLTable node, Object data);
4 public Object visit(DDLColumnDeclaration node, Object data);
5 ...
6 }

Code Snippet 51: A visitor interface

It is good practice to create an abstract class that provides a default implementation of all visit
methods by returning null. The next step is to implement one or more concrete visitor classes that
perform the actual compiler work. The AST has to be traversed recursively and for each node the
jjtAccept method has to be called. A comprehensive example of how to apply the visitor pattern
is given in Subsection 8.1.3.

Chapter 8

Implementation

In this Chapter the implementation of the reverse engineering program is presented. The program
is able to recognize certain patterns in a web application written for the MVC framework described
in Section 4.1 and to transform them into a WebML model. It utilizes the technologies and libraries
presented so far. The whole transformation process is implemented within one program. The tasks
performed by this program can be roughly divided into four steps.

1. Loading the source artifacts.

2. Building a WebML Data Model using the source artifacts.

3. Building a WebML Web Model using the Data Model and the source artifacts.

4. Putting together the Data Model and the Web Model into a WebML Web Project and serialize
it to XML.

Those steps are initialized from the main method of a class called PHP2WebML.
Step one is the creation of an in-memory representation of the web application’s file system

structure, together with the sql dump file that contains the create table statements for the
database of the MVC application and the XML file containing the relationship mappings for the
database tables as described in Subsection 8.1.2). This is done in a helper class, which is us-
ing a modified version of the algorithm to create an in memory file system tree presented in an
article on the Java Boutique website [18]. The helper class has a build method that takes a
java.io.File object [37] representing the root directory with the source artifacts. The method
recursively traverses all the directories and files contained in the root directory and returns a tree of
FS Directory and FS File objects. Those objects provide methods to access meta information
and the content of each directory or file in the file system tree.

Step two is the creation of the Data Model out of the sql dump. This is done in the compile
method of a class called DDLCompiler. How the DDLCompiler is implemented is described in
section 8.1.

Step three is to create the Web Model using the Data Model together with the model and view
files of the MVC application. This is done in the compile method of a class called PHPCom-
piler. How the PHPCompiler is implemented is described in section 8.2.

89

90 Chapter 8. Implementation

Step four is to put together the Data Model and the Web Model into a WebML Web Project and
serialize it to XML, which is described at the end of section 8.2.

8.1 Transforming the Database Schema into a WebML Data Model

The Data Model is the base for a WebML model and it can be reverse engineered quite easily out
of the database schema of the web application. Three steps are necessary to transform the MySQL
dump file with the table create statements of the web application into a WebML Data Model:

1. Writing a grammar file for JJTree and enhance the generated node classes with custom prop-
erties.

2. Providing additional information about the relationships between the tables. This is necessary
as no foreign key constraints are used in the example application.

3. Traversing the AST created by JJTree and compiling the data into the target data structure.

8.1.1 A Grammar for Create Table Statements

As the database technology of choice is MySQL a grammar of the MySQL data definition language
(DDL) is necessary. For the example it sufficient to provide a grammar that supports the syntax of
the create table statement as described in the MySQL Reference Manual [39]. The compiler for
the Data Model is using JavaCC and JJTree. First of all a JJTree file called DDL2WebML.jtt is
created.

The prefix for the node classes generated by JJTree are is set to DDL via the line NODE PREFIX
= "DDL"; in the options section. The next thing of interest are the tokens used in the grammar.
As there are quite a lot of them only some of the most common ones are listed in Code Snippet 52.

1 SKIP : { " " | "\n" | "\r" | "\r\n" }
2 TOKEN : {
3 <CREATE: "CREATE"> | <TEMPORARY: "TEMPORARY">
4 | <TABLE: "TABLE"> | <IF_NOT_EXISTS: "IF NOT EXISTS">
5 | <BIT: "BIT"> // more MySQL datatypes follow here
6 | <USING: "USING"> | <ENGINE: "ENGINE">
7 | <SEMCOL: ";"> | <CONSTRAINT: "CONSTRAINT">
8 | <NOT_NULL: "NOT NULL"> | <NULL: "NULL">
9 | <DFLT: "DEFAULT">| <AUTO_INCREMENT: "AUTO_INCREMENT">

10 | <UNIQUE: "UNIQUE"> | <PRIMARY: "PRIMARY">
11 | <KEY: "KEY"> | <FOREIGN_KEY: "FOREIGN KEY">
12 | <REFERENCES: "REFERENCES"> | <CASCADE: "CASCADE">
13 | <LB: "("> | <RB: ")"> | <COMMA: ",">
14 | <DIGITS: (["0"-"9"])+ >
15 | <NAME : (["0"-"9","a"-"z","A"-"Z","-","_","\"","’","‘"])+ >
16 | <STRING : (˜[])>
17 }

Code Snippet 52: The Tokens used in DDL2WebML.jtt

8.1. Transforming the Database Schema into a WebML Data Model 91

The first production rule is Start() which consists of zero or more
CreateTable() statements followed by an end of file character. It returns an object of DDL-
Start which has been generated by JJTree and which is used by the compiler as a starting point
for processing the tree. The two production rules are shown in Code Snippet 53.

1 DDLStart Start() #Start : {}{
2 (CreateTable())* <EOF> { return jjtThis; }
3 }
4 void CreateTable() #Table : {Token t;}{
5 <CREATE> (<TEMPORARY>)? <TABLE> (<IF_NOT_EXISTS>)? t=<NAME>
6 {jjtThis.setName(t.image.replace("‘",""));}
7 <LB>CreateDefinition()(<COMMA>CreateDefinition())*<RB>
8 (TableOption())* (<SEMCOL>)?
9 }

Code Snippet 53: The Start and the CreateTable production rules

The only token of interest for the reverse engineering process in the
CreateTable() production rule is the name of the table. The DDLTable class which is gener-
ated by JJTree is enhanced with a name property. The value of the <NAME> token is stored in each
DDLTable via the line
jjtThis.setName(t.image.replace("‘",""));. The string replace method which re-
moves all occurrences of ‘ is called because the MySQL Dump tool adds the ‘ around all character
values but they are not part of the actual name.

The table name has to be followed by one or more create definitions which have to be sepa-
rated by commas. All create definitions have to be between an opening an a closing brace. The
CreateDefinition() is shown in Code Snippet 54.

1 void CreateDefinition(): {}{
2 ColumnDeclaration() | LOOKAHEAD(2) PrimaryKeyConstraint()
3 | IndexDeclaration() | LOOKAHEAD(2) UniqueConstraint()
4 | SpatialOrFulltextDeclaration() | ForeignKeyConstraint()
5 | CheckExpression()
6 }

Code Snippet 54: The CreateDefinition production rules

A CreateDefinition contains a choice of production rules which are either ColumnDec-
laration, PrimaryKeyConstraint, IndexDeclaration,
UniqueConstraint, SpatialOrFulltextDeclaration, ForeignKeyConstraint
or CheckExpression. The most important production rule is ColumnDeclaration()which
is outlined in Code Snippet 55.

A ColumnDeclaration consists of the column name, represented by the <NAME> token,
a data type and several keywords to further specify the properties of the column (such as if the
column is nullable, if its value is auto-incremented etc.) but those specifiers are not important
for the reverse engineering process. The DDLColumnDeclaration class is enhanced with a

92 Chapter 8. Implementation

1 void ColumnDeclaration() #ColumnDeclaration : {Token t;}{
2 t = <NAME>
3 {jjtThis.setColumnName(t.image.replace("‘",""));}
4 DataType() (<NOT_NULL> | <NULL>)?
5 // more keyword tokens follow here
6 }

Code Snippet 55: The ColumnDeclaration production rule

columnName property and set to the value of the current column name. Again, all ‘ characters are
removed first. The next production rule of interest is DataType() which represents the MySQL
data type declaration of the column. The production rule simply contains a choice of tokens rep-
resenting the data types. The value of the token matched is stored in the dataType property of a
DDLDataType object.

Returning to the ColumnDeclaration() production rule the next production rule in the
choice after ColumnDeclaration() is PrimaryKeyConstraint(). A primary key con-
straint has to contain the keywords primary key followed by an optional IndexType which
is not important for the reverse engineering process. It is followed by a comma separated list of
type IndexColumnName(). The IndexColumnName() production rule represents a column
that is part of the primary key and it returns the value of the column name. The DDLPrima-
ryKeyConstraint class maintains a list of all columns that are part of the primary key and
the String returned by the IndexColumnName() production rule is added to this list. The In-
dexOption() and the IndexType() are not relevant for the reverse engineering process. The
PrimaryKeyConstraint() and the IndexColumnName() production rules shown in Code
Snippet 56.

1 void PrimaryKeyConstraint() #PrimaryKeyConstraint :
2 {String key;}{
3 (<CONSTRAINT> (<STRING>)?)? <PRIMARY> <KEY> (IndexType())?
4 <LB>key = IndexColumnName(){jjtThis.getKeys().add(key);}
5 (<COMMA>key = IndexColumnName(){jjtThis.getKeys().add(key);})*
6 <RB> (IndexOption())*
7 }
8
9 String IndexColumnName(): {Token t;}{

10 t = <NAME> (<LB><DIGITS><RB>)? (<ASC> | <DESC>)?
11 {return t.image.replace("‘","");}
12 }

Code Snippet 56: The PrimaryKeyConstraint production rule

Finally it is important to know, how the developer provided part of the parser class looks like.
The class is called DDL2WebML and it contains a compile that takes and InputStream as
an argument which is used to build the AST. The section containing the parser class definition is
outlined in Code Snippet 57.

8.1. Transforming the Database Schema into a WebML Data Model 93

1 PARSER_BEGIN(DDL2WebML)
2 // package declaration and import statements follow here
3 public class DDL2WebML {
4 public static DDLStart compile(InputStream in) throws ParseException {
5 DDL2WebML p = new DDL2WebML(new DataInputStream(in)) ;
6 return p.Start();
7 }
8 }
9 PARSER_END(DDL2WebML)

Code Snippet 57: The PrimaryKeyConstraint production rule

8.1.2 Defining the Relationships between the Tables

One way to reverse engineer the relationships between the table would be to analyze the foreign
key constraints defined in the create table statements. But in the example application there are no
foreign key constraints defined. Therefore the user has to provide this information. This is done via
a very simple XML format.

The root element of this XML format is the references element. It contains an arbitrary
number of reference elements, each one representing the relationship between two tables. A
reference element has the following child elements in any order:

• sourceTable contains the name of the table, which represents the source end of the rela-
tionship.

• targetTable contains the name of the table, which represents the target end of the rela-
tionship.

• sourceToTargetCardinality represents the cardinality at the target side of the rela-
tionship. The element value has to be either 1 or N.

• targetToSourceCardinality represents the cardinality at the source side of the rela-
tionship. The element value has to be either 1 or N.

• targetJoinColumn contains the name of a column in the target table which is part of the
foreign key in this relationship.

To define all references in the database schema of the example application, four reference
elements for the following references are necessary: category to type, type to product,
product to orer product and orer product to order. The relationship definition be-
tween the type and the product table is shown in Code Snippet 58. The XML document is
stored in a file called relationships.xml.

The file containing the references XML document can be simply mapped to objects of the two
classes References and Reference using JAXB. The References class is shown in Code
Snippet 59 and the Reference class is outlined in Code Snippet 60.

94 Chapter 8. Implementation

1 <reference>
2 <sourceTable>type</sourceTable>
3 <sourceToTargetCardinality>N</sourceToTargetCardinality>
4 <targetTable>product</targetTable>
5 <targetToSourceCardinality>1</targetToSourceCardinality>
6 <targetJoinColumn>type_id</targetJoinColumn>
7 </reference>

Code Snippet 58: Defining a relationship between the type and the product table

1 @XmlRootElement(name = "references")
2 @XmlAccessorType(XmlAccessType.PROPERTY)
3 public class References {
4 private List<Reference> references = new ArrayList<Reference>();
5 @XmlElement(name = "reference")
6 public List<Reference> getReferences() {
7 return references;
8 }
9 public void setRelationships(List<Reference> references) {

10 this.references = references;
11 }
12 }

Code Snippet 59: The References class with JAXB annotations

1 @XmlAccessorType(XmlAccessType.PROPERTY)
2 @XmlRootElement
3 public class Reference {
4 private String sourceTable;
5 private String targetTable;
6 private String sourceToTargetCardinality;
7 private String targetToSourceCardinality;
8 private String targetJoinColumn;
9 // getters and setters follow here

10 }

Code Snippet 60: The References class with JAXB annotations

8.1. Transforming the Database Schema into a WebML Data Model 95

8.1.3 Implementing the Compiler

The next step is to write a compiler that takes the JJTree parser, the MySQL dump file and the
user provided XML file defining the relationships in the database schema and transforms it into
a WebML Data Model. This is done in the DDLCompiler class. The class has a public static
compile method that takes an InputStream providing the MySQL Dump file as an argument.
As shown in Code Snippet 61, first of all the InputStream object is passed to the static compile
method of the DDL2WebML parser class that has been presented in Code Snippet 57. The method
returns a DDLStart object which is the root of the AST representing the create table statements.
Then a new DDLVisitor is created and passed to the traverseNodes method together with
the AST. The traverseNodes method recursively goes through all the levels of the AST and
calls the jjtAccept method with the visitor as an argument on each node, as shown in Code
Snippet 62. The implementation of DDLVisitor is described below.

1 public static DataModel compile(InputStream in)
2 throws ParseException, JAXBException, FileNotFoundException{
3 DDLStart dataModelAST = DDL2WebML.compile(in);
4 DDLVisitor visitor = new DDLVisitor();
5 traverseNodes(dataModelAST, visitor);
6 \\...

Code Snippet 61: The DDLCompiler

1 private static void traverseNodes(SimpleNode node, DDLVisitor visitor) {
2 for(int i=0;i<node.jjtGetNumChildren();i++) {
3 SimpleNode sn = (SimpleNode)node.jjtGetChild(i);
4 sn.jjtAccept(visitor, null);
5 traverseNodes(sn, visitor);
6 }
7 }

Code Snippet 62: The traverseNodes method

The DDLVisitor

To extract the interesting information out of the AST, the visitor pattern, presented in Subsection
7.3.2, is applied. The visitor class is called DDLVisitor and it extends AbstractDDLVisi-
tor. The AbstractDDLVisitor provides default implementations of all visit methods that
simply return null.

As shown in Code Snippet 63, the DDLVisitor contains a static map that maps the MySQL
data types to WebML data types. The keys of the map are the names of the MySQL data types as
String and the value of the map is an enum called DataType. This enum contains all WebML
data types annotated with the JAXB annotation @XmlEnumValue. This annotation takes a String
as an argument, whose value is later used to marshall the WebML data types to XML.

96 Chapter 8. Implementation

The DDLVisitor contains a list of all Entities that were created when parsing the AST.
The currentEntity property references the last Entity created and the currentEntity-
Attribute references the last EntityAttribute created.

1 public class DDLVisitor extends AbstractDDLVisitor {
2 private static final Map<String, DataType> TYPES_MYSQL_2_FRAMEWORK;
3 static {
4 TYPES_MYSQL_2_FRAMEWORK = new HashMap<String, DataType>();
5 TYPES_MYSQL_2_FRAMEWORK.put("BIT", DataType.INTEGER);
6 // More data type mapping follow here
7 }
8 private List<Entity> entities = new ArrayList<Entity>();
9 private Entity currentEntity;

10 private EntityAttribute currentEntityAttribute;
11 \\ visit methods follow here

Code Snippet 63: The DDLVisitor

The next step is to implement the visit methods for each node type. This is shown in Code
Snippet 64. The first node type of interest in the AST is DDLTable. A create table statement can
be directly mapped to a WebML entity, so a new Entity is created. The constructor takes the
entity name as an argument which is the name of the table. The currentEntity reference is set
to the newly created instance and the duration of the Entity is set to persistent. Finally the entity
is added to the entities list.

The next level in the node hierarchy are the DDLColumnDeclaration nodes. They can be
directly mapped to a WebML EntityAttribute, so a new instance of EntityAtribute is
created and the column name is used as the name of the attribute. The currentEntityAt-
tribute reference is set and the attribute is added to the attributes list of the current entity.

The visitmethod for DDLDataType nodes is used to set the WebML data type of the current
EntityAttribute. The correct WebML type for the MySQL datatype is retrieved from the map
defined earlier.

Finally the EntityAttributes that are part of the primary key have to be marked. There-
fore the visit method for DDLPrimaryKeyConstraint nodes is used. It is iterated over all
the column names that are part of the primary key and the names are compared with the names of
the EntityAttributes created. If the name is the same, the key property of the EntityAt-
tribute is set to true.

Setting the Relationships

After traversing the AST the list of Entity objects is fully initialized and can be retrieved from the
visitor by calling getEntities. A new DataModel instance is created and the Entities are
set in the compile method. What is missing now is to set the relationships between the Entities.
Therefore the user provided relationships.xml has to be unmarshalled into a Java object
representation. This is shown in Code Snippet 65.

An empty list of Relationship objects is created and it is iterated over all Reference
objects, as shown in Code Snippet 66. Inside the loop for each Reference a corresponding

8.1. Transforming the Database Schema into a WebML Data Model 97

1 public Object visit(DDLTable node, Object data) {
2 currentEntity = new Entity(node.getName());
3 currentEntity.setDuration(Duration.PERSISTENT);
4 entities.add(currentEntity);
5 return null;
6 }
7 public Object visit(DDLColumnDeclaration node, Object data) {
8 currentEntityAttribute = new EntityAttribute(node.getColumnName());
9 currentEntity.getAttributes().add(currentEntityAttribute);

10 return null;
11 }
12 public Object visit(DDLPrimaryKeyConstraint node, Object data) {
13 for(String key : node.getKeys()){
14 for(EntityAttribute a : currentEntity.getAttributes()){
15 if(a.getName().equalsIgnoreCase(key)){a.setKey(true);}
16 }}
17 return null;
18 }
19 public Object visit(DDLDataType node, Object data) {
20 currentEntityAttribute.setType(TYPES_MYSQL_2_FRAMEWORK.get(
21 node.getDataType()));
22 return null;
23 }

Code Snippet 64: The DDLVisitor

1 DataModel dataModel = new DataModel();
2 dataModel.setEntities(visitor.getEntities());
3 JAXBContext context = JAXBContext.newInstance(References.class);
4 Unmarshaller u = context.createUnmarshaller();
5 References references = (References) u.unmarshall(
6 new FileReader("webapp/relationships.xml"));

Code Snippet 65: Setting the entities and unmarshalling the relationships.xml file

98 Chapter 8. Implementation

Relationship is created. The getEntityByName method is a convenience method of the
DataModel to find an entity by its name. The Relationship is initialized with the source and
the target entity in the constructor.

1 List<Relationship> relationships = new ArrayList<Relationship>();
2 for(Reference reference : references.getReferences()){
3 Entity source = dataModel.getEntityByName(reference.getSourceTable());
4 Entity target = dataModel.getEntityByName(reference.getTargetTable());
5 Relationship relationship = new Relationship(source,target);
6 relationship.setName(source.getName() + "_" + target.getName());
7 \\...

Code Snippet 66: Creating the relationships between the entities

A Relationship has two RelationshipRoles that store the cardinality for each end of
the Relationship, as shown in Code Snippet 67. relationShipRole1 represents the end
of the source entity, relationShipRole2 represents the end of the target entity.

1 // Creating the relationship role 1 (rr1)
2 RelationshipRole rr1 = new RelationshipRole();
3 if(reference.getSourceToTargetCardinality().equals("1")){
4 rr1.setMaxCard(Cardinality.ONE);
5 } else {
6 rr1.setMaxCard(Cardinality.MANY);
7 }
8 rr1.setName(source.getName() + "2" + target.getName());
9 // the same for relationship role 2 (rr2)

10 relationship.setRelationShipRole1(rr1);
11 relationship.setRelationShipRole2(rr2);

Code Snippet 67: Creating the relationships between the entities

Finally the targetJoinColumn is set on the Relationship, which represents the foreign
key in the target Entity, as shown in Code Snippet 68. This is not a part of the DataModel,
but it is needed later in the reverse engineering process. Therefore this property is annotated with
@XmlTransient. The getEntityAttributeByName of the Entity class is a convenience
method to find an EntityAttribute by its name.

8.2 Implementing the PHP to WebML Compiler

After the DDLCompiler has finished its work the next step is to create the Web Model. This is
done in a class called PHPCompiler. In this Section the implementation of this class and other
classes used by PHPCompiler is explained. The PHPCompiler has a static compile Method
that takes an FS Directory object containing the file system tree of the web application and
a DataModel object that has been reverse engineered before as arguments. In the compilation
process a WebApp object is created and manipulated several times until it finally contains the data
necessary to create the target WebML model. The compile method performs the following steps:

8.2. Implementing the PHP to WebML Compiler 99

1 //...
2 EntityAttribute ea = target.getEntityAttributeByName(
3 reference.getTargetJoinColumn());
4 if(ea != null){relationship.setTargetJoinColumn(ea);}
5 relationships.add(relationship);
6 }
7 dataModel.setRelationships(relationships);
8 return dataModel;

Code Snippet 68: Creating the relationships between the entities

1. Step one is the reverse engineering of the OperationUnits, which are encapsulated inside
OperationModules.This is done by the createOperationModules method, which is re-
sponsible for preparing the sources, for creating the intermediate data structure and for doing
the transformation of the model code to WebML operation modules. The method takes the
FS Directory object and the DataModel passed to the compile method as arguments
and returns a WebApp object.

2. Step two is the creation of the Pages and their nested ContentUnits. This is done by the cre-
atePages method, which transforms the Template objects created before into a WebML
site view with Pages. The method takes a WebApp object as an argument.

3. Step three is the creation of the Links between the Pages and the ModuleInstanceUnits. This
is done by the createLinksFromPages method. The method takes a WebApp object as
an argument.

4. Step four is the creation of the Links between the ModuleInstanceUnits and the Pages or other
ModuleInstanceUnits respectively. This is done by the createLinksFromOperation-
Modules method. The method takes a WebApp object as an argument.

5. The final step is to put the data collected by the WebApp object into a WebML WebModel
object which is returned by the compile method.

8.2.1 Building the AST

The first step in the process is to get an AST of the PHP source code. Therefore a JavaCC grammar
file is used which can be found in the grammar repository on the JavaCC website [41]. The grammar
file does not create an AST so it has to be transformed into a JJTree file first. This file is quite long
as it covers almost all of the PHP language elements, so only the parts relevant for the reverse
engineering process are discussed in this thesis.

The parser class PHPParser has a static buildAST method that takes an InputStream as an
argument an returns a PHPStartObject, which is the source of the AST. The source code is shown
in Code Snippet 69. The DEFAULT lexical state is used for parsing PHP code but there is also a
state for parsing HTML called HTML STATE. As templates usually start with HTML code, it is ini-
tially switched to the HTML STATE by calling parser.token source.SwitchTo(HTML-
STATE);.

100 Chapter 8. Implementation

1 public class PHPParser {
2 private static PHPParser parser;
3 public static PHPStart buildAST(InputStream in)
4 throws ParseException {
5 parser = new PHPParser(in);
6 parser.token_source.SwitchTo(HTML_STATE);
7 return parser.PhpPage();
8 }
9 }

Code Snippet 69: The PHPParser class

The PhpPage production rule represents a PHP script and starts with zero or many Html-
Blocks. In the HtmlBlock one of three possible choices is expected:

• A token of type <HTML>, which is defined as <HTML: (["<"] | "<" ["?"])+ >

• A token of type <HTML OTHER>, which is defined as <HTML OTHER: "<" [] >

• An Expression enclosed by <PHP EXPR> and <PHP END>. <PHP EXPR> is defined
as <PHP EXPR: "<?=" > : DEFAULT and causes a switch to the DEFAULT state.
<PHP END> is defined as
<PHP END: "?>" > : HTML STATE and causes a switch back to the HTML state.

The String parsed as <HTML> or <HTML OTHER> represent an arbitrary sequence of text or
HTML code and is stored in the PHPHtmlBlock object as it is needed later.

The HtmlBlock() production rule is followed by a <PHP BEGIN> token which is defined as
<PHP BEGIN: "<?" ("php")?> : DEFAULT and which causes a switch to the DEFAULT
state and zero or many Statement() production rules.

1 PHPStart PhpPage() #Start : {}{
2 (HtmlBlock())* (
3 <PHP_BEGIN> (Statement())*
4 | <EOF>) { return jjtThis; }
5 }
6 void HtmlBlock() #HtmlBlock :
7 {Token t;}{
8 t=<HTML> {jjtThis.setHtml(t.image);}
9 | t=<HTML_OTHER> {jjtThis.setHtml(t.image);}

10 | <PHP_EXPR> Expression() <PHP_END>
11 }

Code Snippet 70: The PhpPage and the HtmlBlock production rule

As the grammar file is quite long the rest of the production rules is not shown here. A table
with the production rules relevant to the reverse engineering process, a short description of what
language elements are matched by the rule and the node type created is given in table 8.1.

8.2. Implementing the PHP to WebML Compiler 101

Production rule Node type
Description
PhpPage Start
The whole PHP script
HtmlBlock HtmlBlock
HTML code that comes before the first PHP statement
EmbeddedHtml EmbeddedHtml
All HTML code blocks after the first PHP statement
Statement Statement
Any type of PHP statement
ForeachStatement Foreach
A foreach statement followed by a ForeachArgument and a ForeachBody
ForeachArgument ForeachArgument
The head of the foreach statement
ForeachBody ForeachArgument
The body of a foreach statement
Variable Variable
A PHP variable
ArrayAccess ArrayAccess
A child node of Variable that matches the an expression inside [] characters
StringLiteral StringLiteral
Any Text inside "" or ’’ characters
EchoStatement Echo
An echo or print statement followed by a list of expressions
CompoundStatementBegin CompoundStatementBegin
The { character
CompoundStatementEnd CompoundStatementEnd
The } character
MemberFunction MemberFunction
Matches a member function of a class
AssignementOperator AssignementOperator
Matches the = symbol. The first child of the node has to be the Vari-
able node to which a value is assigned. The second child can be any
expression.
IfStatement If
Matches an if statement followed by an IfArgument argument and
a IfBody. The else part is optionally matched by ElseBody
IfArgument IfArgument
Matches the expression in the head of the if statement.
IfBody IfBody
Matches the statements in the body of an if block
ElseBody ElseBody
Matches the statements in the body of an else block
ExpressionStatement ExpressionStatement
Matches a statement other that a variable assignment such as a call to a
function
ReturnStatement Return
Matches the return keyword followed by an arbitrary statement.
MemberAccess MemberAccess
Matches a call to either a member function or a member variable of an
object.

Table 8.1: Important production rules of the PHPParser

102 Chapter 8. Implementation

8.2.2 Transforming the Templates to XML

To transform the templates into the XML representation presented in Subsection 6.2.1 several steps
are necessary that are performed by the createOperationModules method:

1. Creating pairs of model classes and the corresponding templates.

2. Removing all HTML elements that are not important for the transformation.

3. Replacing the interesting HTML elements by the corresponding XML elements.

4. Transforming the PHP statements into XML elements.

Creating Pairs of Model Classes and Templates

A new class called ModelViewFilePair is introduced which has a templateFile and a
modelFile property, both of type FS File. This class represents a file containing a model
class and a file containing the corresponding template file. Those files are extracted from the
FS Directory object representing the files system tree of the whole web application. It is
searched for files that are placed in a module directory which is a child directory of modules.
For each <model class name>.php model file in this directory the subdirectory phptpl is
searched for a file with the same and the ending tpl.php and a ModelViewFilePair object
is created and initialized with the two files. All ModelViewFilePair objects are stored in a list.

Removing unnecessary HTML Elements

The next step is to iterate over all the ModelViewFilePair objects and transform the content
of the template files to XML. This is done using the Jericho HTML parser. A Jericho Source
object is created with the content of each template file and a corresponding OutputDocument
object is created for each Source object. A call to PHPTagTypes.register() makes sure
that the PHP tags are recognized by the parser. Then it is iterated over all the Segments of the
Source object. The starting and closing tag of the html element is replaced with the template
tag using the replace method of the OutputDocument. All other HTML tags are removed
except title, a, value, form, input and PHPTagTypes.PHP STANDARD.

Replacing the HTML Elements with XML

Now it is necessary to bring the input tag and the a tag into the correct format. The input ele-
ment in HTML has the format <input name="..." type="..." value="..."/>. The
goal is to extract the content of the type attribute and to transform it into the format shown in Code
Snippet 71, if the content of the value attribute is a String literal or into the format shown in Code
Snippet 72, if the content of the value attribute is a PHP statement. This is done using the find-
AllElements method on the Source object to find all elements of type Tag.INPUT. Then it
is iterated over all the input elements. The new XML element is created for each input element
using a StringBuffer and is replaced in the OutputDocument. The anchor element is
create out of the a element in the same manner.

8.2. Implementing the PHP to WebML Compiler 103

1 <input name="..." type="..." >
2 <literal>...</literal>
3 <input>

Code Snippet 71: The input element with a nested literal element

1 <input name="..." type="..." >
2 <?php ... ?>
3 <input>

Code Snippet 72: The input element with a nested PHP statement

Transforming the PHP Statements to XML

The last step in the transformation process of the templates is to convert the PHP tags to XML.
The PHPParser presented in Section 8.2 is used to build an AST of the OutputDocument
created before. The visitor class TemplateVisitor is created and used when traversing the
AST. The visit Method is implemented for the following node types: Foreach, HtmlBlock,
EmbeddedHtml, Echo and CompoundStatementEnd. When the template visitor is created
it is initialized with a StringBuffer used to build the target XML document.

The first production rule to be matched is HTMLBlock. The HTMLBlock node type has an
html property that contains the whole block of HTML code matched in one String. The fact that
the code matched here is XML and not HTML does not matter because any text that comes before
the first PHP statement is matched in this rule. In the visit method for HTMLBlock the String
value of the html property is appended to the StringBuffer that is still empty so far.

Like the HTMLBlock production rule the EmbeddedHTML production rule matches any text
outside a block of PHP code. The only difference is that HTMLBlock matches the text before
the first block of PHP code and EmbeddedHTML matches any subsequent block of text. In the
visit method for EmbeddedHTML the String value of the html property is appended to the
StringBuffer as it is.

In the visit method for the Foreach node the Variable node that comes on the left side
of the as keyword and the Variable node that comes on the right side of the as keyword are ex-
tracted. The Variable node has a name property that contains the name of the variable. A String
that has the format <iterator variable="..." as="..."> is created and appended to
the StringBuffer. The variable="..." part is filled with the name of the variable that is
on the left side of the as keyword and the as="..." is filled with the name of the variable that is
on the right side of the as keyword.

The EchoStatement production rule matches any occurrence of an echo or print state-
ment. In the visitmethod for the Echo node the first thing to happen is that the String <echo is
appended to the StringBuffer. The Echo node has a child node of type Variable. This node
is retrieved and the string variable=", followed by the variable name followed by the string ">
is appended to the StringBuffer. The Variable node can have a child node of type Array-
Access that matches an expression enclosed by square brackets characters appended to a variable.

104 Chapter 8. Implementation

The ArrayAccess node can have a child of type StringLiteral that matches the index of
the array. The StringLiteral node has a value property that contains the string value that
has been matched. This value is retrieved and appended to the StringBuffer enclosed by the
strings <array index=" and "/>.

A foreach statement ends with a } character, which is matched by the the PHPCompound-
StatementEnd production rule. In the visitmethod a closing </iterator> tag is appended
to the StringBuffer. This concludes the implementation of the TemplateVisitors visit
methods.

Now that the XML document has been built it is unmarshalled to a Java object structure using
JAXB and added to the list of Template objects of the WebApp.

8.2.3 Transforming the Model Classes

After a template has successfully been transformed into a Java object structure the compiler program
is still in the loop that iterates over all the ModelViewFilePair objects. The next task is to
transform the model class that belongs to the template into the intermediate data structure. It starts
with the creation of a new ModelClass object. The object is initialized with the DataModel
and added to the Template. The Template and the ModelClass are both initialized with
an id which has the structure /<module name>/<class name>. The transformation into the
intermediate data structure is done in several visitor classes. Again, the AST of the model class is
built first using the PHPParser.

Transforming the Member Functions

The top level visitor class is called MemberFunctionVisitor. It has a single visit method
for MemberFunction nodes. The traverseNodesmethod is called with the AST of the model
class, the MemberFunctionVisitor object and the DataModel. In the visit method a new
Function object is created and added to the Function list of the Model object. An Oper-
ationModule and a ModuleInstanceUnit is created. The OperationModule contains
the OperationUnits and the ModuleInstanceUnit represents an instance of the Operation-
Module, which is placed on the site view, so a reference from the ModuleInstanceUnit to
the OperationModule is set. The OperationModule is also initialized with an InputCol-
lectorUnit and an OKCollectorUnit.

Visiting the Statements of a Function

To create the OperationUnits it is necessary to analyze the statements inside a function. This is done
by the StatementVisitor. The subtree that follows under a Function node is traversed with
this visitor together with the Function object.

The entry point to the StatementVisitor is the visit method for the Statement node.
The current Function object is set as a member variable here.

Many of the statements in the web application are assignment operations where a variable is
initialized with the value of another variable an array or the result of a call to a function. Those
assignments are handled in the visit method for the AssignementOperator node. The left

8.2. Implementing the PHP to WebML Compiler 105

side of an assignment is the variable to which a value is assigned. So the first child of the As-
signementOperator node is fetched and casted to a Variable node object. As mentioned
before the Function object maintains a map of Variable objects. It is checked whether the
variable already exists in this map and if not it is added under its name. The value assigned to the
variable depends on the right side of the assignment statement so this subtree has to be analyzed. For
this purpose a new visitor class called AssignmentRightSideVisitor is created. The sub-
tree is traversed using this visitor. The functionality of the AssignmentRightSideVisitor
is discussed later in this Subsection.

An if statement is matched by the IfStatement production rule but the interesting part is
the expression in the head of the if block, so the visit method is implemented for the IfArgu-
ment node type. In the patterns presented in Subsection 6.2.2 an if statement always checks if the
value of a variable containing the result of a database query is set. This is mapped to an IsNot-
NullUnit. The Variable node, which is the first child of the IfArgument node is fetched
and the corresponding Variable object from the current Function is retrieved. The value of
the Variable is casted to QueryValue, a new IsNotNullUnit is created and the stored as an
instance variable of the StatementVisitor as it is needed again later. According to the pattern
presented in Subsection 6.2.2 the SelectorUnit that has been reverse engineered from the variable
value has an outgoing OKLink that points to the IsNotNullUnit. So a new OKLink is created and
added to the SelectorUnit object of the QueryValue. The to property of the Link is set to
the IsNotNullUnit and the IsNotNullUnit is added to the OperationUnit property of
the Function object. How the QueryValue object is created and initialized is described later
in this Subsection.

The else part of an if statement is handled in the visit method for the ElseBody node.
The only thing that happens here is that a flag called isInElse is set to true, to indicate that the
current statement is inside an else block.

The next type of statements that can be mapped to the patterns presented in Subsection 6.2.2 is
the call to the set function of a model class, where a variable is passed to the template. This kind
of statement is handled in the visit method for the ExpressionStatement node type. The
statement has the format
$this->set(’variable name’,$variable);. The first child of the Expression-
Statement node is casted to a Variable node that represents the this variable. The inter-
esting parts of the statement are the arguments passed to the template. The first argument is a
string that is the variable name under which the variable passed as the second argument is avail-
able in the template. The Function object is enhanced with a second map that keeps track of
the variables used in the template. To handle the two arguments a new visitor class called Set-
TemplateVariableVisitor is created. The Variable node representing the this vari-
able, the SetTemplateVariableVisitor and the current Function object is passed to the
traverseNodes method. The implementation of the SetTemplateVariableVisitor is
described in later in this Subsection.

The last node type of interest is Return, which represents a variable or string literal value after
a return keyword. It is used to trigger a redirect to the path that is returned. The first child of
the Return node is retrieved and casted to a StringLiteral node. The value of the node is
the path of the module to which the redirect is made. The Function class is enhanced with a

106 Chapter 8. Implementation

returnLinks property which is a list of String objects to store this path and the path is added
to this list.

Visiting the set Functions for Template Variables

The SetTemplateVariableVisitor is used to handle the arguments passed to the set
method of the model class. The first argument is represented by a StringLiteral node. The
visit method for this node gets its value and stores it in a member variable of the visitor. In the
visit method for the Variable node the corresponding Variable object is retrieved from the
Function object. As the variables presented in the templates contain query results they have to be
of type QueryValue so the value is casted to a QueryValue object. According to the patterns
presented in Subsection 6.2.2 this represents an OKLink from the SelectorUnit that has been reverse
engineer from this query to the OkCollectorUnit. Thus an OKLink is created and added to the Se-
lectorUnit object of the QueryValue. The to property is set to the OKCollectorUnit
of the Function. Furthermore the key attributes of the Entity that is queried with this Se-
lectorUnit has to be coupled with LinkParameters. The Entity object has a keys property
which is a list of EntityAttribute objects that are part of the primary key. Those keys are
retrieved from the entity property of the Query object and for each key EntityAttribute
a new LinkParameter is created and added to the OKLink. Now the LinkParameter has
to be coupled an OutputCollectorParameter of the OKCollectorUnit so a new Out-
putCollectorParameter is created and added to the OKCollectorUnit. To couple the
two parameters the target attribute of the LinkParameter is set to the id of the Output-
CollectorParameter. The name of both parameters is set to the name of the EntityAt-
tribute. Finally the Variable object created before is added to the map of template variables
under the name that has been extracted before in the visit method of the StringLiteral
node.

Visiting the right Side of Assignment Statements

In the example application the right side of a variable assignment is either a call to the prepare
function of the db object, a call to the execute function of the db object, an assignment of
a request parameter or an assignment of any other variable. All these cases have to be handled
properly by the AssignmentRightSideVisitor. The visitor has two visit methods, one
for StringLiteral nodes and one for Variable nodes. The constructor of the visitor takes
a Function object, a IsNotNullUnit object and a boolean value that indicates whether the
current statement is inside an else block or not as arguments. Those values are set as member
variables of the visitor. The visitor also has a value property of type IValue which is initialized
with the correct value that after evaluating the right side of the assignment. The visit method for
the StringLiteral nodes is responsible to transform the string value into an IValue object.
In the example application all string literals are SQL statements so they are transformed to one of
the types that implement SQLStatementValue. How this transformation works is described at
the end of this Subsection. The visit method for the Variable node type has to decide what to
do with the variable.

8.2. Implementing the PHP to WebML Compiler 107

The first and simplest possibility is that the value of the variable is directly assigned to the
variable on the left side of the assignment operation. This is the case if the Variable node does
not have any children. The value of the variable is retrieved from the Variable map of the
Function object and assigned to the value property of the visitor.

The second possibility is that the name of the Variable node is either GET or POST. In
this case the variable represents a request parameter and it is interesting to know which parameter
is accessed here. This information can be found by inspecting the array index that is accessed on
the GET or POST variable. A new RequestParameterValue object and a new InputCol-
lectorParameter is created. The name of the InputCollectorParameter is set to the
value of the StringLiteral used as array index and the InputCollectorParameter
object is added to the RequestParameterValue object. Finally the InputCollector-
Parameter object is added to the InputCollectorUnit of the Function object and the
RequestParameterValue object is set to the value property of the visitor.

The third possibility is that the the variable represents a query result stored in an array where the
column names are used as indexes. In this case the Variable object represented by the Vari-
able node is retrieved form the Function and its value is casted to QueryValue. The En-
tityAttribute that has the same name as the index used for accessing the array is retrieved,
a new QueryResultColumnValue is created an initialized with the attribute. Finally the
QueryResultColumnValue object is set to the value property of the visitor.

The fourth possibility is that the expression on the right side is a call to one of the functions of
the $this->db object. This case is handled by a separate visitor called MethodCallVisitor.
The constructor of the visitor takes the Variable, the current IsNotNullUnit object and the
boolean flag indicating whether the current statement is inside an else block as arguments. The
current Variable node is traversed with the MethodCallVisitor and the current Function
object. The implementation of the MethodCallVisitor is described later in this Subsection.

Visiting Function Calls for Database Access

The MethodCallVisitor has a single visit Method for nodes of type MemberAccess.
This node type represents a call to a member function or to a field of an object an it has a name
property to get the function or variable name. The function calls used in the example application
are either on the db object of a model class or on a query result object. Calls on the db object are
either to query, prepare or execute. A call on a query result object is always to fetchRow.

The first and simplest possibility is a call to fetchRow of a query result object. In this case the
result object is already of type QueryResult so the type of the variable passed to the Method-
CallVisitor is simply returned.

The second possibility is a call to the query function of the db object. This case is handled by a
separate visitor called DBQueryVisitor. The current MemberAccess node is traversed with a
new instance of the DBQueryVisitor and the current Function object. The visitor implements
the visit methods for the StringLiteral node type and for the Variable node type. The
visit method for StringLiteral handles the case that an SQL query string literal is directly
passed as an argument to the query function. As before the query string has to be transformed into
an SQLStatementValue object. The visitor has a value property of type IValue which is
initialized with the SQLStatementValue. At this point the SelectorUnit object is created,

108 Chapter 8. Implementation

using the data collected in the QueryValue object, and added to the OperationModule of the
current Function. The visit method for the Variable node does almost the same except that
the value is retrieved directly from the Variable object that maps to the Variable node which
is passed.

The third possibility is a call to the prepare function of the db object. This case is handled by
a separate visitor called DBPrepareVisitor. The current MemberAccess node is traversed
with a new instance of the DBPrepareVisitor and the current Function object. The visitor
implements the visit methods for the StringLiteral node type and for the Variable node
type. The two methods are implemented in the same way as in the DBQueryVisitor.

The fourth possibility is a call the execute function of the db object. This case is pretty
complex and therefore describe separately later in this Subsection.

Visiting the execute Function

The analysis of the execute function is crucial to the creation of the patterns described in Subsec-
tion 6.2.2. The transformation to WebML is implemented using two visitors: The DBExecute-
Visitor and the DBExecuteQueryArgumentsVisitor. The execute function has two
arguments that have to be handled separately. The first argument is a statement object representing a
prepared statement. The second argument is an array containing the values to be set for the prepared
statement. The values are set in the order as they occur in the array.

From the MethodCallVisitor the current MemberAccess node is traversed with a new
instance of the DBExecuteVisitor and the current Function object. The first argument is a
node of type Variable. The coresponding variable object is retrieved from the Function object
and its value is stored in the value property of the visitor. The DBExecuteVisitor has a single
visit method for the ArgumentList node type which is a child of the MemberAccess node
type and which represents a list of arguments.

The next step is the analysis of the variables passed in the array as the second argument of the
execute function. This is handled by the DBExecuteQueryArgumentsVisitor. A new
instance of this visitor is created and initialized with the IValue object of the variable passed as
the first argument of the execute method and the current Function is also passed to the visitor
via the constructor. The visitor has a property called currentOperationUnit which is of the
abstract type OperationUnit. In the constructor the actual type of the SQLStatementValue
object is checked, the corresponding OperationUnit is created and set as the value of the curren-
tOperationUnit property. If the SQLStatementValue is an instance of QueryValue a
new SelectorUnit is created, if the SQLStatementValue is an instance of InsertValue
a new CreateUnit is created and if the value is an instance of UpdateValue a new ModifyU-
nit is created. In the case of a QueryValue the corresponding SelectorUnit is additionally
stored in a global selectorUnit property. This is necessary to implement pattern 5 presented in
Subsection 6.2.2 where a transport Link is set from the SelectorUnit to the ModifyUnit. Furthermore
a Link of type transport is created and added to the outgoing Links of the InputCollec-
torUnit that belongs to the current Function object. The to property of the Link is set to the
currentOperationUnit and the Link is also stored in a global field called currentLink-
FromICU (ICU stands for InputCollectorUnit). The reason for this is that the parameters for the
prepared statement might be set by values that come from request parameters. If so the correspond-

8.2. Implementing the PHP to WebML Compiler 109

ing LinkParameter objects have to be created and set in the visit method for the Variable
nodes.

The DBExecuteQueryArgumentsVisitor has a single visit method for nodes of type
Variable. The method is entered for each variable in the array passed as the second argument for
the execute function. It is important to keep track of the position of the variable in the array in
order to map it correctly to the columns set in the query. Therefor a global counter variable called
variableIndex of type int is used that is initialized with -1 and incremented each time the
visit method is called. The next step is to get the value of the variable from the Variable map
of the Function object.

Now there are two possibilities what the value of the variable could be. If it is a request param-
eter is has to be an instance of RequestParameterValue. Otherwise it is a the value column
of another database query, e.g. a foreign key queried before or a value that is copied from a row
column of a certain table to a row column of another table.

The first case to be considered is when the value is an instance of RequestParameter-
Value. A new LinkParameter object is created and the source is set to the InputCollec-
torParameter stored in the RequestParameterValue object. The parameter is added to
the LinkParameter list of the currentLinkFromICU property. Now that the source of the
LinkParameter is set the target has to be set as well. This depends on the type of the cur-
rentOperationUnit property to which the corresponding currentLinkFromICU property
points to. The are three possibilities:

1. If the current OperationUnit is a SelectorUnit the target of the LinkParameter has
to be set to the correct Condition of the SelectorUnit. The conditions are stored in a
list of the SelectorUnit and the order in the list corresponds to the order of the variables
so the correct condition is retrieved by getting the list element with the index value of the
variableIndex field. Finally the target property of the LinkParameter is set to
the id of the Condition.

2. If the current OperationUnit is a CreateUnit the target of the LinkParameter has to
be set to the corresponding id of the EntityAttribute. The EntityAttribute the
element from the attributes list of the CreateUnit with the current index of the vari-
ableIndex field.

3. If the current OperationUnit is a ModifyUnit the situation is a bit more complex as the SQL
update statement has a SET part and a WHERE part which are both set dynamically in the pre-
pared statement. The SET part comes first and is mapped to the entity attributes to be updated.
The WHERE part that follows is mapped to the selector conditions of the ModifyUnit. To solve
this problem another global counter of type int called numUpdateSetArgs is introduced
and initialized with 0 when the visitor is created. To find out if the current Variable node
represents a value for the SET part or for WHERE part of the statement, it is checked if the
variableIndex is lower than the size of the attribute list of the ModifyUnit. If so, the
variable represents an argument for the SET part of the query. The EntityAttribute
with the index of the current variableIndex value is retrieved from the attributes list and
the id of the EntityAttribute is set as the target of the LinkParameter. The

110 Chapter 8. Implementation

numUpdateSetArgs counter is incremented by one. If the condition evaluates to false it
means that the LinkParameter has to be coupled to a Condition of the Selector. This is
done in almost the same way as for the conditions of the SelectorUnit. The difference is that
the index for the Condition to be retrieved from ModifyUnit is not variableIndex
but variableIndex - numUpdateSetArgs.

The other case is that the value is an instance of QueryResultColumnValue. This part
is only relevant for the processOrder function in the summary class, which corresponds to
pattern 6 presented in Subsection 6.2.2. The goal is to create a Link from the SelectorUnit to which
the value belongs to the currentOperationUnit. To determine if the OKLink has already
been created a new instance field called linkFromSEUtoCurrentOperationUnit of type
Link is defined. If the field is null a new OKLink is created and added to the Link list of the
SelectorUnit. The to property is set to the currentOperationUnit. The parameter
coupling is not implemented for this case. If the linkFromSEUtoCurrentOperationUnit
property has been set already, nothing happens here. This concludes the implementation of the
DBExecuteQueryArgumentsVisitor visitor.

The execution of the compiler program continues now in the DBExecuteVisitor. What is
left to do is to set a Link between the SelectorUnit and the ModifyUnit, to set the OKLink between
the IsNotNullUnit and the ModifyUnit and to set the KOLink between the IsNotNullUnit and the
CreateUnit. The SelectorUnit object and the object of the current OperationUnit is retrieved
from the DBExecuteQueryArgumentsVisitor. If the current OperationUnit is an instance
of ModifyUnit a new Link is created and added to the SelectorUnit’s Link list. The target
of the is set to the ModifyUnit. Furthermore it is checked if the currentIsNotNull Unit
is set. If so it is checked if the is isInElse flag is set to false in this case a new OKLink
is created that points and added to the IsNotNullUnit. It the flag is set to false, the same
is done with a KOLink instead. This concludes the description of the visitor implementations.
After the AST has been traversed by all the vistors, the execution of the program returns to the
createOperationModules method of the PHPCompiler class which returns the WebApp
object that is now filled with the information extracted by the visitors to the compile method.

Transforming the SQL Statements to SQLStatementValues

The string literals in the source code that contain SQL statements have to be transformed into SQL-
StatementValue objects. This is done in a utility class with a static getLiteralValue
method. This method takes the String with the SQL statement and the DataModel as argu-
ments. The string is parsed using a tool called ZQLParser [17]. A new instance of ZQLParser
is created and initialized with the SQL statement String. The readStatement method of
the ZQLParser object returns an Object of type ZStatement which is an abstract class. The
implementing types are ZQuery representing a select statement, ZInsert representing an insert
statement, ZInsert representing an insert statement and ZDelete representing a delete state-
ment.

In case that the ZStatement object is an instance of ZQuery the object is casted and the
select part is retrieved via the getSelect method, which returns a Vector of ZSelectItem
objects. The from part of the query is retrieved by calling getFrom which returns a Vector. The

8.2. Implementing the PHP to WebML Compiler 111

first element of this Vector is a ZFromItem object the contains the table name. The Entity
object that belongs to this name is retrieved from the DataModel. A new QueryValue object
is created and the entity is set on the object. The next step is to iterate over all the elements in the
Vector with the selected column names. The QueryValue object has a selectedColumns
property which is a list of type EntityAttribute. The EntityAttribute for each selected
column is retrieved and added to the selectedColumns list. Finally the where part of the query
is retrieved by calling getWhere. The method returns an object of type ZExpression. The
where part of the query is mapped to a selector so a new Selector object is create and set as
the selector property of the QueryValue object. Now the ZExpression object has to be
evaluated to create the correct Condition objects for the Selector. This is done in a separate
method called evalWhereExpr. First it is checked whether the ZExpression is an simple
expression such as a = 1 or if it is a compound expression, such as a = 1 AND b = 2. In the
latter case it is checked if the boolean operator between the two sub expressions is AND or if it is
OR and the booleanAttribute property of the Selector object is set accordingly. Then the
evalWhereExpr is recursively called again to evaluate the sub expressions. In the first case the
expression is further analyzed to decide to what kind of Condition it maps to. The left side of
the comparison expression is an object of type ZConstant and represents the column whose value
is checked. The corresponding EntityAttribute is retrieved from the QueryValue object.
The next step is to check what kind of Condition the expression represents based on the the
characteristics of this EntityAttribute. The first possibility checked is if the expression rep-
resents a relationship role condition. Therefore it is iterated over all Relationship objects of the
Entity. The name of the EntityAttribute object that is referenced by the targetJoin-
Column property of each Relationship is compared to the name of the EntityAttribute
in the expression. If they are the same it is obvious that the column used in the expression is the
foreign key of another table. In this case a new RelationshipRole object is created and added
to the list of Condition objects of the Selector. The second possibility is that the column in
the expression is a primary key. This is true if the key attribute of the related Entity is set to
true. In this case a new KeyCondition is created and added to the list of Condition objects
of the Selector. The third possibility is that the condition to be created is neither a Relation-
shipCondition nor a KeyCondition. In this case an AttributeCondition is created
and added to the list of Condition objects of the Selector.

In case that the ZStatement object is an instance of ZInsert a new InsertValue object
is created and initialized with the Entity that matches the table name in the insert statement. It is
iterated over all the columns that are listed in the VALUES part of the statement. The corresponding
EntityAttribute for each column name is retrieved from the Entity and added to the list
of EntityAttribute objects referenced by the attributes property of the InsertValue
object.

In case that the ZStatement object is an instance of ZUpdate a new UpdateValue object
is created and initialized with the Entitywhich matches the table that is updated. It is iterated over
all the columns that are updated in the statement. The corresponding EntityAttribute for each
column name is retrieved from the Entity and added to the list of EntityAttribute objects
referenced by the attributes property of the UpdateValue object. As an update statement
also has a where part the UpdateValue object has a selector property. The selector is created

112 Chapter 8. Implementation

in the same way as for the QueryValue objects by calling the evalWhereExpr method.

8.2.4 Creating the Pages

After the the execution of the createOperationModules method the intermediate data struc-
ture is built completely and the statements inside the model functions has been transformed to
WebML operation modules. The next step in the reverse engineering process is to build the Pages
and the ContentUnits placed on the Pages. This is done in the createPages method that takes
the WebApp object as an argument.

Inside the method it is iterated over all the templates in the WebApp object. In the loop a new
Page is created and its name property is filled with the title of the Template. Inside this loop
the code can be split into two sections. The purpose of the first section is to transform the patterns
that are based on forms. The purpose of the second section is to transform the patterns that are based
on anchors.

Transforming form-based Patterns

In this section of the code it is iterated over all the Form objects of the template. Inside the loop
it is first of all checked if the Form has an Iterator object. If so the pattern at hand is the
IndexUnit. The Variable object that belongs to the name stored in the variable property of
the Iterator is retrieved. The variable mentioned in the as property of the Iterator has
not been initialized yet. According to the patterns presented in Subsection 6.2.1 the variable over
which it is iterated in the template contains the result of a database query and has to be of type
QueryValue because of that. The iteration variable to which the as part references is simply set
to the same value. An IndexUnit object is created and the entity property set to the Entity
object of the QueryValue. For the creation of the Links, which is done later in the program,
the Form and the Iterator needs to have a reference back to the IndexUnit so it is added to
the entityContentUnit property of the Iterator and to the list of ContentUnits of the
Form. In the next step a Selector has to be added to the IndexUnit. A default selector is
created for this purpose which is used for all IndexUnits, DataUnits and MultidataUnits. The reason
for this is that the correct selection already happens in the operation modules and that the object id
of the object to be displayed in the ContentUnit is passed as a coupled parameter on a Link from
the ModuleInstanceUnit to the ContentUnit. The default Selector is created and initialized with
a KeyCondition. After that it has to be checked which attributes should be displayed. This is
done by iterating over the Echo elements of the Iterator. The Variable referred to in the
variable property is retrieved from the template variable list and casted to QueryValue. Then
the EntityAttribute that maps to the index property of the array property of the Echo
object is retrieved from the QueryValue and added to the displayAttributes list of the
IndexUnit. Finally the IndexUnit is added to the Page

If the size of the list of Echo objects is greater than 0 the pattern that follows is the DataUnit.
First of all a new DataUnit is created and added to the contentUnits list of the Form as well
as to Page. As with the IndexUnit the default selector is set as selector for the DataUnit.
The displayAttributes of the DataUnit are set in almost the same way as the display

8.2. Implementing the PHP to WebML Compiler 113

attributes of the IndexUnit. The only difference is that this time it is iterated over Echo elements
that are children of the Form instead of the Iterator.

The last form-based pattern to be handled is the EntryUnit, which follows if the Form has
children that are Input Elements whose type property is set to text. In this case a new En-
tryUnit is created and it is iterated over all the the Input elements of the form. For each Input
with the type set to text a new Field is created. The name is set to the name of the Input
and the Field is added to the fields list of the EntryUnit. Finally the EntryUnit is added
to the contentUnit lists of the Page and the Form.

Transforming anchor-based Patterns

In this section of the code it is iterated over all Iterator elements of the Template. An It-
erator outside a Form could be either an IndexUnit or a MultidataUnit. The decision what
type of Unit to create is based on the fact if the Iterator contains Anchor elements or not. If
the Iterator contains Anchor elements a new instance of IndexUnit is created otherwise a
MultiDataUnit is created. The Unit just created is added to the Iterator because it is needed
later in the program for the creation of the Links. The next step is to retrieve the iteration variable
in the same way as describe for the IndexUnit in form based patterns, described before. The En-
tity for the ContentUnit is retrieved from the QueryValue of the iteration variable. The display
attributes are set in the same way as with the form-based patterns described before and again the
default selector is set for the selector property.

8.2.5 Creating the Links from the Pages

After returning from the createOperationUnits method the next step is to create the Links
from the Pages to the ModuleInstanceUnits. This is done in the createLinksFromPages
method that takes the WebApp object as an argument. Again it is iterated over all the Template
objects and the code inside the loop can be split into two section: One for extracting form-based
patterns and one for extracting anchor-based patterns.

Transforming form-based Patterns

In this code section it iterated over all the Form objects in the template. The action attribute of
the Form is also used as the id of the Function objects, so the correct Function that handles
the request triggered by the current Form is retrieved from the WebApp object. A form usually
has a submit button which is mapped to an outgoing Link of the form. Therefore it is iterated over
all the Input elements of the Form and searched for an Input with the type property set to
submit. Now it has to be decided whether this submit input element denotes a Link that belongs
directly to the Page or one or more Links that belong to a ContentUnit of the Page. In the
createPages method the ContentUnit objects created for each Form have been added to the
contentUnits list of the Form. If the size of this list is greater than 0 it indicates that the
submit input belongs to the the ContentUnits stored in the list.

In the simpler case that the submit input belongs to the Page a new Link is created and its
name is initialized with the literal value inside the value property. The to property is set to

114 Chapter 8. Implementation

the ModuleInstanceUnit whose id is the same as the action property value of the Form.
Finally the Link is added to the Page that belongs to the current Template.

In the other case it is iterated over all the ContentUnit objects of the Form. Inside the
loop a Link is created and initialized in the same way as a Link that belongs to a Page but this
time the Link is added to the ContentUnit. The next step is to create the LinkParameter
objects for the Link and to couple them correctly. How this is done depends on the type of the
ContentUnit. There are three possibilities:

1. If the current Form has an Iterator child element the current ContentUnit must be
an IndexUnit. The interesting part here is the value of the radio button used in the form
which is supposed to be an echo statement that prints the primary key of the database ob-
ject to be selected. First of all the Variable used in the echo statement has to be re-
trieved. The name is found by walking down the properties of the subtree under the It-
erator object until input.value.echo.variable. The QueryValue of the corre-
sponding Variable is retrieved from the list of template variables. The correct Entity-
Attribute is found in the QueryValue object by its name which is the value of the
input.value.echo.variable.array.index property of the Iterator. A new
LinkParameter is created and added to the linkParameter list of the Link. The
source of the LinkParameter is set to the id of the EntityAttribute. What is left
to do is to couple the target of the LinkParameter to the correct InputCollectorPa-
rameter of the InputCollectorUnit of the target ModuleInstanceUnit. There-
fore the Function with the same id as the value of the action property of the Form is
retrieved from the WebApp object. The InputCollectorParameter is retrieved from
the Function and it is iterated over its InputCollectorParameter elements. The
target of the LinkParameter is set to the id of the InputCollectorParameter
whose name is the same as the name attribute of the Input element.

2. If the Form has children of type Input the current ContentUnit must be a DataUnit.
The DataUnit can be used to submit attributes of the object that it represents to a Mod-
uleInstanceUnit via LinkParameters. This pattern is applied for the product-
Details template and for the summary template. The values submitted with the Form are
found in the Input elements of type hidden. The variable used in the echo statement
that prints the value of the each hidden Input is retrieved and its value is casted to a
QueryValue object. The EntityAttribute that is referenced by the array.index
property of the Echo element is retrieved from the Entity object of the QueryValue.
The name of such an EntityAttribute is compared to the name of each EntityAt-
tribute of the DataUnits Entity. If they are the same the correct mapping for the
LinkParameters is found. A new LinkParameter is created and added to the Link. Its
name is set to the name of the Input. The source is of the LinkParameter is set to the
id of the EntityAttribute of the DataUnit. The target of the LinkParameter
is found in the same way as described for the IndexUnit.

3. If the ContentUnit does not have an entity property it must be an EntryUnit. In
this case a LinkParameter is created for each Input element of type text and added

8.2. Implementing the PHP to WebML Compiler 115

to the Link. The source of the LinkParameter is set to the id of the Field of the
EntryUnit with the same name as the name of the Input element. The target of the
LinkParameter is found in the same way as described for the IndexUnit.

Transforming anchor-based Patterns

What is left to do in in this section of the code is to create the Links for anchor based patterns. In
this pattern the Template element has an Iterator element as a direct child. A new Link is
created and the name is set to the value of the anchor.text attribute. The to attribute of the
Link is set to the ModuleInstanceUnit with the same id as the value of the anchor.href
attribute and the Link is added to the Link list of the ContentUnit stored in the Iterator
object.

Now the LinkParameters have to be coupled correctly. This is done by analyzing the query
string of the URL path. Therefore it is iterated over the Argument objects of the Anchor. For
each Argument the Variable object that belongs to its value.echo.variable value is
retrieved and casted to a QueryValue object. The creation and the mapping of the corresponding
LinkParameterworks exactly the same way as described for the IndexUnit described before.
This concludes the implementation of the createLinksFromPages method.

8.2.6 Creating the Links from the Operation Modules

The final step in the transformation process for the Web Model is the creation of the Links between
the ModuleInstanceUnits and the Pages. This step is done inside the createLinksFromOper-
ationModules method. The WebApp object is passed as an argument.

In the first step it is iterated over all the Template objects of the WebApp object. In a nested
loop it is iterated over all the Function objects of the ModelClass that belongs to the Tem-
plate. It is checked whether the Function has any returnLinks. Now there are two possi-
bilities:

1. If the Function has any return Links it means that the outgoing Link of the corresponding
ModuleInstanceUnit points to another ModuleInstanceUnit. In this case the Mod-
uleInstanceUnit with the same id as the the value of the return Link is retrieved from
the WebApp. A new OKLink is created, the target is set to this ModuleInstanceU-
nit and the Link is added to the ModuleInstanceUnit of the current Function.

2. If the Function does not have any return Links it means that the outgoing Link of the
corresponding ModuleInstanceUnit points to the Page related to this ModuleIn-
stanceUnit. A new OKLink is created, the to property is set accordingly and the Link
is added to the ModuleInstanceUnit of the current Function. The target of the Link
has been set to point to the Page by default now, but it is also possible that the Link points
to a ContentUnit placed in the Page and that LinkParameters are passed to this
ContentUnit. To find this out it is iterated over the OutputCollectorParameters
of the OKCollectorUnit that belongs to the current OperationUnit. For each Out-
putCollectorParameter a LinkParameter is created and the source is set to the

116 Chapter 8. Implementation

id of the OutputCollectorParameter. In a nested loop it is iterated over all Con-
tentUnits of the target Page. For each ContentUnit it is checked whether it has an
entity property. If so the Entity is retrieved and in another nested loop it is iterated over
its EntityAttributes. Now it is checked whether the current EntityAttribute is
the same instance as the EntityAttribute related to the current OutputCollector-
Parameter. If so the target of the Link is set to the current ContentUnit. Finally it
has to be taken care that the LinkParameter points to the KeyCondition of the target
ContentUnit. This is done in another loop over all the Conditions of the Selector
of the target ContentUnit.

This concludes the implementation of the createLinksFromOperationModulesmethod.

8.2.7 Creating and Marshalling the WebProject

Now the transformation process is almost finished. What is left to do is to create a WebModel
object out of the data collected in the WebApp object, to put it into a WebProject object together
with the DataModel and to marshall it to XML. Back in the compilemethod a new WebModel,
a new SiteView and a new ModuleView are created. The SiteView and the ModuleView
are added to the WebModel and the SiteView is also set as the homeSiteView. Then it
is iterated over all the Template objects stored in the WebApp and the Page that belongs to
each Template is added to the Pages list of the SiteView. In a nested loop it is iterated
over all the Function objects of the ModelClass that belongs to the current Template. The
OperationModule of each Function is added to the ModuleView and the corresponding
ModuleInstanceUnit is added to the SiteView. Now the work of the PHPCompiler class
is done and the WebModel object is returned to the main method of the PHP2WebML class. All
that is left to do is to create a new WebProject, to add the DataModel and the WebModel and
to marshall it to XML using JAXB.

The result can be viewed in WebRatio.

Chapter 9

Related Work

In this Chapter an overview of some related work is given. Furthermore the reverse engineering
process presented in this thesis is compared to another approach called WARE.

9.1 Overview

In Patel et al. [22] a summary of recent works concerning the reverse engineering of web applica-
tions by different authors is given. Some important points are:

• Many reverse engineering methodologies for web applications are based on web application
development methodologies, e.g. UML based.

• S. Tilley [51] described different reverse engineering objectives including pattern abstraction,
redocumentation and architecture recovery.

• Most reverse engineering activities concentrate on static analysis of source data rather then
on the dynamic analysis of the operation of web applications.

• Schwabe et al. [27] discovered three areas of concern when undertaking web application
forward engineering, which also apply to reverse engineering. Those are application behavior,
navigation modeling and interface design.

• Two popular forms of representations for web applications are tabular and graphical rep-
resentations. Ricca and Tonella [26] proposed a graph model where a web application is
represented by a directed graph W=(P,E), where P is a set of HTML pages and E a set of
links connecting members of P.

• Reverse engineers of web applications must follow a disciplined structure and should use
dedicated reverse engineering methodologies that provide a consistent and complete plan,
making it possible to determine which process need to be carried out together with associated
tools required for supporting the method. For simple/small web applications manual analysis
is sufficient. For larger applications a computer aided analysis will be required.

117

118 Chapter 9. Related Work

• The majority of the reported web application reverse engineering methodologies and tools
are founded on the Unified Modeling Language (UML) such as the WARE (Web Application
Reverse Engineering) tool developed by Di Lucca [10], which adopts the UML extensions for
web application modeling proposed by Conallen [8]. UML based method provide a stable,
familiar environment for reengineers to work with for modeling components as well as the be-
havior of an application. Chung and Lee [7] also adopted the Conallen extension and extracted
component diagrams (each WWW Page is a component) and package diagrams(reflecting the
web applications directory structure).

Although WebML is a good choice for modeling web applications, as it is intuitive and expres-
sive, it is worth taking brief a look at other web modeling languages, which is done in Section 9.2
of this Chapter. A tool of special interest is WARE, as it utilizes some approaches similar to those
proposed in this thesis. An overview of the WARE tool and a comparison to the reverse engineering
process presented in this thesis is given in Section 9.3 of this Chapter.

9.2 Web Modeling Languages

Beside WebML there are some other web modeling languages and approaches available. In a survey
on web modeling approaches for ubiquitous web applications by Schwinger et. al. [28] a good
overview is given:

• The Hera Design Methodology is based on the Resource Description Framework (Schema)
- RDF(S). The content level is modeled using a proprietary graphical notation. The domain
model is based on concepts, attributes, content relationships and media types. The application
model and the presentation model resembles the hypermedia design method Relationship
Management Methodology (RMM). The application model is mainly based on slices and
slice relationships.

• The Web Site Design Method (WSDM) is one of the earliest web modeling approaches and
uses the Web Ontology Language (OWL). The structural modeling of all web application
levels is supported.

• The UML-based Web Engineering Approach (UWE) supports UML models for content, hy-
pertext and presentation levels. Structural modeling is based on class diagrams using stereo-
types for specific web concepts. Navigation at hypertext level is modeled using state chart
diagrams. At presentation level sequence diagrams can be used for modeling presentation
flows. OCL is used to describe the interface between content and hypertext levels.

• The Object-Oriented Hypermedia Method (OO-H) is based on UML and uses different mod-
els for the content, hypertext and presentation level. At content level, UML class diagrams are
used for modeling content and activity diagrams are used for modeling processes. At hyper-
text level, so called navigation access diagrams (NAD) are used for modeling the navigation
paths a user can activate. At navigation level, a default abstract presentation diagram (APD)
can be generated out of the NAD.

9.3. The WARE tool 119

9.3 The WARE tool

The Web Application Reverse Engineering (WARE) [9] tool follows Bendusi’s general reverse en-
gineering paradigm Goals, Tools and Models [1]. Tools aim to support the recovering process, goals
focuses on reverse engineering motivations and models deals with the definition of the information
to extract. The reverse engineering process must recover the static architecture, the dynamic inter-
actions and the behavior of a web application. Thus the reverse engineering process consists of the
following phases:

1. Static Analysis

2. Dynamic Analysis

3. Behavioral Analysis

The aforementioned phases recover views that can be represented by extended UML diagrams.
The architecture of a web application is represented by class diagrams, the dynamic model is rep-
resented by sequence and collaboration diagrams and the behavior is represented by use case dia-
grams. With the results of the analysis phases a conceptual model is created. The whole process is
tool supported but also requires manual actions.

9.3.1 The Analysis Phases

Static Analysis

In the static analysis phase the web application’s architecture components and the static relations
amongst them are recovered. This includes HTML files, the directory structure, scripting language
sources, database connections, the use of applets/servlets or any other static information. HTML
Pages and the relevant sub elements (e.g. forms, script blocks, database components) are mapped
into classes while links are mapped into relations.

Dynamic Analysis

The dynamic analysis phase rely on the static analysis results. The web application is executed and
dynamic interactions among the components in the class diagram are recorded. Any event or action
is traced to the source code and to the classes in the class diagram. Events are the visualization of a
page, a form submission, a link traversal, a database query, processing of data etc. the sequence of
actions fired by an event deriving form the web application’s code control flow or from user actions
are associated to sequences of messages exchanged between the object of the web application.
These sequences can be represented by sequence diagrams or collaboration diagrams.

Behavioral Analysis

The behavioral or functional analysis phase aims to detect the behavior of a web application from a
user point of view. The discovered behavior is described by use case diagrams.

120 Chapter 9. Related Work

9.3.2 The Conceptual Model

A web application’s conceptual model has to specify abstractions representing the application, its
components and the relations between components. The following taxonomy concerning pages is
considered:

• Server pages that reside on the server as opposed to client pages which are actually sent to
the browser.

• Static pages whose content is fixed as opposed to dynamic pages whose content varies.

• Simple pages as opposed to framed pages, which consist of a frameset that includes several
pages.

• Unlinking pages as opposed to linking pages that contain hypertextual links.

9.3.3 Tool Support

The architecture of the supporting tool consists of the following elements:

• The Extractor parses HTML, client-side and server-side scripting languages and produces an
intermediate datastructure.

• The Intermediate Form Repository stores an intermediate form obtained from the extracted
information.

• The Abstractor executes abstraction operations on the intermediate form and recovers UML
diagrams.

9.4 A Comparison to WARE

The WARE approach applies a combination of static code analysis and dynamic program behavior
analysis. The static analysis phase is done completely automatically, wheres the dynamic analysis
phase requires user interaction. An intermediate datastructure repository which is subsequently
enhanced is used for storing the results of the different analysis phases. Different models at different
levels of granularity are created based on the data stored in the repository. The approach seems to
work with arbitrary web applications that are not implemented using a certain framework.

The process presented in this thesis applies static code analysis only. The static code analysis
phase is done completely automatically but it requires that the source web application is written for
a certain framework. Before that the web application has to be manually rewritten to conform to
this framework. As with ware, certain intermediate data structures are used to support the automatic
transformation process. As opposed to ware, those data structure are not stored persistently, but only
exist in-memory during the execution of the transformation program. The result of the transforma-
tion process is a model that resembles the actual implementation of the web application. Other than
in WARE it is not possible to create models at different levels of granularity.

Chapter 10

Conclusion and Future Work

In this Chapter the result of the reverse engineering process is presented. Furthermore the result is
evaluated and some options for future work are outlined.

10.1 Summary

The transformation program presented in Chapter 8 has been tested with the refactored source appli-
cation from Chapter 4. The result is an XML document representing the WebML model recovered
from the input sources. It can be viewed and modified with WebRatio. The graphical representation
of the model is shown in Figure 10.1, Figure 10.2 and Figure 10.3.

Figure 10.1 and Figure 10.2 show the OperationModules that that have been recovered from the
model files of the MVC application. Each OperationModule represents one model class function.
As the purpose of a model function is to perform certain operations using the request parameters
coming from the view, an InputCollectorUnit is created for each operation module. At the end
of each model function certain parameters are usually passed either directly to the corresponding
view template or to another model function by the means of a redirect operation. Both cases are
represented by a OKCollectorUnit, which is created by default. All parts of the code where database
queries are executed were recovered as SelectorUnits, CreateUnits or ModifyUnits (there was no
delete operation in the example application). If/else statements were mapped to IsNotNullUnits.
The Links amongst the OperationUnits and the coupled parameters were recovered by tracing the
variable assignments in the source code.

Figure 10.3 shows the Hypertext Model that has been recovered from the view templates. Each
template is mapped to a Page. The components of the view templates were mapped to the corre-
sponding WebML elements such as forms, IndexUnits, DataUnits and Links. An important fact is
that the recovered Hypertext Model reflects the actual MVC implementation and not a conceptual
model that shows the functionality from a user point of view. For example there are no direct Links
between Pages but always Links from Pages or Page elements to operation ModuleInstanceUnits
and from OperationModuleInstanceUnits to Pages. This reflects the MVC implementation where
all requests are sent to the controller first, which in turn decides, which model function is responsible
for handling the request.

121

122 Chapter 10. Conclusion and Future Work

Figure 10.1: Operation modules recovered from the reverse engineering process (1/2)

Figure 10.2: Operation modules recovered from the reverse engineering process (2/2)

10.1. Summary 123

Fi
gu

re
10

.3
:T

he
hy

pe
rt

ex
tm

od
el

re
co

ve
re

d
fr

om
th

e
re

ve
rs

e
en

gi
ne

er
in

g
pr

oc
es

s

124 Chapter 10. Conclusion and Future Work

10.2 Evaluation

The analysis of the source code has been rather difficult as there are hardly any tools available
for processing PHP code. Also the combination of different grammars is not trivial. The solution
presented in this thesis to define an intermediated data structure that is partly based on XML to Java
object binding worked quite well for this purpose.

WebML is a language on a very high level of abstraction which makes it hard to define a direct
mapping between the source code artifacts and WebML model elements. The use of an intermediate
data structure was very helpful to close the gap between the two worlds.

10.2.1 Prerequisite for an Automatic Transformation

It was necessary to make some assumptions about the web application to find suitable mappings
between source code patterns and WebML patterns.

1. The database has to be normalized in order to reasonably map tables and relationships to a
WebML data model.

2. SQL create table statements can be directly mapped to entities. The relationships between
the entities can either be inferred from the foreign key constraints or this information has to
provided by the user.

3. The web application has to follow the MVC pattern. This is done for three reasons:

(a) The MVC pattern is the most widely adopted pattern for PHP web applications and also
for web applications written in languages other than PHP.

(b) Much of the ”glue code” used for request handling and dispatching is predefined by the
MVC framework used and does not have to be considered in the source code analysis.

(c) It dramatically reduces the amount of possibilities for patterns used in the implementa-
tion of the web application.

4. Each request is handled in a single function of a model class. This is true for the MVC
framework and also for the symfony framework and it can be mapped quite well to the concept
of an operation module in WebML.

5. The input parameters used in the InputCollectorUnit can be mapped straightforward from ac-
cess operations to request parameters in the source code. This works for the MVC framework
and for symfony.

6. For database access operations it has been assumed that certain objects and functions are
used. In the MVC framework the database access works by executing SQL query strings or
prepared statements and in symfony database operations are done using an ORM layer. Both
variants can be directly mapped to OperationUnits.

7. All the if/else blocks used in the model functions are checking whether a query has returned
a result or not. This can be mapped quite well to the IsNotNullUnit in WebML.

10.2. Evaluation 125

8. All the variables used in the model functions either contain SQL query statements or values
of request parameters.

9. The Links and the Link Parameters set between the OperationUnits are inferred from the
variable values and types used for database queries or as template variables.

10. The variables passed to a template are mapped to output parameters of an OKCollectorUnit.

11. The view templates do not contain any business logic. The only PHP statements that can be
found in a template are echo statements that print a variable value or foreach statements to
echo all the values of an array.

The example application does fulfill all these assumptions so it can almost be perfectly mapped
to a WebML model.

10.2.2 Shortcomings of the Assumptions

In real world applications the above mentioned assumptions are often not fulfilled. There are some
shortcomings that have to be considered:

• Obviously not all databases in use for web applications are normalized.

• The data of a web application might not only be taken from a relational database but maybe
from other datasources such as web services or semantic web data sources. Such kinds of
data sources are not considered by WebML.

• There are countless different MVC frameworks for PHP available. They all follow the similar
basic principles but still there are significant differences regarding the design and the libraries
used.

• Although a request triggers a call to a model function that is able to access the request pa-
rameters and other information, it is not necessarily true that all of the business logic is also
handled in this function. No one can prevent a developer from placing business logic into an-
other method in the same or in another class. In symfony the function that handles a request
is actually considered to be part of the controller and the preferred programing style is to put
business logic into the model classes used with Propel.

• WebML is designed to model typical web related patterns such as passing parameters be-
tween Pages and OperationUnits and some basic data manipulation patterns. Although this
forms a big part of many web application it usually does not cover all the functionality. All
parameters passed amongst OperationUnits or between Pages and OperationUnits are related
to attributes of the Data Model. There is no concept for modeling values that are calculated in
the business logic of a web application or that come from data sources other than the database.
The assumption that all variable values used in a web application represent database related
information is hardly ever true in a real wold application.

126 Chapter 10. Conclusion and Future Work

• An if/else block does not necessarily have to check whether an SQL query has returned a
result or not. If it fulfills another purpose this cannot be recognized by the reverse engineering
program.

• Although it is recommended not to put any business logic into the view, no one can prevent
the developer from doing so. Such cases are not recognized by the transformation program.

10.2.3 Information Loss in Reverse Engineering

Not all the information contained in the source application is recovered during the reverse engineer-
ing process. The following pieces of information are lost:

• The layout and the structure of the template files are not mapped to the target WebML model.

• The original database layout is lost, due to the normalization of the database.

• The paginating functionality of the products page is not recovered.

10.3 Future Work

10.3.1 Improving the Analysis of the PHP Code

The first prerequisite to improve the reverse engineering process would be to have a better process-
ing tool for PHP code. The parser used in this thesis is based on a simple grammar file for JavaCC.
Initially the parser only checked whether a given PHP file conformed to the grammar or not. By
using JJTree it was possible to build an AST but still it was rather complex to process the AST.
A lot of visitor classes where necessary to search for certain patterns in the AST. Here are some
suggestions for the requirements to a more useful PHP processing tool.

• The tool should not only be able to parse single PHP script files and to check their syntactical
correctness but it should be able to take a whole PHP application as input and to resolve ref-
erences between classes as well as inheritance hierarchies. This would include the evaluation
of several PHP language features.

– Statements to make PHP scripts available in other scripts such as require, re-
quire once, include or include once.

– Class inheritance.

– References between classes.

• The tool should know all the built-in PHP functions (e.g. mysqli query, exit, etc.).

• There should be a high level API to access the PHP source code artifacts and elements such
as all classes or scripts of the application, all functions of a class and all statements of a
function. The statements could be further classified into assignment statements, function
calls, etc. There should be accessors to easily get the arguments passed to a function and it
should be possible to resolve instance variables such as this.

10.3. Future Work 127

A promising tool that might help to fulfill those requirements is the open source PHP compiler
(PHC) [23].

10.3.2 Using intermediate Models or Data Structures

As mentioned before WebML is a very high level modeling language that is not intended to create
a model that reflects the implementation details of a web application but rather gives a top down
view on the structure and behavior of the application modeled. To reasonably improve the reverse
engineering process from the source code level to a WebML model it would be suitable to do several
transformation iterations into well define intermediate models. With each iteration the target model
should further prescind from the source code. In this thesis only one intermediate data structure has
been used. Probably it would be helpful to define the following levels of abstraction:

1. The source code, consisting of PHP, HTML and SQL code.

2. The AST of the source code.

3. A platform specific model for the concepts of the framework used, such as symfony or the
MVC framework used in this thesis. This model should cover platform specific aspects such
as model classes, templates, frontend controller, ORM mappings, etc.

4. A platform independent model covering concepts common for all MVC frameworks. This
model should not consider details such as if the database access is done via ORM or via plain
SQL queries or if the framework uses frontend controllers beside the backend controller or
not.

5. The target WebML model.

Different approaches to standardize such kinds of models are done by the Architecture Driven
Modernization Task Force [55].

10.3.3 Introducing a Refactoring Phase

The resulting model is very close to the actual implementation but does not quite look like a model
that would have been created when doing forward engineering activities. Thus it would be suitable
to introduce an additional phase where the implementation model resulting from phase 2 is refac-
tored into a conceptual model. Some parts could possibly be refactored automatically, while others
parts might require refactoring by a human.

Some patterns that are good candidates for automatic refactoring are:

• De facto empty Operation Modules (i.e. OperationUnits that only consist of an InputCollec-
torUnit and an OKCollectorUnit) could be removed, as they represent empty functions in the
MVC implementation. From a user perspective this is a simple Link from one Page to another
Page, that does not transport any information and it could therefore be replaced with a direct
Link from one Page to the other Page.

128 Chapter 10. Conclusion and Future Work

• The pattern combination in Figure 10.4 shows how the selection made in one IndexUnit serves
as the input for the selection criteria of another InputUnit. The selection is done by a Selec-
torUnit inside an OperationModule. This pattern combination could be simplified as shown
in Figure 10.5, where a Link is directly pointing from one IndexUnit to the other.

• The current implementation of the compilation program creates one Operation Module for
each model function and does not consider Operation Modules with duplicated content.

Figure 10.4: Pattern combination produced by the reverse engineering tool

Figure 10.5: Refactored pattern

Appendix A

The Reverse Engineering Framework
and Examples

The CD-Rom attached to this thesis contains the following elements:

• The reverse engineering framework.

• The example web application.

• The refactored MVC versions of the example application.

• The WebML model resulting from the reverse engineering process in the Web Ratio XML
format.

129

Bibliography

[1] Benedusi, P. and Cimitile, A. and De Carlini, U. Reverse engineering processes, design docu-
ment production, and structure charts. J. Syst. Softw., 19(3):225–245, 1992.

[2] Berners-Lee, T. and Masinter, L. and McCahill, M. RFC 1738 - Uniform Resource Locators
(URL). The Internet Engineering Task Force, December 1994.
http://tools.ietf.org/html/rfc1738, accessed on June 9th, 2009.

[3] Brownell, D. SAX2. O’Reilly, 2002.

[4] Byrne, S. and Le Hors, A. and Le Hégaret, P. and Champion, M. and Nicol, G. and Robie, J.
and Wood, L. Document Object Model (DOM) Level 3 Core Specification. W3C Recommen-
dation, W3C, April 2004. http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407,
accessed on June 9th, 2009.

[5] Ceri, S. and Fraternali, P. and Bongio, A. and Brambilla, M. and Comai, S. and Matera, M. De-
signing Data-Intensive Web Applications. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2002.

[6] Chen, P. The entity-relationship model—toward a unified view of data. ACM Trans. Database
Syst., 1(1):9–36, 1976.

[7] Chung, S. and Lee, Y. Reverse Software Engineering with UML for Web Site Maintenance. In
Proceedings of the First International Conference on Web Information Systems Engineering
(WISE’00)-Volume 2, page 2157, Washington, DC, USA, 2000. IEEE Computer Society.

[8] Conallen, J. Building Web Applications with Uml. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[9] Di Lucca, G. A. and Casazza, G. and Di Penta, M. and Antoniol, G. An Approach for Reverse
Engineering of Web-Based Applications. In Proceedings of the Eighth Working Conference
on Reverse Engineering (WCRE’01), page 231, Washington, DC, USA, 2001. IEEE Computer
Society.

[10] Di Lucca, G. A. and Fasolino, A. R. and Tramontana, P. Reverse Engineering Web Applica-
tions: The WARE approach. Journal of of Software Maintenance and Evolution, Research and
Practice, 16:71 – 101, 2004.

131

132 BIBLIOGRAPHY

[11] ECMA International. ECMAScript Language Specification, December 1999.
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf, accessed on
June 9th, 2009.

[12] Enseling, O. Build your own languages with JavaCC. Java World, December 2000.
https://javacc.dev.java.net/, accessed on June 9th, 2009.

[13] Fielding, R. and Irvine, UC. and Gettys, J. and Mogul, J. and Frystyk, H. and Masinter, L.
and Berners-Lee, T. RFC 2616 - Hypertext Transfer Protocol – HTTP/1.1. The Internet
Engineering Task Force, June 1999.
http://tools.ietf.org/html/rfc2616, accessed on June 9th, 2009.

[14] Gamma, E. and Helm, R. and Johnson, R. Design Patterns. Elements of Reusable Object-
Oriented Software. Addison-Wesley Longman, Amsterdam, 1995.

[15] Garshol, L. BNF and EBNF: What are they and how do they work?, June 2009.
http://www.garshol.priv.no/download/text/bnf.html, accessed on June 9th, 2009.

[16] Geeknet, Inc. Jericho HTML Parser, June 2009.
http://jericho.htmlparser.net/docs/index.html, accessed on June 9th, 2009.

[17] Gibello, P. Zql: a Java SQL parser. gibello.com, June 2009.
http://www.gibello.com/code/zql/, accessed on June 9th, 2009.

[18] Hansen, K. Working with files and directories in Java. The Java Boutique, June 2009.
http://javaboutique.internet.com/tutorials/Files Directories/, accessed on June 9th, 2009.

[19] Kappel, G. and Pröll, B. and Reich, S. and Retschitzegger, W. Web Engineering. Systematische
Entwicklung von Webanwendungen. Dpunkt Verlag, 2003.

[20] Magoulas, R. Programming Language Trends. O’Reilly Radar, Aug 2006.
http://radar.oreilly.com/archives/2006/08/programming-language-trends-1.html, accessed on
May 21st, 2009.

[21] Maurer, F. and Martel, S. Extreme programming. Rapid development for Web-based applica-
tions. Internet Computing, IEEE, 6(1):86 – 90, January/February 2002.

[22] Patel, R. and Coenen, F. and Martin, R. and Archer, L. Reverse Engineering of Web Applica-
tions: A Technical Review. Technical report, University of Liverpool, July 2007.
http://www.csc.liv.ac.uk/research/techreports/tr2007/ulcs-07-017.pdf, accessed on June 9th,
2009.

[23] phpcompiler.org. PHC Manual, June 2009.
http://www.phpcompiler.org/doc/latest/manual.html, accessed on June 9th, 2009.

[24] Politecnico di Milano. The Web Modeling Language, June 2009.
http://www.webml.org/webml/page1.do, accessed on June 9th, 2009.

BIBLIOGRAPHY 133

[25] Potencier, F. and Zaninotto, F. The Definitive Guide to symfony. Apress, Berkeley, California,
USA, May 2009.

[26] Ricca, F. and Tonella, P. Web Site Analysis: Structure and Evolution. In Proceedings of
the International Conference on Software Maintenance (ICSM’00), page 76, Washington, DC,
USA, 2000. IEEE Computer Society.

[27] Schwabe, D. and Esmeraldo, L. and Rossi, G. and Lyardet, F. Engineering Web Applications
for Reuse. IEEE MultiMedia, 8(1):20–31, 2001.

[28] Schwinger, W. and Retschitzegger, W. and Schauerhuber, A. and Kappel, G. and Wimmer, M.
and Pröll, Birgit and Castro Cachero, C. and Casteleyn, S. and De Troyer, O. and Fraternali, P.
and Garrigos, I. and Garzotto, F. and Ginige, A. and Houben, G. and Koch, N. and Moreno, N.
and Pastor, O. and Paolini, P. and Ferragud Pelechano, V. and Rossi, G. and Schwabe, D. and
Tisi, M. and Vallecillo, A. and van der Sluijs, K. and Zhang, G. A survey on web modeling
approaches for ubiquitous web applications. International Journal of Web Information Systems
(IJWIS), 4(3):234–305, 2008.

[29] Sensio Labs. symfony - Open-Source PHP Web Framework, June 2009.
http://www.symfony-project.org/, accessed on June 9th, 2009.

[30] Sensio Labs. The symfony Cookbook, June 2009.
http://www.symfony-project.org/cookbook/1 2/en/, accessed on June 9th, 2009.

[31] Smarty. Smarty - the compiling PHP template engine, September 2007.
http://www.smarty.net/manual/en/, accessed on June 9th, 2009.

[32] Stump, J. Understanding MVC in PHP. O’Reilly Media, October 2005.
http://oreilly.com/php/archive/mvc-intro.html?page=1, accessed on June 9th, 2009.

[33] Sun Microsystems, Inc. The JavaTM Architecture for XML Binding (JAXB) 2.0, April 2006.
http://jcp.org/aboutJava/communityprocess/final/jsr222/index.html, accessed on June 9th,
2009.

[34] Sun Microsystems, Inc. JavaCC [tm]: Documentation Index, June 2009.
https://javacc.dev.java.net/doc/docindex.html, accessed on June 9th, 2009.

[35] Sun Microsystems, Inc. JavaCC [tm]: JJTree Reference Documentation, June 2009.
https://javacc.dev.java.net/doc/JJTree.html, accessed on June 9th, 2009.

[36] Sun Microsystems, Inc. JavaCC: TokenManager MiniTutorial, June 2009.
https://javacc.dev.java.net/doc/tokenmanager.html, accessed on June 9th, 2009.

[37] Sun Microsystems, Inc. JavaTM Platform, Standard Edition 6 API Specification, June 2009.
http://java.sun.com/javase/6/docs/api/, accessed on June 9th, 2009.

[38] Sun Microsystems, Inc. MySQL 5.1 Reference Manual - 4.5.4. mysqldump — A Database
Backup Program, June 2009.
http://dev.mysql.com/doc/refman/5.1/en/mysqldump.html, accessed on June 9th, 2009.

134 BIBLIOGRAPHY

[39] Sun Microsystems, Inc. MySQL 5.1 Reference Manual - CREATE TABLE Syntax, June 2009.
http://dev.mysql.com/doc/refman/5.1/en/create-table.html, accessed on June 9th, 2009.

[40] Sun Microsystems, Inc. MySQL Documentation, June 2009.
http://dev.mysql.com/doc/, accessed on June 9th, 2009.

[41] Sun Microsystems, Inc. PHP Grammar Defintion for use with JavaCC, June 2009.
https://javacc.dev.java.net/files/documents/17/14269/php.jj, accessed on June 9th, 2009.

[42] Sun Microsystems, Inc. The JavaBeans 1.01 specification, June 2009.
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html, accessed on June
9th, 2009.

[43] The Apache Software Foundation. Apache Module mod rewrite, June 2009.
http://httpd.apache.org/docs/2.0/mod/mod rewrite.html, accessed on June 9th, 2009.

[44] The Apache Software Foundation. Apache Struts 2 Documentation - Core Developers Guide,
June 2009.
http://struts.apache.org/2.1.8.1/docs/core-developers-guide.html, accessed on June 9th, 2009.

[45] The Apache Software Foundation. URL Rewriting Guide, June 2009.
http://httpd.apache.org/docs/2.0/misc/rewriteguide.html, accessed on June 9th, 2009.

[46] The Linux Documentation Project. Introduction to Linux - A Hands on Guide, Nov 2009.
http://tldp.org/LDP/intro-linux/intro-linux.pdf, accessed on May 21st, 2009.

[47] The PHP Group. Classes and Objects (PHP 5), June 2009.
http://at.php.net/manual/en/language.oop5.php, accessed on June 9th, 2009.

[48] The PHP Group. PEAR Manual, October 2009.
http://pear.php.net/manual/en/, accessed on June 9th, 2009.

[49] The PHP Group. PHP Function List, June 2009.
http://www.php.net/quickref.php, accessed on June 9th, 2009.

[50] The Propel Project. Propel 1.4 Documentation, June 2009.
http://propel.phpdb.org/trac/wiki/Users/Documentation/1.4, accessed on June 9th, 2009.

[51] Tilley, S. A Reverse-Engineering Environment Framework. Technical report, Carnegie Mellon
Software Engineering Institute, April 1998.
http://www.sei.cmu.edu/pub/documents/98.reports/pdf/98tr005.pdf.

[52] TIOBE Software. TIOBE Programming Community Index Definition, May 2009.
http://www.tiobe.com/index.php/content/paperinfo/tpci/tpci definition.htm, accessed on May
21st, 2009.

[53] TIOBE Software. TIOBE Programming Community Index for May 2009, May 2009.
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html, accessed on May 21st,
2009.

BIBLIOGRAPHY 135

[54] Ulrich, W. Legacy Systems: Transformation Strategies. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2002.

[55] Ulrich, W. A Status on OMG Architecture-Driven Modernization Task Force. Technical re-
port, The Object Management Group (OMG), 2004.
http://adm.omg.org/MELS EDOC2004 Ulrich Extended Submission Revised.pdf, accessed
on June 9th, 2009.

[56] Valade, J. PHP- und MySQL-Applikationen für Dummies. WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim, 2006.

[57] Wage, J. and Vesterinen, K. Doctrine ORM for PHP. Sensio SA, April 2009.

[58] Web Models s.r.l. Web Ratio, June 2009.
http://www.webratio.com/, accessed on June 9th, 2009.

[59] yaml.org. YAML, Version 1.2, June 2009.
http://yaml.org/spec/1.2/spec.pdf, accessed on June 9th, 2009.

	Introduction
	Motivation and Goal of this Thesis
	Structure of this Thesis

	The Example Application
	Used Technology: LAMP
	A functional Description from a User's Perspective
	Description of the Source Code
	The Data Model
	The Shop Catalog Script
	The Shopping Cart Script
	The Process Order Script

	Overview of the Reverse Engineering Process
	The Reverse Engineering Process
	Methodology of this Thesis
	Requirements for the Reverse Engineering Process
	Conceptual Design
	Implementation

	Requirements for the automatic Reverse Engineering Process
	A simple MVC Framework
	The Model
	The Controller
	The View

	A Transformation into a MVC Framework Application
	Transforming the Data Model
	Implementing the Model and the View

	Symfony
	Fundamental Concepts
	Symfony's MVC Implementation
	The Project and Code Organization
	The Controller Layer
	The View Layer
	The Data Access Layer
	Setting up an Example Project in Symfony

	A Transformation into a Symfony Application
	A Comparison between the MVC Framework and Symfony

	Ingredients for the Conceptual Design
	WebML
	The Data Model
	The Hypertext Model
	The Content Management Model

	XML and HTML Processing Tools
	Jericho
	JAXB

	Conceptual Design
	Defining the Target Data Structure
	The Data Model
	The Web Model

	Defining a Mapping between the Web Application and the Web Model
	Identifying View Patterns
	Identifying Model Patterns
	Defining an intermediate Data Structure for the Web Application

	Ingredients for the Implementation
	Introduction on how a Compiler works
	The lexical Analysis Phase
	The syntactic Analysis Phase
	The Code Generation or Execution Phase

	Working with JavaCC
	Lexical States

	Working with JJTree
	Building an Abstract Syntax Tree
	The Visitor Pattern

	Implementation
	Transforming the Database Schema into a WebML Data Model
	A Grammar for Create Table Statements
	Defining the Relationships between the Tables
	Implementing the Compiler

	Implementing the PHP to WebML Compiler
	Building the AST
	Transforming the Templates to XML
	Transforming the Model Classes
	Creating the Pages
	Creating the Links from the Pages
	Creating the Links from the Operation Modules
	Creating and Marshalling the WebProject

	Related Work
	Overview
	Web Modeling Languages
	The WARE tool
	The Analysis Phases
	The Conceptual Model
	Tool Support

	A Comparison to WARE

	Conclusion and Future Work
	Summary
	Evaluation
	Prerequisite for an Automatic Transformation
	Shortcomings of the Assumptions
	Information Loss in Reverse Engineering

	Future Work
	Improving the Analysis of the PHP Code
	Using intermediate Models or Data Structures
	Introducing a Refactoring Phase

	Appendices
	The Reverse Engineering Framework and Examples
	Bibliography

