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Abstract—The paper shows the theoretical derivation of sen- elements with
sorless capability of a permanent magnet synchronous machine
due to saturation- and/or reluctance-based coupling effects. Oy

due to an introduction of coupling terms in the rotor-oriented low = lo+lacos(27), 3)
inductance tensor a dependency of double the electrical rotor _

position can be calculated. by = lo+lzcos(2y +21/3), )

lww = lo+1lacos(2y+4n/3), (5)

. INTRODUCTION My = Myw = Mg + Mg cos (27), (6)

A lot of publications handle with sensorless capability of M = My = Mo +macos (2y+27/3),  (7)

salient permanent magnet synchronous machines (PMSM)  myu =My, = mg+macos(2y+4n/3).  (8)
[1] and therefore assume unequal inductances in direct and

guadrature direction of a rotor-oriented two-axis indacta
tensor. In most cases the coupling terms between the fl
linkage space phasor in direct direction to the current spac . . S .
phasor in quadrature direction and vice versa are neglectedThe linear transf_ormatlon matrlfl‘aﬂ for _transformmg
This work gives a theoretical derivation of sensorless caphl’€&-Phase to equivalent two-phase quantities R, for
bility of PMSM's also due to these coupling terms whictPPPOSite direction

consider saturation- and/or reluctance-based effectsé fic-

B(_ Stator-Oriented Inductances

tive components of the inductance tensor in the rotor-tein v 2/ 1 —% —%
reference frame are represented as rotor position dependen a8 = 3\ ¢ @ _ § ) ©)
phase inductances which also includes higher harmonice up t 1 0
second order to sufficiently describe the saliency of a PMSM V3

; . . N — 1 V3 ) (10)
[2], [3]. Furthermore some simulation results are given for uvw 2 %f
better comprehension. -3 =4
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June 10, 2010 yjelds to the self- and mutual stator-oriented inductances
laa, lgp and myp in the stator-oriented fixed reference

Il. FUNDAMENTALS frame expressed with the self- and mutual phase inductances
Luws bvvs Lww, My, Muw and my, in a three-phase winding

configuration (zero-sequence self and mutual inductanees a
According to the ideas in [2] the self- and mutual phasgeclegted)

inductances, m

A. Phase Inductances

P = | - iowew (D) Ls ap(lo2,m0,2) = TR5" - Ls uvw(lo,2,mo0,2) - TS, (11)
——s,uvw ? ]
. 2 1 Lovtlue

wu Lo Myu  Mwu (A - g(luu — Muy — muw) + 3 (mvw + J; )

wv = Muy Zvv Myv '.LV (2) \% My — My — lvvglww)

Vw Muw  Myw  lww T

L(mu e lwflww)

are represented by their Fourier series expansion in depen- LA N v 2 : 12)
dence of the angular rotor position up to second order 2 Mw



Furthermore with above representations eq. 3-8, the setf- aps 4 , the complex stator current space phasgog, and the

mutual stator-oriented inductances follow to complex stator flux linkage space phasor due to the permanent
ta) in the rotor-oriented fixed reference frame dq
lo — (lz ) 2 magnetsy . 4 .
( laa Map > - 07 Mo+ \3f2ma jcosy and the te%s;o?l quantitl; 4, as follows
mag g ( Iy + mg) sin 2y
. Ya
(%lz + mg) sin 2y Yoaq = (wq = a + J¥q, (26)
lo —mg — (llg—l—mg) cos 27 ' Yom
: V= () = b @7
With the components of the inductance tensor quaititys )
. td . )
1 lsaq= | . | =fia+ Jig, (28)
loa = lo—mo+ <252 + m2> cos2y,  (13) o (zq) e
1 %s}dq_ls dql 5dq+wpm dq’ (29)
lﬁg = lyp—mg— <2l2 + m2> cos 27, (14) Ya _ la 0O ?/me 30
)+ ; (30)
1 '(/}q 0 lq iq 0
Mag = (12 + mg) sin 2. (15)
2 the subsequent flux linkage equations are achieved
C. Rotor-Oriented Inductances
1) With decoupled stator flux componeniith the linear Ya = lald + Ypm, (31)
transformation ma_triXI‘g‘(f(y) and Ti%(“Y) for linear coor- Vg = lyiq (32)
dinate transformations between the stator- and rotontade
fixed reference frame and vice versa The self-l,q, lgs and mutuabn, s inductances in the stator-
aB N cosy sinvy 16 oriented fixed reference frame (eq. 11) follows with the roto
Taa ™ =1{ _gny cosy (16) " oriented self inductances and1, to
dq [ cos7y —sinvy N
Tas(7) = ( siny  cosvy > ’ (7) Lsap(laq) = qu( ) Lsdq - Tdf(’y) (33)
and the trigonometrical identities _ ld;rl‘* + la lq cos 2y la g < sin 27
- laq ldJrl ld lq .
9 1+ cos 2y 2 < sin 2y -5 5 cos 2
cosy = ———, (18)
. 9 1 — cos 2y Furthermore subsequent abbreviations
sin”y = ———, (29)
) sin 2+ latly [ lm O
sinycosy = ——, (20) Im = 5 l, = 0 I, ) (34)
the self-lqq, lqq @and mutualy,, 4 inductances in the rotor- I la—lqg (s 0 (35)
oriented fixed reference frame, the coefficieljtsly,, m, and AT T AT 0 Ian )’
my, of the Fourier series expansion of the phase inductances
(eq. 3-8) and the inductance tensor quantity,, simplify to
ldd l d ld m . .
leqq = ( q > _ ( > ’ (21) _ lm +1lacos2y Ia sin 27
! ldg  laq mlq Lsas = I sin 2 Im —lacos2y ) (36)

follows to

o 2) With coupled stator flux componentyVith the tensor
Ls,dq(lo,2,m0,2) = Tdf(v) “1s.ap(lo2,m0,2) 'Ti%ﬁ) (22) ) P P

quantityl, 4, the components of the stator flux linkage space

_ ( lo —mo+ (31> +m2) 0 ) phasor 14, 1, in the rotor-oriented reference frame and
0 lo —mo — (3l2 +m2) introducing mutual inductances = lqq = lqq according to
With the rotor-oriented fixed reference frame leads to
lg = lo—mo+ ( lo + m2> (23) Pg = lqtq + miq + ’(/me (37)
hq = lqiq+ miq. (38)
lq = lo — moy — ( lQ + mg) (24)
m = 0 (25) Again with eq. 33 and eq. 18-20 the self- and mutual induc-

tances,q, l3s andms in the stator-oriented fixed reference
According to the two-axis theory [4], [5] and defining thedrame (eq. 11) follow with the self inductancés, [, and
components of the complex stator flux linkage space phagbe mutual inductance: in the rotor-oriented fixed reference



frame to

ld+lq
_|_
Ls.ap(la.qm) =< la
2
<52 sin 2y + m cos 2y

ldl

4 cos 2y — msin 2y
> (39)

(40)

1 sin 27 + m cos 2y

ld +l
T2

:<lm

la sin 2y + m cos 2y >

cos 2y + m sin 2y

+ I cos 2y — msin 27
Ia sin 2y + mcos 2y

lm — la cos 2y 4+ msin 2y

and yields to the components of the tensor quarijtys as
stator-oriented self- and mutual inductances

loa Im + Ia cos 2y — msin 27, (41)
lgg = Im —lacos2y +msin2y, (42)
Mas = lasin2y 4 mcos 2y, (43)

With comparison of eq. 13 and eq. 41 we get the relation

laa = lm+ /1A +m?cos(2y+¢), (44)
lgg = Lm— /1A +m?cos(2y +¢), (45)
Mmag = /1% +m?sin(2y +¢), (46)
with
tane = E. (47)
Ia

The self- and mutual phase inductances follow with

ls,uvw(laa,ﬁﬁa maﬁ) Tﬁvw : ls,a,ﬁ(lm,Aa m) : ZZ?W (48)
2 1 1
) 3laoc1 . locoz"' fmaﬁ
= 7510‘& + %ma[} gl + lﬂg \/»mag
e — Lm Ll — l
3laa V3 af 6laa BB
1 1
_glaa - %maﬁ
X él — lgﬁ , (49)
FHaa + 3lss + \[maﬁ

to a modified approach for the Fourier series expansion of the

phase inductances (see eg. 2)

low = lo+lacos(2y+e), (50)

2 2 [, 9

- glm + g\/lAﬁcos (2y +¢), (51)
lyw = lo+lacos(2y+2r/3+¢), (52)

2 2

_ 2 z /2 2

= 3lm+3WCOS(27+27T/3+5)’(53)
low = lo+lacos(2y+4n/3+¢), (54)

_ 2 2 [ 2 roa
= glm+§ 1A +m2cos (2y+4n/3 +¢), (55)

My = mvw = mg + mg cos (27 + ¢€), (56)
= ,,lm+ 21/12 +m2cos (2y +¢€), (57)
Muyw = My =mg+macos(2y+2n/3+¢), (58)
= ;lm—k 3\/12 +m?2 cos (2y + 2m/3 4 £)(59)
Myy = Myy = Mg+ macos(2y+4r/3+¢), (60)

1 2
_ 1 2 o 2
— 3lm+3 IR +m?cos (2y +4m/3 +¢)(61)

D. Stator-Oriented Flux Linkage Space Phasor

The stator flux linkage space phas¢r in the stator-
oriented fixed reference frames follows to

d
ysq,aﬁ = Ta%(’Y)- {ls dq " %4 dq+¢pm dq:|
d d
:Ta%('y).ls’dq.ng(fy) s FTI() 0

. d
@s,aﬁ + Ta%(f)/) ' y

pm,dq
= Luas(laqm)

() = ("

pm,dq’

) ()

Ia sin 27
— [a cos 2y

o ) ()
(5 ()

v o)) (% L)
(

(m

+ Ia cos 27y
IA sin 27 Im

—msin2y mecos2y
mcos2y  msin2y

¥

+

cos2y —sin2y o
—ig

sin2y  cos2y
cos 2y

b

—siny
cos 7y

sin 2y
cos 27y

(3 ) ()

The expression of the stator-oriented stator flux Imk&zge
with the rotor position independent stator-oriented equivalent
inductance tensor$,,, andl A follow to

) ()

(62)

cos 7y
sin 7y

Vous = L op +1a Toh(29) ihs +mTE (29) 0, 0
FTOEMN Y g (63)
= [l O+ m) - TN s + 8,

with
mz(i 73) (64)

The expression of the stator-oriented stator flux linkagecsp
phasor) With therotor position dependent stator-oriented
equwalent mductance tensag 3(2) follows to

Es,aﬁ 15 aﬁ(2’7) g aﬁ—i_’d} (65)

and yields to the coherence of the rotor position dependent
inductance tensots .3 and the rotor position independent
inductance tensork,, andl A with

pm,a’

Liap =L + (I +m) - TG (27). (66)



I1l. SIMULATION AND MEASUREMENTRESULTS

Fig. 1 depicts the complex solution of the stator-oriented

flux linkage space phasor divided by the stator-orientedcectir
space phasor. Fig. 2 depicts the phase shifdifference
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Fig. 1. Simulation of& {ﬂs,aﬁ/ésyaﬁ} ov. m{fs,a@ﬁsyaﬁ} with
Ypm = 0, lg = 1 and sinusoidal current supply at various dirégt
quadraturdq and mutuabn inductances

Fig. 3. Picture of the used 400 Nm PMSM for measuring

step was the well known transformation to the fictive self-
and mutual stator-oriented inductancgs,, igg and mgg

with neglected self- and mutual zero sequence inductances.
Third step was introducing the self inductances in direa an
guadrature direction at rotor-oriented reference framigh w
the solution of non existing mutual inductances in the rotor
oriented reference frame due to the given approach of the
Fourier series expansion up to second order elements. The

between measured and sensorless calculated angular rei¥ond order coefficients also show the dependency of the
position, over the magnitude of the quadrature current&spagngular rotor position. Next important step is introducing
phasor of the PMSM according to fig. 3. The sensorlegg,tyal inductances in the rotor-oriented reference frame d
calculation of the angular rotor position was done with the §g saturation effects in the stator and/or rotor. With this
called INFORM method which is based on the second ordgpnroach we obtain to the same coefficients of the Fourier

element of the Fourier series expansion.

2
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series expansion but with an additional angular phase shift
That means that the sinusoidal spatial distribution of amgiv
phase inductance is shifted by a phase anglee to saturation
effects. We also get an angular rotor position dependeney du
to the these effects.

V. CONCLUSION

The paper discusses an analysis of the rotor-oriented- refer
ence frame mutual inductances, which results in couplddrsta
flux components, with an additional phase shift according to
the Fourier series expansion of given self- and mutual phase
inductances.
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