
A Recommender for Conflict Resolution Support
in Optimistic Model Versioning ∗

Petra Brosch Martina Seidl Gerti Kappel
Business Informatics Group

Vienna University of Technology, Austria
{lastname}@big.tuwien.ac.at

Abstract
The usage of optimistic version control systems comes along
with cumbersome and time-consuming conflict resolution
in the case that the modifications of two developers are
contradicting. For code as well as for any other artifact the
resolution support moves hardly beyond the choices “keep
mine”, “keep theirs”, “take all changes”, or “abandon all
changes”.

To ease the conflict resolution in the context of model
versioning, we propose a recommender system which sug-
gests automatically executable resolution patterns to the de-
veloper responsible for the conflict resolution. The lookup
algorithm is based on a similarity-aware graph matching ap-
proach incorporating information from the metamodel of the
used modeling language. This allows not only the retrieval of
recommendations exactly matching the given conflict situa-
tion, but also the identification of similar conflict situations
whose resolution patterns are adaptable to the current con-
flict.

Categories and Subject Descriptors D.2.9 [Software En-
gineering]: Management—Programming teams

General Terms Design, Languages

1. Introduction
Contemporary software engineering is confronted with two
major challenges: first, with the complexity of modern soft-

∗ This work has been partly funded by the Austrian Federal Ministry of
Transport, Innovation, and Technology and the Austrian Research Promo-
tion Agency under grant FIT-IT-819584 and by the fFORTE WIT Program
of the Vienna University of Technology and the Austrian Federal Ministry
of Science and Research.

[Copyright notice will appear here once ’preprint’ option is removed.]

ware systems and second, with the complexity of the soft-
ware development process itself. To deal with the first chal-
lenge techniques of model-driven engineering (MDE) are
employed which benefit from the abstraction power of mod-
els [1]. Instead of being artifacts applied for mere design
and documentation purposes only, models are successfully
leveraged as basis for compiling executable code. The sec-
ond challenge is faced with adequate tool support enabling
the effective management of the software development pro-
cess to deal with the evolution of developed artifacts.

Very prominent representatives of such management
tools are version control systems (VCS) supporting collabo-
ration among the team members of a project [7]. Optimistic
version control systems allow multiple, possibly globally
distributed developers to modify the same artifact at the
same time and independently of each other. If two mod-
ifications do not contradict each other then they may be
easily merged into one new version of the artifact [11]. If
two modifications are contradicting, a manual resolution has
to be performed which is a repetitive, time-consuming, and
error-prone task in general. The developer responsible for
conflict resolution has to decide for either one of the alter-
natives or (s)he has to provide a completely new variant.
Currently, promising approaches are developed for the con-
flict resolution in the context of code versioning [8, 9] but
for model versioning, no tool support is provided.

Taking advantage of the models’ graph-based structure
and their rich semantics, we propose a recommender sys-
tem facilitating the conflict resolution in optimistic model
versioning. In [3], we presented a categorization of typical
conflicts in model versioning which allowed us to identify
an initial set of reoccurring conflict situations and typical
resolution patterns. Furthermore, we proposed an approach
to automatically mine existing model repositories for the au-
tomatic identification of formerly applied conflict resolution
patterns [2]. On this basis we obtain a collection of conflicts
and executable resolution patterns yielding the knowledge
base for the recommender system. Conflicts are represented
as models, i.e., in a graph-based data structure. The lookup
algorithm realizes not only exact graph matching, but also

DRAFT—Onward! 2010 1 2010/4/7

similarity-aware graph matching as it is done in the context
of pattern mining in code repositories [17]. The goal of our
approach is supporting modelers during the conflict resolu-
tion process in optimistic versioning even if they do not ex-
actly know the necessary resolution pattern at the beginning.

This paper is outlined as follows. In Section 2 we shortly
explain our motivation to enrich versioning systems with a
recommender component. In Section 3 we introduce a model
for conflicts. On this basis we are able to develop a measure
for the similarity of conflicts in Section 4, which is applied
and evaluated in the similarity-aware graph matching algo-
rithm we use to identify suitable resolution patterns. In Sec-
tion 5 we discuss the realization of the recommender system
supporting conflict resolution in model versioning and con-
clude with a discussion of related research areas and future
work in Section 6.

2. Motivation
When an optimistic versioning approach is followed, each
developer works independently on his/her local copy and
synchronizes his/her work from time to time with a central
repository. As long as the modifications of the different de-
velopers do not interfere, i.e., as long as their modifications
commute, there is almost no overhead by using the version-
ing system. The workflow, the two developers—let us call
them Sally and Harry—have to pass through, is as follows.
Sally and Harry check out the same artifact from a central
repository and perform different changes. When Sally is fin-
ished, she loads the new version back to the repository. Later
Harry also intends to submit his new version to the reposi-
tory, but unfortunately his changes are conflicting with the
changes of Sally. So he has to resolve these conflicts before
he is allowed to store his new version into the repository.
Instead of doing productive work, he is now occupied by
integrating his modifications and the changes of Sally. The
resolution of conflicts requires manual intervention because
an automatic merge usually yields unsatisfactory results as
in the example shown in Fig. 1. The model originally stored
in the repository contains a UML Class Diagram consist-
ing of the classes PublicTransport, Subway, and Train,
whereas the latter two classes are subclasses of the first and
each of them contains the attribute railtrackWidth. When
Sally introduces a new class Bus into the hierarchy (V0’) and
Harry performs the refactoring pullUpField which shifts the
attribute railtrackWidth common to all subclasses into
the superclass (V0”), a naive merge including all modifica-
tions would result in a model where a bus inherits the at-
tribute railtrackWidth which probably does not reflect
reality (V0’ + V0” in Fig. 1).

In order to preserve the intentions of both developers,
the conflict resolution of Harry should be as shown in
V1 of Fig. 1. A new class RailVehicle should be in-
troduced which is a subclass of PublicTransport and
which inherits the railtrackWidth attribute to Subway

PublicTransport
V0

Subway

railtrackWidth

Train

railtrackWidth

PublicTransport
V0‘

V0‘‘

Subway

railtrackWidth

Train

railtrackWidth

Bus

PublicTransport

Subway

railtrackWidth

Train

PublicTransport

Subway

railtrackWidth

Train Bus

V0‘ + V0‘‘
(Naive Merge)

y

PublicTransport
V1 (Intension
Preserving Merge)

Subway

RailVehicle

railtrackWidth

Train

Bus

Figure 1. Conflict Scenario

and Train, but not to Bus which is nevertheless a subclass
of PublicTransport. This resolution strategy is applicable
whenever a conflict of a similar structure reoccurs no mat-
ter if the involved classes represent vehicles, creatures, or
something else. Therefore, it would be extremely supportive
if this pattern is suggested to the developer in charge of the
resolution and if the pattern is automatically executed when
it is selected by the developer.

Refactoring-aware versioning systems can detect and re-
play refactorings during the merge process to incorporate
newly introduced and modified elements [8, 9]. When mod-
ifications violate the refactoring’s precondition, a conflict is
reported. Current versioning systems usually indicate only,
where the modifications have taken place. Advanced conflict
resolution support is not provided.

In the remainder of this paper, we present a recommender
system as integral component of the adaptable model ver-
sioning system AMOR1. AMOR’s sophisticated change and
conflict detection component (the Conflict Detector) deliv-
ers precise information on merge problems [2]. Equipped
with a repository filled with (conflict, resolution) pairs (the
Conflict Repository), where the recommender system looks
up suitable resolutions for a reported conflict, (semi-) au-
tomatic support for the conflict resolution in the context of
model versioning is realized.

1 http://www.modelversioning.org

DRAFT—Onward! 2010 2 2010/4/7

: ConflictEObject
(from TentativeMerge)

EObject
(from Metamodel)1

type

name : EString
properties : EList

<EStructuralFeature>

MissingBindinga) b)

: OperationConstraint
pullUpField :

ConflictingCOperation
addInheritance :

ConflictingAOperation
Binding* *

0..1 0..1

: Binding : Binding : Binding

ConflictingOperation
2

ConflictConstraint
*

* 0..2

violated conflicting

Bus : Class PublicTransport : Class m : MissingBinding

name : “railtrackWidth”

{incomplete}

Conflicting
CompositeOperation

Conflicting
AtomicOperation

Operation
Constraint

MetaModel
Constraint

Attribute: EObject
Operation

Specification
(from OSMetaModel)

<<uses>>

<<uses>>

Resolution

*

Figure 2. (a) Conflict Model, (b) Instance of the Conflict Model

3. Conflicts in Model Versioning
In the following, we represent conflicts by the means of
a model, i.e., we define a UML Class Diagram for de-
scribing conflicts. This approach is similar to Cichetti et
al. [6], where the authors present a conflict model as an
extension to their difference model. Since the conflict detec-
tion component of AMOR [4] is able to reconstruct com-
posite changes like refactorings, we obtain a more com-
pact difference report and consequently a compact con-
flict description. Furthermore, we include status informa-
tion of the merge process, i.e., we have information about
the already integrated modifications given in the tentative
merge model. The tentative merge consists of the origin
version V0 merged with all non conflicting operations per-
formed in the parallel edited versions V0’ and V0”, hence
the tentative merge model is a valid model incorporating
the changes identified as unproblematic. Our conflict model
is shown in Fig. 2(a). A Conflict always contains two
conflicting operations. A ConflictingOperation is ei-
ther a ConflictingAtomicOperation (e.g., add, delete,
and update) or a ConflictingCompositeOperation (e.g.,
refactorings) which is based on AMOR’s OperationSpe-

cification as defined in [4]. The application of these
two operations would induce the violation of some kind of
Constraint. At the moment, we distinguish between two
kinds of constraints: a MetaModelConstraint expresses a
well-formedness rule of the applied modeling language. An
OperationConstraint refers to an invariant, a precondi-
tion, or a postcondition of an operation. Note that a conflict
does not contain all possible conditions and constraints but
only the ones which are violated and hence important for
the definition of the conflict. In fact, our conflict model pro-
vides a view on the elements of operation specifications
where the elements necessary for the conflict description are
included. The constraints and the operations of a conflict

are related to specific bindings which represent their input
arguments. These input arguments are expressed by either
referring to an element of the tentative merge, or by speci-
fying a MissingBinding if an element is not available in
the tentative merge. A MissingBinding points to the type
of the missing element in the underlying model and contains
additional information about the missing element like its
name and other properties. For a complete definition of our
conflict model further well-formedness rules would be nec-
essary. For example, it is necessary to ensure that the types
of the bound elements of a ConflictingOperation are
type compatible with the input parameters of the according
OperationSpecification. If a binding is not assigned to
an operation, it has to be assigned to at least one constraint.
In this paper, we assume that AMOR’s Conflict Detector
provides syntactical correct conflict descriptions only, hence
we omit these well-formedness rules. Finally, an arbitrary
number of resolutions may be attached to each conflict.

An example of a conflict instance is shown in Fig. 2(b).
The operations pullUpField and addInheritance are
conflicting. The bindings point to the involved elements: the
class Bus should become subclass of PublicTransport,
whereas an attribute Attribute is moved to Public-

Transport. Note that we have to deal with a missing
binding, as the conflict exists due to the absence of an
Attribute with the name railtrackWidth. For the ap-
plication of the pullUpField operation, the following con-
straint (expressed in OCL) has to hold:
PublicTransport.subclasses→ forall (s |

s.attributes → exists (a | a.name == m.name))

The constraint is violated because there exists one subclass
of PublicTransport (namely Bus) which does not have an
attribute with the according name.

DRAFT—Onward! 2010 3 2010/4/7

Conflicts as described in this example are returned from
the Conflict Detector of AMOR. With such a conflict as
input, the recommender system is able to look up suitable
resolution strategies in the Conflict Repository using ex-
act as well as similarity-aware matching techniques. When
similarity-aware matching techniques are applied, three
sources of variability may be considered: (1) the operations,
(2) the conditions, and (3) the bindings. As a first step to-
wards a similarity-aware conflict recognition, we consider
the bindings in the following.

4. Finding Resolution Patterns
In the following example, we aim at illustrating the need
for inexact matching techniques. Assume that the Conflict
Repository contains only the conflict and its resolution pre-
sented in Section 2. The conflict scenario depicted in Fig. 3
emerges from the parallel modifications where one mod-
eler introduces the new class Penguin into the inheritance
hierarchy and the second modeler pulls up the operation
getFlightSpeed() of the classes Hawk and Duck into the
superclass Bird. A naive merge would produce a model
where penguins are able to fly what contradicts reality. The
Conflict Detector reports a conflict not due to this common
domain knowledge, but due to a violated precondition of
the refactoring pullUpMethod. When querying the Conflict
Repository, no exact matching conflict is found. In order to
find at least the conflict of the previous example (cf. Fig. 1),
the ability to handle inexact matches is indespensable.

Unfortunately, existing matching tools (cf. [15] for a sur-
vey) or dedicated model diffing tools like EMF Compare are
not appropriate for our purposes, since they operate on the
model level only and do not consider similarities of the meta-
model elements. SiDiff [14] implements a similarity-based
algorithm which may be configured by the user. A config-
uration contains the impact of metamodel features. For ex-
ample, the name of a class is an higher ranked similarity
criterion than the value of the isAbstract feature. So the
similarity of two model elements with the same type may be
calculated using ranking information for the concrete instan-
tiations. In contrast, we are also interested in the similarity
of model elements with different types. Recall that informa-
tion like the name of a model element is of little help for our
purposes because we match the concrete conflict against a
generic instance of the conflict model stored in the conflict
repository.

Similarity of metamodel elements. One possibility to find
a broader range of conflicts is to suspend type information
and match on graph structure only. This approach may work
well in many situations. The drawback is that structural
equality of conflict model instances does not ensure the
suitability of their resolution pattern.

A more reliable approach is to apply similarity-aware
graph matching techniques [5]. Here the typed graph is an-
alyzed, but inexactness is allowed as long as a minimum

V0
Bird

Hawk
getFlightSpeed()

Duck
getFlightSpeed()

Bird
V0‘

Hawk
getFlightSpeed()

Duck
getFlightSpeed()

Penguin

Bird
getFlightSpeed()

V0‘‘

Hawk

getFlightSpeed()

Duck

Figure 3. Conflict Scenario Revised

similarity of the compared nodes (i.e., model elements) is
given. To faithfully support the generic, modeling language
independent approach of AMOR, the necessary similarity
measures should not be predefined, but be automatically de-
rived by analyzing the metamodel of the modeling language
in use. The taxonomic structure of the metamodel is an in-
dication of the similarity between elements. Unfortunately,
considering the inheritance alone is not enough. Some fea-
tures like the name feature in a Class Diagram (cf. Fig. 4) are
inherited to almost every element, hence it is a less valuable
indicator for similarity. We propose to calculate similarity
by exploiting the internal structure as well as the relational
structure of metamodel elements. In fact, properties, rela-
tions, and inheritance relations are considered.

DEFINITION 4.1 (Similarity). The similarity of two meta-
model elements is given by the number of their common fea-
tures weighted by their overall occurrence in the metamodel.

For decreasing the weight of common features and con-
temporaneously increasing the weight of rare features, the
frequency of the feature’s appearance within the whole meta-
model is considered like it is done by term frequency-inverse
document frequency (TFIDF) algorithms [16]. TFIDF is usu-
ally used in information retrieval as a measure for the rele-
vance of a term to a document. We use the metamodel as
corpus and apply TFIDF as a measure for the relevance of a
feature within a metamodel element.

Similarity algorithm. We implemented the algorithm with-
in the Eclipse Modeling Framework (EMF) allowing the
calculation of similarity values for every Ecore-based meta-
model. A simplified variant of our approach is shown in
Alg. 1. First, we analyze the metamodel and instantiate two
lists. The list mmElements holds all elements defined in the
metamodel, in line 1. The list features holds all distinct fea-
tures occurring in any metamodel element (line 2). Second,
in lines 3-5, we declare convenience functions for accessing

DRAFT—Onward! 2010 4 2010/4/7

<<enumeration>>
Visibility

PUBLIC

<<enumeration>>
PrimitiveTypes

STRING
NamedElement

name : EString
PRIVATE
PROTECTED

INTEGER
BOOLEAN
FLOAT

Type type1

name : EString

Type

Package

returnType1
type1
type1

0..*

types

Class PrimitiveTypeInterface
extends extends

0..1 0..1
0..*

isAbstract : EBoolean

yp

type : PrimitiveTypes
implements

source

target

1 1

ParameterAttribute

visibility: Visibility

Association

upper : Eint
l EI t

0..* 0..* 0..* 0..* 0..*
0..*

attributes methods methodsassociations

params
Method

visibility: Visibility
i Ab t t EB l

attributes

lower : EInt isAbstract : EBoolean

Figure 4. Class Diagram Metamodel

Input: Rootnode root of metamodel
Output: Matrix of similarity values for each

metamodel element pair

// variable declarations

1 mmElements← getAllMetamodelElements(root);
2 features← getAllFeatures(root);

// function declarations

3 relevanceMatrix : (EObject, Feature) 7→ float;
4 relevanceVector : (EObject) 7→ float|features|;
5 similarityMatrix : (EObject, EObject) 7→ float;

// definition of relevanceMatrix

6 foreach MmElementM∈ mmElements do
7 foreach Feature F ∈ features do
8 relevanceMatrix(M, F)←

log
(

countElements(root)
getGlobalFreq(F , root)

)
·

getLocalFreq(F ,M);
9 end

10 end
// definition of similarityMatrix

11 foreach MmElement N ,M∈ mmElements do
12 similarityMatrix(N ,M)←

‖relevanceVector(N)‖ × ‖relevanceVector(M)‖;
13 end
14 return similarityMatrix

Algorithm 1: Similarity Calculation

arrays. Third, we calculate the relevanceMatrix in lines 6-10.
The relevanceMatrix is a n×m array with values describing
the relevance of each metamodel feature within each meta-
model element. The number of metamodel elements is given
by n, whereas m denotes the number of features occurring

in the metamodel. The relevance of one feature within a
metamodel element is based on the total number of meta-
model elements, its occurrence frequency in the complete
metamodel, and finally its occurrence frequency within the
considered metamodel element. In the last step (lines 11-
14), we calculate the similarity for each pair of metamodel
elements by the cross product of the normalized relevance
vectors. A relevance vector for one metamodel elementM
contains the relevance values of all features withinM, i.e.,
it respects to the line of the relevanceMatrix containing the
relevance values ofM.

An example. In the following we apply the algorithm on a
Class Diagram (cf. Fig. 4 for the metamodel). For the sake
of readability, the metamodel follows a general design pat-
tern but leaves out specific details. All elements extend di-
rectly or indirectly the common superclass NamedElement,
enumeration types excluded. Package forms the root el-
ement and contains Types and Associations. Class,
Interface, and PrimitiveType specialize Type. Both
Classes and Interfaces may extend again a Class and
an Interface and contain Attributes and Methods. In
addition, a Class may be abstract and may implement
Interfaces. Attributes and Parameters have a Type,
a Method contains an arbitrary number of Parameter and
returns a Type. In addition, well-formedness rules are nec-
essary, e.g., neither a Class nor an Interface must extend
itself.

The calculated similarity values for the metamodel ele-
ments of the Class Diagram shown in Fig. 4 are summa-
rized in Table 1. Values greater than 0.1 are highlighted.
As expected, a significant similarity between Class and
Interface is found due to their number of common fea-
tures. Furthermore, Attribute, Method, and Parameter

are recognized as similar, because they all have the relation

DRAFT—Onward! 2010 5 2010/4/7

N
am

ed
El

em
en

t

Pa
ck

ag
e

In
te

rfa
ce

Cl
as

s

A
ss

oc
ia

tio
n

A
ttr

ib
ut

e

M
et

ho
d

Pa
ra

m
et

er

Pr
im

iti
ve

Ty
pe

Ty
pe

Vi
sib

ili
ty

Pr
im

iti
ve

Ty
pe

s

NamedElement 1,00 0,05 0,03 0,03 0,04 0,05 0,04 0,06 0,06 0,09 0,00 0,00
Package 0,05 1,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Interface 0,03 0,00 1,00 0,54 0,03 0,00 0,00 0,00 0,24 0,37 0,00 0,00
Class 0,03 0,00 0,54 1,00 0,02 0,00 0,09 0,00 0,20 0,31 0,00 0,00
Association 0,04 0,00 0,03 0,02 1,00 0,00 0,00 0,00 0,05 0,08 0,00 0,00
Attribute 0,05 0,00 0,00 0,00 0,00 1,00 0,54 0,29 0,00 0,00 0,00 0,00
Method 0,04 0,00 0,00 0,09 0,00 0,54 1,00 0,00 0,00 0,00 0,00 0,00
Parameter 0,06 0,00 0,00 0,00 0,00 0,29 0,00 1,00 0,00 0,01 0,00 0,00
PrimitiveType 0,06 0,00 0,24 0,20 0,05 0,00 0,00 0,00 1,00 0,65 0,00 0,00
Type 0,09 0,00 0,37 0,31 0,08 0,00 0,00 0,01 0,65 1,00 0,00 0,00
Visibility 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,00 0,00
PrimitiveTypes 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,00

Table 1. Calculated Similarity Values for the Class Diagram Metamodel

to Type, and Attributes and Methods are both contained
by the same elements. The inheritance relation of Class,
Interface, and PrimitiveType with Type also leads to
observable similarity. Since the relevance of features are first
weighted by their overall occurrence in the metamodel and
normalized within each metamodel element, each specific
feature may have a different impact in different metamodel
elements. The less features one element has, the higher the
relevance of each feature is. Consequently, the similarity of
subclasses of NamedElement to their superclass varies, but
is nevertheless negligible because so many elements share
this relationship.

Finally, we want to emphasize the general applicability
of the presented approach. Although we developed the algo-
rithm dedicated for matching conflict descriptions, it may be
used for solving any kind of model matching problem if the
metamodel of the modeling language is available.

With the components introduced in the previous section,
we are able to realize a three-staged comparison algorithm
which performs the following steps.

Exact match. The two typed graphs of the conflict models
are exactly matched. Therefore, each node (resp. each
edge) has to be matched against one node (resp. edge)
with exactly the same type.

Match based on type compatibility. If the exact match fails,
then the type restrictions are relaxed. Then elements of
compatible types (i.e., sub- and superclass) are consid-
ered as equal.

Match based on type similarity. Finally, the elements hav-
ing a similarity exceeding the required threshold are
matched. The similarity is calculated once for the meta-
model of each modeling language according to the algo-
rithm presented above.

Implementation. The implementation of the presented
conflict reasoning approach is mainly based on EMF and
on the Java graph library JGraphT. The conflict model and
the Class Diagram metamodel are implemented in Ecore
and integrated as Eclipse Plug-ins into AMOR. AMOR’s

Conflict Detector turns over the conflict model, the tenta-
tive merge model, and the actual metamodel to the recom-
mender system. The conflict model links to elements of the
tentative merge for describing ConcreteBindings and to
elements of the tentative merge’s metamodel—in our case
the Class Diagram metamodel—for defining the types of
MissingBindings.

Before looking up for appropriate conflicts already in-
cluded in the Conflict Repository, the similarity measures
of metamodel elements have to be calculated. As long as the
metamodel does not change, these values must be provided
only once. The calculation is performed according to Alg. 1.

For comparing the conflict instances with each other
in a similarity-aware manner, a graph isomorphism algo-
rithm of the Java graph library JGraphT is used. Therefore,
the conflict models are first converted to directed graphs.
Model elements are represented by vertices and associa-
tions are represented by directed edges. To improve per-
formance, the graph representations are hold in memory.
The graph comparison algorithm may be either used to
find exact matches, or to find equivalent matches. For find-
ing equivalent matches, an implementation of the Interface
EquivalenceComparator has to be provided. In our case,
the implemented ModelElementEquivalenceComparator
checks for equal types first, and in the case of a concrete
binding or a missing binding’s type, the pre-calculated simi-
larity value of the type information is used to decide equality.

We are aware of the fact, that isomorph graph matching
is assumed as NP-hard problem. As the number of conflicts
stored in the Conflict Repository increases over time, the
recommendation lookup gets slower. To avoid performance
problems, we will use dedicated clustering techniques for
graphs [10] to narrow the search space of conflict models in
future work.

Experiments. We conducted first experiments to evaluate
the applicability of our implementation in various conflict
situations. Therefore, we selected a representative set of dif-
ferent conflict situations and matched them with our similar-
ity-aware graph comparison algorithm. The operations in-
volved in the conflicts are all applied on Class Diagrams as

DRAFT—Onward! 2010 6 2010/4/7

Conflicts in Repository
Cx C3 C4 C5 C6 C7

D
et

ec
te

d
C

on
f. C1 0

C2 0
C3 0 0.46 0.92
C4 0.46 0 0.46
C5 0.92 0.46 0
C6 0 0.46
C7 0.46 0

C1 rename(c1:Class, ”name1”)
rename(c1:Class, ”name2”)

C2 rename(a1:Attribute, ”name1”)
rename(a1:Attribute, ”name2”)

C3 pullUpField(superCl:Class, a1:Attribute)
addInheritance(subCl:Class, superCl:Class)

C4 pullUpMethod(superCl:Class, m1:Method)
addInheritance(subCl:Class, superCl:Class)

C5 mvMethodToInt(m1:Method, i1:Interface)
addInterfaceImpl(c1:Class, i1:Interface)

C6 addInheritance(c1:Class, c2:Class)
addInheritance(c2:Class, c1:Class)

C7 addInheritance(i1:Interface, i2:Interface)
addInheritance(i2:Interface, i1:Interface)

Table 2. Edit Distances of Conflict Scenarios.

defined by the previously introduced metamodel. The match
is performed using the similarity matrix shown in Table 1.

Table 2 contains a short description of the detected con-
flicts. For more details we kindly refer to our project web-
site. The conflicts for which resolutions are specified are ar-
ranged horizontally. In fact, we match each conflict against
each conflict. The numbers in the table cells indicate the total
edit distance between the conflict pairs. The edit distance is
an indicator of the effort of rewriting the conflict resolution
pattern, and is derived by summing up the edit distances of
each vertex (1 - similarity). The conflicts C1 and C2 result
from an update/update problem, as the name of the same
element (a class in C1 and an attribute in C2) are concur-
rently modified in a different manner. Both of these conflicts
are not included in the repository, but as no features of the
specific classes are affected, the most general variant, in this
case NamedElement, is stored which is denoted by Cx in Ta-
ble 2. Note that for deducing a general conflict, also the fea-
tures have to be considered which are involved in the conflict
resolution. For matching the conflicts, considering the type
compatibility is necessary, which results in an edit distance
of 0 in Table 2. The conflicts C3 – C5 are variants of the
previously presented motivating example, whereas C6 and
C7 cause violations of the Class Diagram’s metamodel by
introducing inheritance cycles.

The empty fields in Table 2 indicate that no match has
been found. All conflicts besides C1 and C2 may not be
transformed to a more general form, hence we obtain exact
matches in the diagonal (expressed by a 0). Summing up,
in these first experiments, the algorithm shows the intended
behavior. In future work, we will extend the scope of these
experiments in the context of a broader case study.

5. Realization
The recommender system is based on the Eclipse Modeling
Framework the and Eclipse Team Support plugin. It imple-
ments the basic interplay with the versioning server (cf. (1)
in Fig. 5) and offers the possibility to remodel artifacts to
resolve conflicts (2). The actual recommender component
(3) supports the conflict resolution by providing a list of au-
tomatically applicable resolution patterns for each conflict
looked up from the Conflict Repository. The resolution pat-
terns in the Conflict Repository are either defined manually
or are automatically mined as described in [2]. The proposed
resolution patterns may be previewed, rolled back, and man-
ually refined. For easier identification of conflicting oper-
ations in the preview mode, the conflicting operations are
marked with the dedicated user symbol combined with anno-
tations indicating the application of add, delete, and update
on the respective model elements. Recommended resolution
strategies are marked accordingly with a system symbol (the
cog). Previewing many operations at once may on the one
hand overflow the model, but on the other hand may be nec-
essary to understand changes. Therefore, the user may de-
cide which operation should be displayed.

The recommended resolutions are ranked by their rele-
vance. The relevance is calculated by a combination of the
edit distance between the current conflict situation and the
stored one, the number of applications so far, and the impact
of the user who created the conflict resolution, by aggregat-
ing the application count of all resolutions created by this
user. Resolution specific information is displayed in a ded-
icated property view (4). The property view contains meta-
data about the resolution’s origin, application and edit dis-
tance. Furthermore, since automatically derived resolutions
do not have a human understandable name, users may en-
hance the resolution pattern with additional information.

6. Conclusion
In the context of software engineering, recommender sys-
tems support developers in their decision making and partic-
ularly in their information finding goals [13]. Recommender
systems for software engineering (RSSE) provide guidance
for example in programming, i.e., by suggesting code for
reuse, in debugging, i.e., by suggesting code for bugfixing,
in testing, i.e., by indicating the parts of the program with
the probably most defects, and in software maintenance.
To support conflict resolution in versioning and especially
in model versioning, to the best of our knowledge no rec-
ommender systems have been implemented yet. Current re-
search focuses on the detection of differences and conflicts
(like, e.g., SiDiff [14]) in order to support the resolution pro-
cess without offering concrete resolution patterns. Only the
ontology merging tool Prompt provides user guidance for a
set of hard-coded conflicts [12].

In this paper, we introduced a recommender system en-
hancing the standard conflict resolution workflow of model

DRAFT—Onward! 2010 7 2010/4/7

Figure 5. AMOR Conflict Resolver

versioning by suggesting automatically executable resolu-
tion patterns. Conflicts are represented as Ecore models and
are stored in a conflict repository. For the lookup of suitable
resolution patterns we apply a novel kind of similarity-aware
graph comparison algorithm allowing for exact matches,
type compatibility matches, and type similarity matches.

In future work, we plan to conduct an extensive case
study in cooperation with our industrial partner SparxSys-
tems, the vendor of the modeling tool Enterprise Architect.
In this context, we will also consider different modeling lan-
guages instead of the UML Class Diagram only. The gath-
ered experiences will allow us to fine-tune our similarity cal-
culation and to expand our conflict repository. Furthermore,
much emphasis has to be spent on the user interface espe-
cially when the models get large. Then specific zooming
and advanced filtering mechanism have to be implemented
to avoid information overflow of the conflict resolving mod-
eler.

References
[1] J. Bézivin. On the Unification Power of Models. Journal on

Software and Systems Modeling, 4(2):171–188, 2005.

[2] P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland,
M. Wimmer, and H. Kargl. Adaptable Model Versioning in
Action. In Modellierung, LNI. GI, 2010.

[3] P. Brosch, P. Langer, M. Seidl, K. Wieland, and M. Wimmer.
Colex: A Web-based Collaborative Conflict Lexicon. In Int.
Workshop on Model Comparison in Practice. ACM, 2010.

[4] P. Brosch, P. Langer, M. Seidl, K. Wieland, M. Wimmer,
G. Kappel, W. Retschitzegger, and W. Schwinger. Composite

Operation Modeling By-Example. In MODELS, 2009.

[5] H. Bunke. Error-Tolerant Graph Matching: A Formal Frame-
work and Algorithms. In Advances in Pattern Rec., 1998.

[6] A. Cicchetti, D. Ruscio, and A. Pierantonio. Managing Model
Conflicts in Distributed Development. In MODELS, 2008.

[7] R. Conradi and B. Westfechtel. Version Models for Software
Configuration Management. ACM Comp. Surv., 30(2), 1998.

[8] D. Dig, K. Manzoor, R. E. Johnson, and T. N. Nguyen. Ef-
fective Software Merging in the Presence of Object-Oriented
Refactorings. IEEE Trans. on Software Eng., 34(3), 2008.

[9] T. Ekman and U. Asklund. Refactoring-Aware Versioning in
Eclipse. El. Notes in Theoret. Comp. Science, 107, 2004.

[10] S. Günter and H. Bunke. Self-Organizing Map for Clustering
in the Graph Domain. Pattern Rec. Letters, 23(4), 2002.

[11] T. Mens. A State-of-the-Art Survey on Software Merging.
IEEE Trans. on Software Eng.}, 28(5):449–462, 2002.

[12] N. Noy and M. Musen. Algorithm and Tool for Automated
Ontology Merging and Alignment. In AAAI, 2000.

[13] M. Robillard, R. Walker, and T. Zimmermann. Recommenda-
tion Systems for Software Eng. IEEE Software, 2009.

[14] M. Schmidt and T. Gloetzner. Constructing Difference Tools
for Models using the SiDiff Framework. In ICSE Companion.
ACM, 2008.

[15] P. Shvaiko and J. Euzenat. A Survey of Schema-Based Match-
ing Approaches. Jnl. on Data Sem., 3730, 2005.

[16] K. Spärck Jones. A Statistical Interpretation of Term Speci-
ficity and its Application in Retrieval. Jnl. of Doc., 28, 1972.

[17] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T.
Halkidis. Design Pattern Detection Using Similarity Scoring.
IEEE Trans. on Software Eng., 32(11), 2006.

DRAFT—Onward! 2010 8 2010/4/7

