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ABSTRACT

This paper describes a multiscale homogenization model for macroscopic diffusion properties of wood. After a
short introduction the physical background of steady state diffusion processes in wood will be highlighted, resulting
in a physically motivated macroscopic description of diffusion processes with only one diffusion equation and thus
one diffusion tensor. This macroscopic diffusion tensor is derived by revisiting the morphological structure of wood
in the framework of continuum micromechanics. Starting point is the cellular structure of wood; further
homogenization steps include wood rays and the succession of annual rings. The quality of the model is assessed by
a comparison of model predictions and measured values at different temperatures and moisture contents.

INTRODUCTION

Computational simulations of physical processes
have gained in importance significantly in the last
decades, along with the incessant advancement of com-
puter hardware. Such simulations were of course also
applied in the field of moisture transport in wood, for
example by Truscott and Turner 2005 and Frandsen,
Damkilde and Svensson 2007.

Beside the sample geometry, the material properties
are the main input parameters for any simulation. In
wood, these properties are characterized by a wide
variability at the macroscale. This variability results
from differences in geometry and composition observed
at the macro-, micro-, and ultra-structural scale of a
wood tissue. So it has been striven for long to relate the
macroscopic properties to physical quantities at lower
scales (see e.g. Siau 1984).

The present article describes a new model capable
to predict macroscopic diffusion coefficients of wood
applicable to moisture transport problems at conditions
below the fiber saturation point, by including the entire
hierarchical structure of clear (knot-free) wood, ending
up with a multiscale analytical description. Similar
models for the estimation of mechanical properties (see

e.g. Hofstetter et al 2005) and thermal conductivities
(Eitelberger et al 2009a) showed good agreement with
measured results and motivate the application also to
diffusion properties.

PHYSICAL BACKGROUND OF STEADY STATE
MOISTURE TRANSPORT IN WOOD

Moisture in wood exists in three different phases:
Liquid water and water vapor in the cell lumens as well
as bound water in the cell wall. Liquid water is
permanently present only in the living tree. Below the
fiber saturation point (FSP) changes in moisture content
are accompanied by changes of other material properties
and by deformations. For this reason this paper deals
only with such conditions.

For conditions below the fiber saturation point it
further can be assumed that all interconnecting pits are
aspirated. Thus, moisture can only pass from one lumen
to another by diffusion through the cell wall. This is
accompanied by two phase changes: on the one side of
the cell wall water vapor is adsorbed, while on the other
side the bound water is desorbed to water vapor again.
Each phase change is accompanied by a change in
enthalpy; heat is released during adsorption and
consumed during desorption,




Steady state conditions denote that there i3 no
change of moisture content in each material point in
time. The two phases of water ~ water vapor in the
lumens and bound water in the cell walls ~ are in
equilibrium, which allows the description by only one
macroscopic gradient holding for both phases.

Consequently, the amount of adsorbed and desorbed
water in the cell wall is equal for steady state
conditions, so that the heat generation and consumption
upon the phase changes only results in a small heat flux
through the cell wall parallel to the moisture flux, but no
macroscopically relevant temperature gradients.

Based on this physical background, steady state
moisture diffusion in wood can be described by one
macroscopic gradient and therefore one Fickian process
with one diffusion tensor. In one (spatial) dimension
this is,

de
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where J denotes the flux, ¢ is the concentration, x is the
position and D is the diffusion coefficient. For two or
more dimensions Eq. (1) is generalized to

J=-D-Vc, )
where V is the gradient operator, and D is the second
order diffusion tensor. Wood is in good approximation

an orthotropic material, therefore the macroscopic three-
dimensional diffusion tensor D can be written as:
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with Dy, Dy, and Dr denoting the longitudinal, radial,
and tangential diffusion coefficients.

In order to consider the influence of the
microstructure of wood on the diffusion behavior,
homogenization methods are applied, which will be
presented in the following chapter. A coupling to heat
conduction processes is not necessary, since heat
transport is negligible at the macroscale.

CONTINUUM MICROMECHANICS

Continuum micromechanics is the analysis of a
heterogeneous material with several material phases of
known morphologies and diffusivities, This material is
understood as micro-heterogeneous, but macro-homo-
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geneous. The inhomogeneous microstructure is defined
by means of a representative volume element (RVE), in
which separate phases with specific properties are diff-
erentiated. To comply with the separation of scales re-
quirement, the characteristic length d of the inhomogen-
eities within the RVE making up a phase, has to be
much smaller than the characteristic length £ of the
RVE, d << { (see Fig. 1).

FIGURE 1: Multiscale homogenization with two RVEs

The response of the overall material, i.e. the relation
between concentration gradients acting on the boundary
of the RVE and the resulting diffusive fluxes, is
determined using an adaption of Eshelby’s solution for
matrix-inclusion problems. In combination with
averaging of concentration fluxes and gradients
(Dormieux 2005) an estimate for the homogenized
diffusion tensor D"™ of the material is obtained:
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where D, and f, denote the second order diffusion tensor
and the volume fraction of phase r, respectively, and I is
the second order unity tensor. The two sums are taken
over all phases of the heterogeneous material in the
RVE. The second order Hill-tensor P, contains
information about the characteristic shape of phase r in
a matrix phase with diffusion tensor D°. Choice of this
diffusion tensor D° allows the consideration of two
different types of arrangement of the phases the case of
a continuous matrix with mclusnons is represented by a
Mori-Tanaka scheme and D° = D, an intimately
mixed arrangement is described by a self-consistent
scheme with D° = D",

Formulating Eshelby’s solution for an ellipsoidal
inclusion with given radii a;, a,, and a;, the components
of the P-tensor are obtained as
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STEP Illa, b, c
earlywood / latewood / raycells

o Mori-Tanaka scheme
e ellipsoidal inclusions

o transversal isotropic matriz

STEP IV

earlywood with vessels

o Mori-Tanaka scheme
o cylindrical inclusions

e anisotropic components

STEP V

annual rings

e series/parallel connection
o alternating layers
e anisotropic components

STEP VI

wood sample

dyoog = 10 — 1000 pm
o Mori-Tanaka scheme

» cylindrical inclusions

e anisotropic matriz

FIGURE 2: Four-level homogenization procedure for diffusion properties of wood
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This general case of ellipsoidal inclusions can be
easily specialized to cylindrical inclusions (e.g. a; = )
and spherical inclusions (a) = @, = a3).

If a single phase exhibits a heterogeneous
microstructure itself, its behavior can be estimated by
introduction of an additional RVE within this phase,
with dimensions £, << d. This procedure can be
repeated until a scale is reached, on which the properties
of all phases are independent of the particular wood
tissue, resulting in a multiscale homogenization scheme
(see Fig. 1).
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A material like wood suggests the use of such a
multiscale approach. In the following section the
material phases at the different length scales and their
morphological properties are described.

HOMOGENIZATION MODEL FOR DIFFUSION
PROPERTIES OF WOOD

When formulating a homogenization model for
material properties, the ambition is to start at tissue-
independent phases in order to enable its application to
any wood species. Such phases in wood can only be
found on the nanometer scale. Namely they are
cellulose, hemicelluloses, lignin, water and extractives.
Similar models for mechanical and thermal properties
(see Hofstetter et al 2005 and Eitelberger et al 2009a)
start at this scale, including up to six homogenization
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steps. However, moisture diffusion coefficients of these
universal phases are not available.

Therefore we have chosen the cellular structure of
wood on a scale of about 150 pm as starting point for
the homogenization of diffusion coefficients. Fig.2
shows the resulting four-level homogenization pro-
cedure for diffusion coefficients of wood. To be con-
sistent with other existing models by the authors, the
present model starts at step III; step I and II are only
present in models that start on the molecular scale.

In steps Illa and I1lb, wood cells are represented by
hollow tubes aligned in the stem direction. Two phases
can be defined for this homogenization step: the cell
wall material and air filling the lumens, with diffusion
coefficients according to Eitelberger et al 2009b:
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where u is the moisture content, R is the universal gas
constant, T is actual temperature in [K], pam and p, are
the atmospheric and vapor pressure, respectively. The
prefactor in Eq. (7) is Do = 2.453-10"* m¥s for diffusion
in the transversal direction of the cell wall, and
Dy=6.133-10* m%s for diffusion in the longitudinal
direction.

Formulating step Il for different volume fractions
of cell walls and lumens and for different lumen
geometries results in diffusivity estimates for earlywood

and latewood (see Fig. 2).

An additional cell type are the ray cells, which form
pathways in the radial direction of the stem. The
behavior of these cells is calculated by step Iilc (see
Fig. 2) with a Mori-Tanaka scheme. ‘

In hardwood species, which exhibit a more
specialized structure than softwood species, large
vessels with a diameter of 200-500 pum support the
transport of water in the living tree. They are
incorporated in the model with step IV (see Fig. 2).
Vessels are mainly located in earlywood so that they are
only considered in this material part. The two phases of
this step are the earlywood material of step IIla and air
filling the vessel pores. The morphology of the vessels
as approximately ellipsoids again motivates the use of a
Mori-Tanaka scheme.
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Step V accounts for the succession of earlywood
and latewood in the annual rings. The effective
diffusivity is computed by either a series connection (R
direction) or a parallel connection (L and T direction) of
the diffusion coefficients of earlywood and latewood
calculated in steps I1Ib and IV. The typical length scale
of the RVE in this step is about 5-15 mm.

In the last homogenization step wood rays are
included in the material. Again a Mori-Tanaka scheme
is used, with the material of step V as matrix and the ray
cells of homogenization step Ilic as inclusions. The
typical length scale is again about 5-15 mm as in step V.
Nevertheless, this does not violate the separation of
scales requirement, since the decisive dimensions of
step V and VI refer to different material directions
(longitudinal and tangential in step V, radial in step VI).

A more detailed description of the steps, including
the calculation of volume fractions, morphological para-
meters and diffusion coefficients of the single phases, is
available in Eitelberger et al 2009a and 2009b.

VALIDATION OF THE MODEL

The validation of the model was done by
comparison of measured diffusion coefficients under
steady state conditions and corresponding model
estimates. Input values for the model are wood species
(which is chosen as indicator of ray content, ray
dimensions, and volume fractions in step V), density,
moisture content, and temperature. The validation
shows a good correlation between model predictions
and measurements (Eitelberger et al 2009b).

To display the predictive qualities of the model, a
set of measured values for a spruce tissue with an oven-
dry density of pay = 0.404 g/cm® (according to Koll-
mann 1951) is recalculated by means of the homogen-
ization model. The input parameters differ in terms of
moisture content and temperature. The results are shown
in Fig. 3, where the dash-dotted lines are the model
predictions for different moisture contents at a given
temperature. Each cross denotes one measurement with
reported temperature and moisture content.

A good agreement of measurements and model
predictions is observed. Reasons for deviations could be
the use of a constant approximate diffusion coefficient
for the cell wall, irrespective of the chemical
composition of the cell wall and the degree of pit
aspiration. Another reason could be the measurement
accuracy, the thus resulting broad spread of the
measurement results can be seen in Fig. 3.
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FIGURE 3: Model predictions (dash-dotted lines) compared with measured diffusion coefficients for a sample of
spruce (pary = 0.404 g/cm?) according to Kollmann 1951. The tests were conducted at four different temperatures (40,
60, 80, 100°C) Each marker indicates one measured value at moisture content u.

SUMMARY AND OUTLOOK

A multiscale model for moisture diffusion in wood
below the FSP is presented. Due to the lack of input
values below the cell wall scale, it starts at a length
scale of about 150 um, where wood cells form a
honeycomb-like structure. Within six homogenization
steps at four length scales the morphology of wood is
remodeled more accurately than in existing models,
which are limited to the wood cell structure. The
obtained results demonstrate the good predictive
capabilities of multiscale homogenization models and
continuum micromechanics as homogenization method.

With the presented approach, only diffusion coeffic-
ients for steady state moisture diffusion can be
calculated. The simulation of transient diffusion
processes is more complicated, since the two water
phases that are present below the fiber saturation point
are not in equilibrium anymore. Thus, they have to be
accounted for by two separate phases also on the
macroscale. Further a macroscopically relevant
generation and consumption of heat due to phase

changes requires the coupled simulation of heat
transport. The present steady state model will serve as
practical tool for determination of input parameters,
together with a similar multiscale model for heat
transfer properties (see Eitelberger et al 2009a).

We are positive, that the presented model will
contribute to future research of moisture transport simu-
lations in wood.
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