Let’s Break the Rules: Interactive Procedural-Style
Debugging of Answer-Set Programs*

Johannes Oetsch, Jorg Piihrer, and Hans Tompits

Technische Universitidt Wien,
Institut fiir Informationssysteme 184/3,
Favoritenstraie 9-11, A-1040 Vienna, Austria
{oetsch, puehrer, tompits}@kr.tuwien.ac.at

Abstract. We introduce an interactive procedural-style debugging approach for
answer-set programs that avoids the negative aspects of non-declarative debug-
ging of ASP. It is based on an intuitive computation model that allows a user
to follow his or her intuition by stepwise determining which applicable rules are
considered to be supporting rules. Moreover, we define the notion of a breakpoint
for answer-set programs that allows to start stepwise debugging of a program I
from an answer set of a subprogram of /7.

1 Introduction

Research on debugging in answer-set programming (ASP) has so far mainly focused on
declarative methods [1-7].' This has two main reasons. First, it is the aim to have debug-
ging systems that are independent of any particular solving tool or solving method. Sec-
ond, it is commonly argued that procedural-style debugging would ruin the declarative
nature of answer-set programs under which a program is viewed as a set of logic rules
describing a problem, where no rule takes precedence and each of the rules is equally
important as the others. The main concern in this respect is that, following a procedu-
ral debugging approach, the answer-set programs under consideration could be seen as
parameters for the solving algorithm. This, in turn, would inveigle the user to a program-
ming style adjusted to the algorithm rather than focussing on clarity of representation.
However, on the other side, the goal of a fully declarative view on answer-set programs
seems to be idealistic. In fact, even the well-known guess-and-check paradigm imposes
a procedural flavour on programs, in the sense that solution candidates are first gener-
ated and afterwards filtered. We also experience that humans who construct an answer
set of a program manually will typically start from the facts and proceed in a bottom-up
manner, rather than proceeding in a random order. Generally, since writing programs
is necessarily an incremental process, already the order in which the rules are written
often follows a conceptual structuring the programmer has in mind.

In this paper, we aim for a debugging method that lets a programmer follow his or
her intuitions regarding the generation of an answer set and allows to quickly examine

* This work was partially supported by the Austrian Science Fund (FWF) under project P21698.
! The notable exception of this pattern being the work of Wittocx et al. [8] for debugging first-
order theories with inductive definitions based on tracing inconsistency proofs.



critical parts of the program. Hence, in a sense, we break with the goal of pure declara-
tivity in debugging while keeping the concerns of the argumentation above addressed.

In procedural programming, stepping through a program is a very common ap-
proach. While simple tracers only print information about the internal state of the execu-
tion steps for offline analysis, more advanced debuggers allow for modifying variables
and the control flow on the fly. In ASP, determining the direction of the search appears to
be a natural way of handling the inherent non-determinism of answer-set programs. We
introduce a non-deterministic computation model that is in our view easy to understand
even for novice programmers, yet able to grasp the answer-set semantics. Like many
approaches for bottom-up generation of answer sets [9-12], our computation model is
instantiated in the form of a fixed-point operator. It is based on stepwise adding sup-
porting rules of the desired answer set. Thereby, we follow the basic principle that once
a rule is applied it has to stay applicable until the end of the computation. This way,
every literal and every loop in the evolving answer set remains (externally) supported
and answer sets may evolve in a monotonic way. In a debugging session, the program-
mer serves as an oracle, choosing a rule that he or she considers as a supporting rule.
In case that a rule not chosen yet is inconsistent with the last state of an ongoing com-
putation, or if there are only rules applicable that would make a previously chosen rule
non-supporting, the computation fails. To reveal the nature of the corresponding “bug”,
i.e., the mismatch between the actual and the intended semantics, we propose several
options for querying the current state of the computation such that the programmer
gains insight into why the program does not behave as intended. As a consequence of
the design of a computation, at each step the growing interpretation is an answer set of
the program part considered so far. This gives rise to a counterpart of breakpoints for
answer-set programs. Indeed, stepwise debugging of a program I/ can be started from
an arbitrary answer set I of a subprogram I1’ of the grounding of IT, where the sup-
porting rules of IT’ with respect to I are also considered to be supporting in the initial
computation. This allows for a quick access to those aspects of a program the user is
interested in. For example, when a part of a program that was written earlier is already
considered correct, the debugging process can be started from there and built on the
results of this part. It is also possible to add rules during debugging and immediately
see how they influence the generation of the targeted answer set.

Our method has a procedural flavour, but it is independent of a particular solving
tool and hence does not interfere with any solver specifics such as internal data struc-
tures and performance hacks. Moreover, it does not spoil the declarative nature of ASP
as the order in which the rules are considered is not fixed, controlled by the programmer,
and may vary for the same program and targeted interpretation in different debugging
sessions. In this sense, we see the approach as a reconciliation of a procedural with a
declarative view on answer-set programs.

2 Preliminaries

We deal with normal logic programs which are finite sets of rules that are of form

lo —l1,. . lpm,n0t Iy, ..., n0t 1y, )



where n > m > 0, “not” denotes default negation, and all [; are literals over a function-
free first-order language L. A literal is an atom possibly preceded by the strong negation
symbol —. By [ we denote —a for | = a and a for | = —a. In the sequel, we assume
that £ will be implicitly defined by the considered programs. For a rule r of form (1),
B(r) = {l1,...,lm,n0t lynt1,...,n0t I, } is the body of v, BY (r) = {l1,...,ln} is
the positive body of r, B™(r) = {ln+1,-..,ln} is the negative body of r, and H(r) =
lp is the head of r. Moreover, r is a fact ift n = 0. For facts, we usually omit the
symbol “«”, and we identify sets of literals with sets of facts. A literal, rule, or program
is ground if it contains no variables. The grounding of a program II relative to its
Herbrand universe, denoted by gr(IT), is defined as usual.

An interpretation I (over some language £) is a finite and consistent set of ground
literals (over £). Recall that consistency means that {a, ma} Z I, for any atom a. The
satisfaction relation, I = «, between [ and a ground atom, a literal, a rule, a set of pos-
sibly default negated literals, or a program « is defined in the usual manner. We denote
the set of supporting rules of a ground program I/ with respect to an interpretation I as
supp! (IT) = {r € IT | I = B(r)}. A rule 7 such that I |= B(r) is called applicable
under /. Following Faber, Leone, and Pfeifer [13], we define an answer set of a pro-
gram IT as an interpretation I that is a minimal model of supp’ (gr(IT)). Note that for
the programs we consider, this definition is equivalent to the traditional one in terms of
the Gelfond-Lifschitz reduct [14].

3 Framework

Next, we introduce the basic computation model that underlies our debugging approach.
We are aiming for a scenario in which the programmer has strong control over the
direction of the construction of an answer set. The general idea is to first take a part of a
program and an answer set of this part. Then, step by step, rules are added such that at
every step literals may be added to the interpretation such that it remains to be an answer
set of the evolving program part. Hereby, the user only adds rules he or she thinks are
applicable in the final answer set. The partial interpretation grows monotonically until
it is eventually guaranteed to be an answer set of the overall program, otherwise the
programmer is informed why and at which step the computation went wrong.

A main aspect of our method is that the model of computation hides the non-
monotonicity of ASP away, evolving towards an intended answer set. As debugging
is typically started after a missing expected answer set or a superfluous unintended an-
swer set is detected, one can direct the computation towards this answer set without any
backtracking. The individual steps of a computation consists of the growing interpreta-
tion and a set of ground rules which are considered as already applied.

Definition 1. A state of a program II is a pair S = (I, R), where I is an interpretation
and R C gr(II) is a set of ground rules.

Given state S = (I, R) of some program, we also write Ig for I and Rg for R. Both
components of a state, the interpretation as well as the set of rules, grow monotonically
during a computation.



Definition 2. For two states S and S’ of a program II, S’ is a successor of S in II,
symbolically S" =11 S, if [Rs: \ Rs| = 1 and I C Ig.

A computation for a program II is a finite sequence C = Sy, ..., S, of states, for
n > 0, such that for all 0 < i < n it holds that S; 1 =1 S;.

Given a computation C = Sy, . .., S, for a program I, we say that Sy is the initial
state of IT and Ig,, is the result, res(C), of C.

We next define the semantic properties of validity and stability for our syntactic
notions of states and computations, respectively. Moreover, we introduce the notions of
failure and completeness of a computation.

Definition 3. A state S is (i) valid if Is = B(r) for all r € Rg and (ii) stable if
Is e AS (Rs).

A computation C = Sy, . .., S, is valid or stable if every state S;, for 0 < i < n, is
valid or stable, respectively.

A computation C = Sy, ..., S, for II has failed at step ¢ (0 < i < n) if there
is no answer set I of II such that Is, C I and Rs, C {r€ gr(P)| I EB(r)} A
computation C = Sy, ..., S, is complete if for every rule r € gr(II) such that Ig, |=
B(r) we have r € Rg,,.

In what follows, we instantiate our computation model by means of the non-deter-
ministic operator 1 (-), transforming a state .S for IT into another state S” for II such
that ' 17 S.

Definition 4. Let IT be a program and S a state of II. Then, Y1;(S) = (I, R), where
I = IsU{H(r)} and R = Rs U {r} for some rule r € gr(Il) \ Rs with Is = B(r)
and H(r) & Uy LU U, e BT ().

Theorem 1. Let IT be a program and I an interpretation for I1. If there is a fixed-point
iteration S; = Tyr(S;—1) with i > 0 where Sy = (), D) that reaches some fixed point
Sp = (I, R), then I is an answer set of II.

Theorem 2. Let IT be a program and I an answer set of I1. Then, there is a fixed-point
iteration S; = V7 (S;_1) with i > 0 where Sq = (0, () that reaches the fixed point

Proof (Sketch). By showing that choosing rules from supp’(gr(II)) is possible until
S,, is reached. a

It is easy to see that the sequence Sy, . .., .S, of Theorem 2 is a valid, stable, and com-
plete computation for /7.

Corollary 1. Let I be a program and I an interpretation. Then, there is a complete,
valid, and stable computation C for II with initial state Sy = (0, 0) and res(C) = I iff
I is an answer set of 11.

Theorem 2 can be generalised in the sense that we can start to generate a computa-
tion for IT using Y7 (+) from an arbitrary valid and stable state Sy of IT (not just from
(0, 1)) and still reach every answer set I O Ig, of IT where Rs, C supp!(gr(I)).



Algorithm 1 Basic Algorithm
Require: I7 is a program, Sy is a breakpoint of IT

1: C:= So B
2: forbidden := Ulelso lu UTERSU B~ (r)
3:9:=0

4: while {r € gr(II)\ Rs, | Is, = B(r)} # 0 do

5: pool :={(H(r),r) | r € gr(II)\Rs,, Is, E B(r),H(r) ¢ B~ (r),H(r) ¢ forbidden}
6:  if pool = () then

7 print Computation C is stuck

8

ANSWER USER QUERIES
9: return
10: end if

11: ~ SHOW DIAGNOSTICS

12:  ANSWER USER QUERIES

13:  USER ASSIGN: (I, r) := an element of pool
14: Sip1:= (Is, U{l}, Rs, U{r})

15: C:=C,Si+1

16:  forbidden := forbidden U B~ (r)

17:  forbidden := forbidden U {I}

18: 1:=i+1

19: end while

20: return C

Theorem 3. Ler II' and II be programs and consider two interpretations I' C I such
that I € AS(II), I C supp’ (gr(II)), and (I', I} is a valid and stable state of II.
Then, there is a fixed-point iteration S; = Vi (S;—1) with i > 0 where Sy = (I', IT')
that reaches the fixed point S,, = (I, supp(gr(II))) such that C = Sy, ..., S, is a
complete and stable computation for 11.

This result is very useful for debugging as it allows for taking an arbitrary subset of
rules of the program that are considered to be supporting, compute an answer set, and
start the search for a bug from there. For example, there will in most cases be no need
for stepwise adding the facts of a program. Furthermore, often large parts of a program
are trusted and mainly the latest rules added are suspected to be buggy. Moreover, it
is convenient that in the course of the development of a program a handful of starting
states for debugging sessions can be kept and maintained such that the programmer can
quickly initiate debugging from situations he or she is already familiar with.

In analogy to debugging in procedural programs, we identify potential starting
points—valid and stable states of a program—as breakpoints that enable a program-
mer to directly jump to an interesting debugging situation.

Definition 5. A valid and stable state of a program 11 is called a breakpoint of I1.

4 Debugging Strategy

In this section, we want to sketch an interactive debugging algorithm that implements
the operator 777 (-) for generating a computation for a program IT and that allows the



user to control and analyse the progress of this process. We first discuss the basic struc-
ture of the proposed debugging process, realised by Algorithm 1, and afterwards discuss
how an interface between the programmer and the system should be designed. Without
its interactive parts, the procedure works similar to a non-deterministic algorithm due
to Iwayama and Satoh [11], except that rules deriving a literal that is considered to be
false are filtered out prior to selection in Algorithm 1.

Algorithm. The input of the algorithm is given by a program II to be debugged and a
breakpoint Sy of I1. In Line 1, the variable C for the computed computation is initialised
with the breakpoint. Then, the literals considered to be false, according to the rules in
Rs, chosen to be supporting, are computed and stored in the forbidden variable. The
loop entered in Line 4 iterates as long as there are further applicable rules that are not
contained in the rules Rg, of the currently considered state .S;. At the beginning of every
iteration, the set pool is computed that consists of all pairs (I, r) of a literal [ that might
be added to the growing interpretation, being the head of an applicable unconsidered
rule . The elements of pool reflect the non-deterministic results of Y77 (.S;) in the sense
that (I, ) € pool iff there is some pair (I, R) with 7p7(S;) = (I, R) where I = Is,U{l}
and R = Rg, U{r}.If pool is empty (Line 6), the non-deterministic branch considered
in the computation did not lead to an answer set of I/ as there are unconsidered rules
that derive a literal which is considered to be forbidden. In this case, before aborting,
the algorithm enters a phase of user interaction (Line 8) that allows the programmer to
explore the reasons for failure—this is further outlined below.

If pool is non-empty, the user is first informed about some key properties of the
current status of the computation. Also this interface-related step in the algorithm, along
with the subsequent interaction phase in Line 12, are described below in more detail.
After the user decides to proceed, he or she chooses an element of pool for updating the
current interpretation and the set of rules considered applied in Line 13. Consequently,
the next state is computed and the variable forbidden is updated.

Interaction and Interface Aspects. In Line 11, our algorithm is designed to present a
report about the current status of the computation. In a concrete realisation, this should
include information whether the computation has failed, i.e., whether there is no answer
set I of IT such that both Is, C I and Rs, C supp’(gr(I)). Moreover, if it has failed,
the user should be informed if there is an answer set I of II such that I, C I but
Rs, € supp!(gr(I1)). In the latter case, the user might target a computation that has
an actual answer set I of II as its result but considers a rule as a supporting rule which is
not supporting with respect to I. For example, for the program consisting of the rule b «—
not a and the facts a and b, if a computation arrives at state ({a, b}, {a,b < not a}),
it has failed although {a, b} is an answer set because the rule b < not a has assumed
to be supporting. Another information to be given as instructed at Line 11 is whether
thereis arule r € gr(IT)\ Rg, not considered so far that cannot become satisfied at any
latter iteration because BT (r) C Is,, B~ (r) C forbidden, and also H(r) € forbidden.
In such a case, the computation will always fail.

The interaction phases referred to at Lines 8 and 12 should allow the user to pose
more detailed queries about the evolving computation to gain further insights in the
program’s behaviour and potential bugs. Once the computation is stuck (Line 8), the



programmer might be interested in why a computation has failed. Here, the system
should be able to state why applicable rules in gr(IT) \ Rg, cannot be added, i.e., at
which former state their head literals were added to forbidden. Moreover, for rules
r € gr(II) such that Rg, [~ B(r), the system should highlight the rule’s false body
literals. In the interaction phase of Line 12, the user should additionally be allowed to
inspect which answer sets of the final program I7 could still be reached by the current
computation, i.e., answer sets I € AS(IT) such that I, C I and Rg, C supp’(gr(II)).

We next discuss considerations concerning the interface for realising our approach.
For dealing with rules of the grounding of the program to debug, e.g., when querying
which literals of a rule instantiation are false, it is essential to have a human-computer-
interface that allows for quickly and conveniently referencing a certain ground instance
of a non-ground rule ~ € II. One option here is to specify partial variable assignments
using auto-complete mechanisms for filtering the ground instances of r to display.

Another aspect is that in a realisation of the debugging method it will be convenient
to select multiple ground rule instances at the same time and hence determine several
subsequent states of the computation at once. In particular, an option could be to select
all instances of a non-ground rule in the set pool at once. One aspect here is that when
multiple rules are selected, checks are required whether these rules can all jointly be
supporting. Moreover, for selecting different instances of a non-ground rule, again the
graphical interface should be designed in such a way that a programmer is able to select
intended instances fast without being visually distracted by too many of them.

In our approach, an evolving interpretation is not automatically joined with its im-
mediate consequences to give the programmer maximal freedom to guide the computa-
tion. However, the user should have the ability to let non-conflicting elements (I, ) of
pool, where B~ (r) C forbidden, be applied on demand.

A further useful feature is navigation in and reuse of an ongoing computation. The
programmer should at any point in the algorithm be able to backtrack one or more
states and continue from an earlier state to revise a decision on which element of pool
to choose. Moreover, a feature for loading and saving a computation into the variable C
should be provided such that previous debugging sessions can be resumed if necessary.

S An Application Scenario

The following typical examples of errors occurring in ASP were adopted from previous
work [7] illustrating another debugging approach (cf. also the discussion in Section 6).
We now show how these debugging problems can be handled with the current method.

Assume that students have the task to encode the problem of assigning papers to
members of the program committee (PC) of a conference for reviewing, based on some
bidding information in terms of ASP. We consider two cases illustrating different de-
bugging problems. In the first case, multiple answer sets are expected but the program
yields only one of the expected answer sets. In the other case, it is expected that a pro-
gram is inconsistent, but it actually yields some answer set. We illustrate that, in both
cases, our approach gives valuable hints how to debug the program in an iterative way.

In what follows, an atom pc(X) means that X is a PC member, paper(X) means
that X is a paper, and bids(X,Y, Z) means that PC member X bids on paper Y with



value Z, where Z is a natural number between 0 and 3, expressing a degree of prefer-
ence for the paper.

Student Linus tried to formalise that each paper is non-deterministically assigned to
at least one member of the PC. His program looks as follows:?

@ = {pc(m1); pc(m2); paper (p1); paper(p2); bid(my, p1, 2); bid(ma, pa, 3);

bid(ma, p1,1); bid(ma, p2, 1);

assigned(P, M) « paper(P), pc(M),not—-assigned(P, M);

—assigned(P, M) — paper(P), pc(M),not assigned(P, M );

— paper(P), pc(M),not assigned (P, M)}.
Linus expects that the two rules realise the non-deterministic guess, and then the con-
straint prunes away all answer set candidates where a paper is not assigned to some
PC member. Linus is desperate since the non-deterministic guess seems not to work
correctly; the only answer set of () is

Sq = Fg U {assigned(p1,m1), assigned(p1, mz),
assigned (pa, my ), assigned (p2, m2)},

where Fg is the set of facts in (), although Linus expected one answer set for each
possible assignment. In particular, he expected

Eq = (Sq U {—assigned(p1,m2)}) \ {assigned(p1, m2)}

to be an answer set. Linus starts the debugging algorithm at breakpoint (Fg, Fp).
Among the available applicable ground rules, he chooses

r1 = —assigned(p1, mo) < paper(py), pc(ms), not assigned (py, ms)
which derives —assigned(pi, m2) as intended. The debugger warns that the constraint

c1 = « paper(p1), pc(mz), not assigned(p1,m2)

can now not be satisfied in any further state, however, as assigned(p1,m2) has been
considered a forbidden literal when adding r.

Linus already suspects the cause for the issue, but to be sure he continues the de-
bugging process. As every paper needs to be assigned, and in the answer set Linus is
aiming for PC member ms not being assigned to paper p;, he next chooses

assigned(p1,my) < paper(p1), pc(my), not —assigned(py, m)

to be added as supporting rule. As already predicted by the debugging algorithm, m;
being assigned to p; does not change constraint ¢; from being unsatisfied. Linus suspi-
cion has been confirmed, the constraint

— paper(P), pc(M), not assigned (P, M)

requires that each paper is assigned to al/l PC members. The original intention was that
it only requires a paper to be assigned to a single PC member. Hence, he replaces the
constraint by the two rules

% Note that an expression r of form « BT (r), B~ (r) is a constraint standing for a rule a «
B*(r),B™(r) U {a}, where a is a globally new atom.



— paper(P), pc(M),not at_least_one(P) and
at_least_one(P) «— assigned (P, M).

The resulting program yields the nine expected answer sets as expected.

In the meantime, Peppermint Patty is writing a program addressing the following
issue: If a PC member M bids 0 on some paper P, then there is a conflict of interest
with respect to M and P. In any case, there is a conflict of interest if M (co-)authored
P. A PC member can only be assigned to some paper if there is no conflict of interest
with respect to that PC member and that paper. This is Patty’s solution:

R = {pc(mq); paper(p1); bid(m1,p1,2); assigned (p1, m1); author(py, m1);
conflict(M, P) «— bid(M, P,0);
conflict(M, P) «— pc(M), paper(P), author(M, P);
bid(M, P,0) «— conflict(M, P), paper(P), pc(M);
— assigned (P, M), bid(M, P,0)}.

The facts in R are supposed to model a scenario where a PC member authored a paper
and is assigned to that paper. According to the specification given earlier, this should
not be allowed. Since Patty is convinced that her encoding is correct, she expects that
R has no answer sets. But R has the unique answer set

Sk = {assigned(p1, m1), pc(mq), paper(p1), author(p1,m1), bid(my,p1,2)}.

What Patty finds puzzling is that S does not contain any atoms signalling a conflict of
interest. Similar to Linus, she starts out with breakpoint (Fr, Fr), where Ff, is the set
of facts in R. To her surprise, the rule

r1 = conflict(my, p1) < pc(ma), paper(p1), author(my,py)

is not applicable with respect to F'r. She queries the debugging system why the body
of 71 is not satisfied with respect to Fr and gets the answer that author(m,p1) ¢ Fg.
Now Patty realises that she used the fact author(pi, mq) instead of author(mq,p1),
accidentally swapping the predicate’s arguments. After this bug is fixed the program is
correct.

6 Related Work

Pontelli, Son, and El-Khatib [6] introduced justifications for ASP. Roughly speaking,
a justification is a labelled directed graph that explains the truth value of a literal with
respect to an answer-set in terms of dependency on the truth values of fellow literals.
Contrary to our approach, justifications pull out focused information concerning a sin-
gle artifact—the literal under consideration—rather than giving a holistic view on the
computation. Interesting with respect to our technique is the notion of an online justi-
fication that explains truth values with respect to partial answer sets emerging during
the solving process. As our approach is compatible with the model of computation for
online justifications, they can be used in a combined debugging approach. While in-
teractively stepping through a computation allows for following individual intuitions



concerning rule applications, justifications like graphs could keep track of the chosen
support for individual literals of interest. A potential shortcoming concerning the in-
tuition of justifications is the absence of program rules, constituting the actual source
code artifacts in the graphs.

Another graph-based approach that aims at visualising answer-set computation is
realised in the noMoRe-system that utilises rule dependency graphs (RDGs) which are
directed labelled graphs where the nodes are the rules of a given program [15]. Answer
sets can be computed by stepwise colouring the nodes of the RDG of a ground program
either green or red, reflecting whether a rule is considered applicable or not. At special
steps, an answer set is formed by the heads of the green coloured rules.

Other previous work on declarative debugging centred on the question why a given
interpretation is not an answer set of a program [7]. The answers are given in terms
of rule instances that are unsatisfied, or loops that are unfounded. The reasons for an
interpretation not being an answer set might be easier to understand in the procedural
approach as the user is not confronted with several unsatisfied rules of the whole in-
tended answer set at once and unfounded loops never appear in a computation of our
current approach.

In contrast to fixed-point definitions of answer sets (as, e.g., described in the works
of Sacca and Zaniolo [9] and of Leone, Rullo, and Scarcello [16]) that aim at a quick
automatic evaluation, we do not always apply all knowledge that is available and focus
on the programmer’s intuition instead, e.g., immediate consequences of a current state
of a computation are not added necessarily in case they are not of interest to the user.

While the algorithm we use for our computation focuses on readability and works on
the rule level, the algorithms used for computing answer sets [17, 16, 18] are often quite
involved and hard to grasp for an ordinary programmer. Moreover, following a concrete
execution of a solver will not be very helpful when the user is not able to focus on parts
of the execution that are of interest. Indeed, a tracing system developed for DLV [19] is
intended for debugging the solver itself rather than the answer-set programs.

7 Conclusion

We presented a debugging approach for ASP with a procedural flavour that allows the
programmer to follow his or her own intuitions on which rules to apply. It is based on an
intuitive and simple computation model in which at each state a rule that is considered a
supporting rule is added. In future work, we want to extend the approach to disjunctive
programs and implement a prototype as part of an integrated development environment
for ASP. Besides making debugging easy, using a debugging system as envisaged could
improve the inexperienced programmer’s understanding of the answer-set semantics.

References

1. Brain, M., De Vos, M.: Debugging logic programs under the answer-set semantics. In: Proc.
ASP’05, CEUR-WS . org (2005)
2. Syrjinen, T.: Debugging inconsistent answer set programs. In: Proc. NMR’06. (2006) 77-83



10.

11.

13.

14.

17.

18.

19.

. Brain, M., Gebser, M., Piihrer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging ASP

programs by means of ASP. In: Proc. LPNMR’07. Volume 4483 of LNCS, Springer (2007)
3143

. Caballero, R., Garcia-Ruiz, Y., Sdenz-Pérez, F.: A theoretical framework for the declarative

debugging of datalog programs. In: Proc. SDKB’08. Volume 4925 of LNCS, Springer (2008)
143-159

. Gebser, M., Piihrer, J., Schaub, T., Tompits, H.: A meta-programming technique for debug-

ging answer-set programs. In: Proc. AAAT’08, AAAI Press (2008) 448453

. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs under answer set

semantics. Theory and Practice of Logic Programming 9(1) (2009) 1-56

. Oetsch, J., Piihrer, J., Tompits, H.: Catching the Ouroboros: Towards debugging non-ground

answer-set programs. Theory and Practice of Logic Programming 10(4-6) (2010) 513-529

. Wittocx, J., Vlaeminck, H., Denecker, M.: Debugging for model expansion. In: Proc.

ICLP’09. Volume 5649 of LNCS, Springer (2009) 296-311

. Sacca, D., Zaniolo, C.: Stable models and non-determinism in logic programs with negation.

In: Proc. PODS’90, ACM Press (1990) 205-217

Fages, F.: A new fixpoint semantics for general logic programs compared with the well-
founded and the stable model semantics. In: Proc. ICLP’90. (1990) 441-458

Iwayama, N., Satoh, K.: Computing abduction by using TMS with top-down expectation.
Journal of Logic Programming 44(1-3) (2000) 179 — 206

. Seipel, D., Minker, J., Ruiz, C.: Model generation and state generation for disjunctive logic

programs. Journal of Logic Programming 32(1) (1997) 49-69

Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Seman-
tics and complexity. In: Proc. JELIA’04. Volume 3229 of LNCS, Springer (2004) 200-212
Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9(3-4) (1991) 365-386

. Bosel, A., Linke, T., Schaub, T.: Profiling answer set programming: The visualization com-

ponent of the nomore system. In: Proc. JELIA’04. Volume 3229 of LNCS, Springer (2004)
702-705

. Leone, N., Rullo, P., Scarcello, F.: Disjunctive stable models: Unfounded sets, fixpoint se-

mantics, and computation. Information and Computation 135(2) (1997) 69-112

Simons, P., Niemel, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138 (2002) 181-234

Drescher, C., Gebser, M., Grote, T., Kaufmann, B., Konig, A., Ostrowski, M., Schaub, T.:
Conflict-driven disjunctive answer set solving. In: Proc. KR’08, AAAI Press (2008) 422-432
Calimeri, F., Leone, N., Ricca, F., Veltri, P.: A visual tracer for dlv. In: Proc. SEA’09. (2009)



