
A bottom-up approach to build XML business
document standards

Philipp Liegl, Christian Huemer
Business Informatics Group

Vienna University of Technology
Vienna, Austria

{liegl, huemer}@big.tuwien.ac.at

Christian Pichler
Research Studio Inter-Organisational Systems

Research Studios Austria
Vienna, Austria

christian.pichler@researchstudio.at

Abstract—XML has replaced traditional EDI standards in the
field of business document standardization. Despite of the syntax,
the principal approach to develop business document standards
has not changed. A standardized business document is built by a
superset of all elements that may appear in any business context,
leading to overloaded and complex standards. However, in a
particular partnership only a small percentage of the elements
is used. This results in a top-down approach starting from a
generic document and specifying partner-specific subsets. Such
an approach is too costly for small and medium-sized enterprises
(SME), because agreements on subsets must be implemented in
their software systems. As an alternative we suggest a bottom-
up solution that starts from a core set of elements, representing
the intersection of all industry contexts. Thereby, the core set
may be extended to incorporate the needs of a specific business
context. In this paper we examine different mechanisms provided
by XML Schema to realize such an extension. The applicability of
the different mechanisms is evaluated by means of the Austrian
e-Invoicing standard ebInterface, which we co-authored.

I. MOTIVATION

Exchanging business documents by electronic means has
been around in the IT domain for decades. One of the first
and probably most successful non-XML business document
standards is UN/EDIFACT [1]. The goal of EDIFACT was to
create top-down business documents, allowing cross-country
and cross-industry message exchanges. In order to meet the
requirements of different industries and application domains,
the document standards were designed as generic as possible
with numerous conditional elements. With the introduction of
XML new business document standards were introduced [2]
[3] [4] [5]. Although the syntax changed from a delimiter-
based one to a mark-up one, the principal approach to develop
business document standards did not change. More or less all
dominant XML business document standards define a single
invoice, purchase order, etc. The resulting generic business
document type includes the superset of all elements that may
be used in any business context. This leads to overloaded and
complex business document standards.

In contrary to small and medium-sized enterprises (SME),
large enterprises are able to implement their own ERP software

The work of Research Studios Austria is funded by the Austrian Federal
Ministry of Science and Research. Furthermore, this work has been carried
out under the research grant Public Private Interoperability (No. 818639) of
the Austrian Research Promotion Agency (FFG).

or at least to customize their existing ERP software in order
to handle these kind of business document standards and
their bi-lateral agreements. Most of the SMEs do not have
this flexibility, but rely on low cost commercial-off-the-shelf-
software (COTS). In order for SMEs to participate in B2B
scenarios the COTS systems should also allow the seamless
import and export of business documents. Therefore, vendors
of COTS have to provide appropriate import/export interfaces.
However, they cannot foresee and implement partner-specific
requirements. Thus, they require core business document stan-
dards covering only those elements that are common to all
industries. If numerous COTS vendors provide interfaces for
a core business document standard the users of these COTS
systems may exchange business documents on the fly. By
definition the core standard cannot consider specific elements
required by a certain industry. To overcome this restriction a
flexible extension mechanism for controlled domain-specific
amendments is required. Depending on the target customer
base, a COTS vendor may choose to implement certain
domain-specific extension, but not necessarily all.

We followed the idea of a core business document standard
plus domain-specific extension when starting the ebInterface
initiative [6] for the Austrian Chamber of Commerce. The
goal of ebInterface is to define an unambiguous e-Invoicing
standard for the Austrian market. In the current status an
agreement between twelve COTS vendors on the core elements
has been established. However, an extension mechanism for
domain-specific amendments (e.g., telecom industry) is still
missing. In the paper at hand we introduce different XML
extension mechanisms for defining domain-specific extensions
in a bottom-up business document standard. The goal is to
define a plugin-based solution in order to add industry and
partner-specific extensions without altering the inner core
of a bottom-up standard. Thus, interoperability of the core
specification is provided at any time with any given partner.
We specifically focus on the strengths and weaknesses of each
extension mechanism and evaluate the applicability of each
extension approach using the ebInterface standard. Thereby,
we evaluate every approach in regard to four criteria: i) core
schema integrity ii) core schema compatibility iii) extension
control, and iv) guarantee of validity. We state that a successful
bottom-up standard extension approach must meet all of the

four criteria.
The rest of the paper is structured as follows. First, Section

II introduces current research work in the field of XML
Schema extension approaches. Section III introduces the ebIn-
terface core standard and Section IV evaluates the different
extension mechanisms of XML Schema and presents our
solution for a flexible bottom-up extension of the ebInterface
standard. Finally, Section V concludes the paper.

II. RELATED WORK

A literature review shows that in particular XML Schema
has been subject to much controversy in regard to its ex-
pressiveness and complexity [7]. Nevertheless, it has become
the de facto standard for defining data exchange formats in
particular in the context of Web Services [8]. Pasley [9]
examines the potential risks if wildcard extension mechanisms
such as xs:any are used in XML Schema definitions. The
author provides a set of best practices to XML Schema
design, helping to cope with changing schema requirements
and schema extensions. However, most of the recommenda-
tions aim at changing the core schema and thus they are
not applicable to the scenario presented in this paper, where
the core schema must remain unchanged. Another important
field in particular in regard to business document standard-
ization is the research area of XML evolution [10], [11],
[12]. The developed methods aim at automatically adapting
XML instance documents in case the associated XML Schema
is extended or restricted by additional elements. Although
several academic approaches for XML evolution exist, their
integration level in B2B tools remains quite low. Generally,
if schemas evolve and several versions of a schema are
developed, a set of problems, e.g., revalidation issues occur
[13], [14], [15]. Our presented approach aims at circumventing
error-prone and time-consuming re-validation tasks of multiple
schema versions by providing a single, but flexible solution for
business document standard extensions.

III. EBINTERFACE - THE CORE

In the following we introduce the XML-based standard
ebInterface and provide an accompanying invoice example
from the telecom domain. We use the example throughout
the article to evaluate the applicability of the introduced
XML Schema extension mechanisms. Figure 1 illustrates the
main structure specified by the ebInterface standard, including
elements such as InvoiceDate, Biller and Details. A
more detailed view of the element Details is given in Figure
2. The element Details may be used to represent items typi-
cally listed in an invoice, hence it is designed to contain one or
more elements named LineItem. Each element LineItem
contains further elements such as PositionNumber and
UnitPrice. An excerpt of the ebInterface XML Schema
representing an element LineItem, which is the target of
extensions in the following sections, is provided in Listing
1. All other elements of the standard are not discussed any
further, but can be found in the ebInterface specification [6].
To illustrate the use of the ebInterface standard the following

InvoiceType

Invoice

attributes

dsig:Signature

InvoiceNumber

InvoiceDate

Delivery

Biller

InvoiceRecipient

OrderingParty

Details

[. . .]

Tax

TotalGrossAmount

PaymentMethod

PaymentConditions

PresentationDetails

Fig. 1: A cut-out of the ebInterface standard

C:\Users\pl\Documents\Publications\2009\...\ebinterface_overview.xsd 16.02.2009 16:00:16

©1998-2008 Altova GmbH http://www.altova.com Page 1Registered to pl (Vienna University of Technology, Business Informatics)

InvoiceType

Invoice

attributes

dsig:Signature

InvoiceNumber

InvoiceDate

Delivery

Biller

InvoiceRecipient

OrderingParty

DetailsType

Details

LineItemType

LineItem

1 ∞..

PositionNumber

Description

1 ∞..

Quanti...

UnitPrice

TaxRate

LineItemAmount

ReductionDetails

Tax

TotalGrossAmount

PaymentMethod

PaymentConditions

PresentationDetails

Cust... ##otherany

Fig. 2: The details section

example is introduced. The example is based on invoices for
end customers used in the telecom industry.

Listing 1: Line Item XML syntax
1 <xs :complexType name=” LineI temType ”>
2 <x s : s e q u e n c e>
3 <x s : e l e m e n t r e f =” Pos i t i onNumber ” minOccurs=” 0 ” />
4 <x s : e l e m e n t r e f =” D e s c r i p t i o n ” maxOccurs=” unbounded ” />
5 <x s : e l e m e n t r e f =” Q u a n t i t y ” />
6 <x s : e l e m e n t r e f =” U n i t P r i c e ” />
7 <x s : e l e m e n t r e f =” TaxRate ” />
8 <x s : e l e m e n t r e f =” LineItemAmount ” />
9 </ x s : s e q u e n c e>

10 </ xs :complexType>

Figures 3 and 4 illustrate excerpts from a real world telephone
bill. The first excerpt illustrated in Figure 3 shows different
line items such as ”A1 - A1” and ”Festnetz”. The line item
”Festnetz” for instance represents a summary of all calls made
to landline phones. In the ebInterface standard line items are
typically represented using the element LineItem (cf. Figure
2 or Listing 1). However, the elements of LineItem are not
sufficient to fully represent all information of a line item in
the telephone bill. In fact, the number of calls, calling time,
and data volume (cf. Figure 3) cannot be represented using the
element LineItem. The second excerpt illustrated in Figure
4 shows a detailed view of the call charges, listing every single
call made including certain details such as the date or duration
of the call. The detailed view is from now on referred to

IHRE VERBINDUNGSENTGELTE

von 08.01.2009 bis 07.02.2009 Österreich - mobilkom

A1 - A1 9 00:16:00 0,6620

A1 MOBILBOX 1 00:01:00 0,0420

Festnetz 5 00:05:00 0,2020

andere Mobilnetze 23 01:24:00 3,4820

Anrufe ins Ausland Zone 1 2 00:08:30 3,0420

Anrufe ins Ausland Zone 2 1 00:00:30 0,2220

SMS gesendet 14 2,3320

BlackBerry Datenvolumen Frei 14 5,00 MB 0,00

BlackBerry Datenvolumen 20 2,00 MB 0,8320

von 26.01.2009 bis 28.01.2009 Deutschland - Vodafone

National & Österreich 3 00:03:00 2,2220

ankommend 2 00:02:30 1,0220

SMS gesendet 1 0,2020

von 17.01.2009 bis 25.01.2009 Neuseeland - Vodafone

ankommend 2 00:02:30 3,9520

SMS gesendet 1 0,3320

18,52Summe Verbindungsentgelte

NumberOfCalls

CallingTime

DataVolume

Fig. 3: Excerpt from Example Invoice

Österreich - mobilkom: Telefonie, SMS

Datum Beginn Service Dauer Zone/Typ Zielrufnummer Netto in €

08.01.09 10:25:43 TEL 00:00:35 Anrufe ins Ausland Zone 1 00393299866XXX 0,3583

09.01.09 10:05:27 TEL 00:01:16 A1 - A1 00436648182XXX 0,0625

10.01.09 11:42:33 TEL 00:00:20 Festnetz 0043140XXX 0,0416

Fig. 4: Excerpt from Itemized Bill

as itemized phone bill. Representing the itemized phone bill
using the ebInterface standard is currently not possible either,
since the standard neither provides suitable elements nor any
mechanism to extend the standard itself. We will elaborate on
different strategies for an extension of a bottom-up standard
in the next section.

IV. ALTERNATIVE STRATEGIES FOR A BOTTOM-UP
APPROACH

In the following we evaluate how different extension mech-
anisms may be used in a real-world environment in order
to extend an existing business document definition. Thus, we
demonstrate the different extension mechanisms by means of
the ebInterface standard. However, it should be noted that the
proposed extensions are valid in any given bottom-up business
document standard approach.

A. Custom Section

The first approach to meet the requirements of different
stakeholders, i.e., storing customized information, is achieved
through introducing a so-called custom section in the ebIn-
terface XML Schema. The definition of the custom section
is shown in Listing 2. The XML Schema element xs:any
used for the definition of the custom section is discussed in
the following.

Listing 2: Custom Section
11 <x s : g r o u p name=” Custom ”>
12 <x s : s e q u e n c e>
13 <x s : a n y namespace=” ## o t h e r ” p r o c e s s C o n t e n t s =” s t r i c t ” />
14 </ x s : s e q u e n c e>
15 </ x s : g r o u p>
16 . . .
17 <xs :complexType name=” I n v o i c e T y p e ”>
18 <x s : s e q u e n c e>
19 . . .
20 <x s : g r o u p r e f =” Custom ” minOccurs=” 0 ” />
21 </ x s : s e q u e n c e>
22 </ xs :complexType>

The wildcard xs:any may be used in an XML Schema
for defining placeholders, enabling stakeholders to store ad-
ditional, custom information in the actual XML document

instances. Note that the exact structure of the custom infor-
mation is usually not yet known at schema design time. The
xs:any element contains two attributes namely namespace
and processContents.

The attribute namespace is used for specifying the names-
pace that the content in the instance document must com-
ply with. Allowed values of the attribute include ##any,
##local, ##other, ##targetNamespace, and a par-
ticular namespace. Assigning the attribute namespace the
value ##any determines that the content may be any well-
formed XML from any namespace. Using ##local de-
fines that the content may be any well-formed and un-
qualified XML. ##other specifies that the content may
be any well-formed XML from any namespace other than
the current target namespace. ##targetNamespace de-
fines that the content may be any well-formed XML as
long as it belongs to the ##targetNamespace. The
fifth option is to list one or more namespaces such as
http://www.ebinterface.at/ext/telecom in the
attribute namespaces. Listing one or more namespaces
restricts the placeholder the strongest and defines that the
content must be any well-formed XML and that it must belong
to any of the namespaces listed.

The attribute processContents provides instructions
regarding the validation of the custom section in the instance
document. Thereby, the attribute may have one out of the three
following values: strict, lax, and skip. The attribute
value strict specifies that content stored in the custom
section must be qualified through a namespace. Second, the
value lax expresses that content in the custom section may
be validated in case the backing XML Schema is available.
Otherwise, in case the backing XML Schema is not present,
the validation of the instance document is skipped and vali-
dation succeeds. The third attribute value skip specifies that
content in the custom section in the instance document is not
validated at all. In the following three different approaches for
defining single and multiple custom sections are explained.

a) xs:any and any namespace.: Listing 2 illustrates the
definition of the custom section used to extend the ebInterface
standard. As shown in line 13 of Listing 2 the content of the
custom section must be well-formed XML, defined in a names-
pace other than the current target namespace. Furthermore, the
value of the attribute processContents, also illustrated in
line 13 of Listing 2, is set to strict specifying that any
content stored in the custom section must be backed by an
XML Schema.

Therefore, in order to add custom information it is necessary
to first define a custom XML Schema, specifying the content
of the custom section. The XML Schema used in this example
is illustrated in Listing 3. The schema describes an itemized
phone bill containing a detailed list of all calls made and a
summary of the duration and cost of all calls made (cf. Figure
4).

Listing 3: Domain-specific extension: XML Schema
23 <xs : s chema x m l n s : x s =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema” xmlns=” h t t p : / /www.

e b i n t e r f a c e . a t / e x t / t e l e c o m ” t a r g e t N a m e s p a c e =” h t t p : / /www. e b i n t e r f a c e . a t / e x t /

t e l e c o m ” e l e m e n t F o r m D e f a u l t =” q u a l i f i e d ” a t t r i b u t e F o r m D e f a u l t =” u n q u a l i f i e d ”>
24 <xs :complexType name=” I temTelephonyType ”>
25 <x s : s e q u e n c e>
26 <x s : e l e m e n t name=” Date ” t y p e =” x s : d a t e ” />
27 <x s : e l e m e n t name=” Begin ” t y p e =” x s : t i m e ” />
28 <x s : e l e m e n t name=” S e r v i c e ” t y p e =” x s : s t r i n g ” />
29 <x s : e l e m e n t name=” D u r a t i o n ” t y p e =” x s : t i m e ” />
30 <x s : e l e m e n t name=” Type ” t y p e =” x s : s t r i n g ” />
31 <x s : e l e m e n t name=” NumberCal led ” t y p e =” x s : s t r i n g ” />
32 <x s : e l e m e n t name=”Amount” t y p e =” x s : d e c i m a l ” />
33 </ x s : s e q u e n c e>
34 </ xs :complexType>
35 <xs :complexType name=” SummaryTelephonyType ”>
36 <x s : s e q u e n c e>
37 <x s : e l e m e n t name=” T o t a l D u r a t i o n ” t y p e =” x s : t i m e ” />
38 <x s : e l e m e n t name=” TotalAmount ” t y p e =” x s : d e c i m a l ” />
39 </ x s : s e q u e n c e>
40 </ xs :complexType>
41 <x s : e l e m e n t name=” I t e m i z e d B i l l T e l e p h o n y ”>
42 <xs :complexType>
43 <x s : s e q u e n c e>
44 <x s : e l e m e n t name=” I t emTe lephony ” t y p e =” I temTelephonyType ” maxOccurs=” unbounded ”

/>
45 <x s : e l e m e n t name=” SummaryTelephony ” t y p e =” SummaryTelephonyType ” />
46 </ x s : s e q u e n c e>
47 </ xs :complexType>
48 </ x s : e l e m e n t>
49 </ x s : s chema>

Listing 4 illustrates an excerpt of an XML document in-
stance representing the custom section of the updated ebIn-
terface XML Schema in combination with the XML Schema
defined in Listing 3.

Listing 4: Domain-specific extension: XML instance
50 <e b : I n v o i c e x m l n s : e b =” h t t p : / /www. e b i n t e r f a c e . a t / schema / 3 p0 / ” x m l n s : t c o =” h t t p : / /www.

e b i n t e r f a c e . a t / e x t / t e l e c o m ” x m l n s : x s i =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−
i n s t a n c e ” x s i : s c h e m a L o c a t i o n =” h t t p : / /www. e b i n t e r f a c e . a t / schema / 3 p0 / I n v o i c e .
xsd h t t p : / /www. e b i n t e r f a c e . a t / e x t / t e l e c o m Telecom . xsd ”>

51 . . .
52 </ e b : P r e s e n t a t i o n D e t a i l s>
53
54 <t c o : I t e m i z e d B i l l T e l e p h o n y>
55 <t c o : I t e m T e l e p h o n y>
56 <t c o : D a t e>2009−01−01</ t c o : D a t e>
57 <t c o : B e g i n>10 : 2 5 : 4 3</ t c o : B e g i n>
58 <t c o : S e r v i c e>TEL</ t c o : S e r v i c e>
59 <t c o : D u r a t i o n>00 : 0 0 : 3 5</ t c o : D u r a t i o n>
60 <t c o : T y p e>Anrufe i n s Ausland Zone 1</ t c o : T y p e>
61 <t c o : N u m b e r C a l l e d>002337774335</ t c o : N u m b e r C a l l e d>
62 <t co :Amount>0 .3583</ t co :Amount>
63 </ t c o : I t e m T e l e p h o n y>
64
65 <t c o : I t e m T e l e p h o n y>
66 <t c o : D a t e>2008−12−31</ t c o : D a t e>
67 <t c o : B e g i n>22 : 3 1 : 0 3</ t c o : B e g i n>
68 <t c o : S e r v i c e>SMS</ t c o : S e r v i c e>
69 <t c o : D u r a t i o n>00 : 0 0 : 0 0</ t c o : D u r a t i o n>
70 <t c o : T y p e>SMS g e s e n d e t</ t c o : T y p e>
71 <t c o : N u m b e r C a l l e d>01235681295</ t c o : N u m b e r C a l l e d>
72 <t co :Amount>0 .1666</ t co :Amount>
73 </ t c o : I t e m T e l e p h o n y>
74
75 <t co :SummaryTelephony>
76 <t c o : T o t a l D u r a t i o n>00 : 0 0 : 3 5</ t c o : T o t a l D u r a t i o n>
77 <t c o : T o t a l A m o u n t>0 .5249</ t c o : T o t a l A m o u n t>
78 </ t co :SummaryTelephony>
79 </ t c o : I t e m i z e d B i l l T e l e p h o n y>
80 </ e b : I n v o i c e>

Extending the standard through adding a custom section
adds great flexibility to the ebInterface standard. Further-
more, the implementer is forced to define an XML Schema
describing the structure of the information stored in the
custom section. The latter is achieved through the attribute
processContents. The attribute’s value is set to strict
instructing any parser performing validation of an ebInterface
XML document that, in case a custom section is present,
a corresponding XML Schema must exist. Alternatively, the
processContents attribute’s value could be set to lax.
If set to lax an XML Schema which is present will be used
for validation. However, the presence of an XML Schema is
then optional.

This flexibility also implies that the standards body cre-
ating the standard may not be able to control the content
stored in custom sections. Theoretically, implementers of the
standard may store information completely disconnected from

the context of an electronic invoice. Moreover, it is necessary
to modify the original ebInterface XML Schema. Thus, the
approach is not desirable for defining a core schema with
domain-specific extensions.

b) xs:any and defined set of namespaces.: As outlined
in Section IV-A, the attribute namespace of the element
xs:any allows to define a set of namespaces containing one
or more namespaces. Having a set of defined namespaces
requires that the content stored in the instance document must
be backed by an XML Schema whose namespace is listed in
the namespace attribute. Therefore, it is necessary to modify
the definition of the custom section (cf. Listing 2) and specify a
set of allowed namespaces. In the current example the names-
pace http://www.ebinterface.at/ext/telecom is
specified as illustrated in Listing 5. Note that the namespace
refers to the XML Schema defined in Listing 3.

Listing 5: Single Custom Section XML Syntax
81 <x s : g r o u p name=” Custom ”>
82 <x s : s e q u e n c e>
83 <x s : a n y namespace=” h t t p : / /www. e b i n t e r f a c e . a t / e x t / t e l e c o m ” p r o c e s s C o n t e n t s =” s t r i c t

” />
84 </ x s : s e q u e n c e>
85 </ x s : g r o u p>
86 . . .
87 <xs :complexType name=” I n v o i c e T y p e ”>
88 <x s : s e q u e n c e>
89 . . .
90 <x s : g r o u p r e f =” Custom ” minOccurs=” 0 ” />
91 </ x s : s e q u e n c e>
92 </ xs :complexType>

Thus, the elements in the custom section must correspond
to the structure defined in the domain-specific extension
XML Schema, identified through the namespace http://www.
ebinterface.at/ext/telecom (cf. Listing 3). One of the major
advantages resulting from utilizing the xs:any attribute
namespaces is the ability to restrict the content of the
custom section through listing a set of namespaces.

On the contrary, to list a set of namespaces, it is also
required to modify the original ebInterface XML Schema,
hence using xs:any is not a desired extension mechanism.

c) Multiple Custom Sections.: Another possibility for
utilizing the custom section is the use of references. Recall
that the example used throughout the article assumes that the
ebInterface instance document represents a telephone bill of a
single telephone customer. The element LineItem specified
through the element LineItemType is used to represent
the different call charges. In addition an itemized phone bill
was presented in the custom section of the ebInterface XML
document instance (cf. Listing 4).

However, the example is further extended by assuming that
the telephone bill represents the bill for two customers (e.g.,
in case of a partner tariff). Following the idea for a single
customer, the element LineItem may be used to represent
the call charges (cf. Figure 3) for both customers and the
custom section may be used to store the itemized phone
bill (cf. Figure 4) for both customers as well. However, it
is not possible anymore to determine which itemized phone
bill belongs to a particular call charge summary. To solve
the problem it would be desirable to create appropriate ref-
erences between call charges and itemized phone bills. One
option to create references is to modify the element type

LineItemType and add an additional element containing a
unique identifier. Also, each section stored within the custom
section must provide an element for storing references used
in the call charge summaries. Through utilizing the reference
mechanism it would be possible to assign each call charge
summary particular itemized phone bills.

As shown by the example, it is a quite sophisticated process
to use references to represent information properly. However,
if it is desired to use references it is also necessary to modify
the LineItemType of the ebInterface schema, which again
is not a desired method to extend the ebInterface standard. An
alternative approach to using references as described above
may be achieved through introducing more than one custom
section in the ebInterface XML Schema. The definition of a
custom section would still be the same as shown in Listing 5.

A resulting advantage would be that the quite complex use
of references can be avoided. Instead, custom sections may be
added where needed. On the other hand, through a number of
custom sections within an XML Schema, implementers may
store customized information in any of the custom sections
available. Hence, it is not possible to distinguish which cus-
tomized section is used to store which kind of information.
In the following we examine three more powerful extension
mechanisms of XML Schema.

B. Redefine

A redefine element has a dual functionality. First, it im-
plicitly includes the referenced schema file and thereby enables
access to all of the elements of the referenced schema. Second,
it enables the user to redefine zero or more of the components
of the referenced schema. Using a redefine statement the user
can extend or restrict an existing component. The redefine
mechanism can only be applied if both schemas have the same
target namespace or the included (redefined) schema has no
target namespace.

Listing 6: Redefine XML Schema
93 <xs : s chema xmlns=” h t t p : / /www. e b i n t e r f a c e . a t / schema / 3 p0 / ” x m l n s : x s =” h t t p : / /www. w3 .

org / 2 0 0 1 / XMLSchema” t a r g e t N a m e s p a c e =” h t t p : / /www. e b i n t e r f a c e . a t / schema / 3 p0 / ”
e l e m e n t F o r m D e f a u l t =” q u a l i f i e d ” a t t r i b u t e F o r m D e f a u l t =” u n q u a l i f i e d ”>

94 <x s : r e d e f i n e schemaLoca t ion =” I n v o i c e . xsd ”>
95 <xs :complexType name=” LineI temType ”>
96 <x s : c o m p l e x C o n t e n t>
97 <x s : e x t e n s i o n base =” LineI temType ”>
98 <x s : s e q u e n c e>
99 <x s : e l e m e n t name=” NumberOfCal ls ” t y p e =” x s : i n t e g e r ” minOccurs=” 0 ” />

100 <x s : e l e m e n t name=” C a l l i n g T i m e ” t y p e =” x s : i n t e g e r ” minOccurs=” 0 ” />
101 <x s : e l e m e n t name=” DataVolume ” t y p e =” x s : d e c i m a l ” minOccurs=” 0 ” />
102 </ x s : s e q u e n c e>
103 </ x s : e x t e n s i o n>
104 </ x s : c o m p l e x C o n t e n t>
105 </ xs :complexType>
106 </ x s : r e d e f i n e>
107 </ x s : s chema>

As shown in line 94 of Listing 6 the redefine state-
ment includes the main ebInterface schema and redefines
the complex type LineItemType (line 95 to 105). The
redefined LineItemType extends the original sequence
and adds three elements: NumberOfCalls, CallingTime,
and DataVolume. Note that the namespace of the redefined
schema is the same as the namespace of the original ebInter-
face schema (line 93).

In the instance document shown in Listing 7 all elements
of the LineItem element have the same namespace, since

the redefined schema does not apply a different names-
pace, but uses the original ebInterface namespace http://www.
ebinterface.at/schema/3p0/. A different namespace prefix tco
has been used in order to underline the fact that although the
namespace http://www.ebinterface.at/schema/3po is still the
same, the elements have telecom industry-specific extensions.

Using the redefine approach a new invoice definition is
created for every domain-specific extension. The included
elements from the original schema can be used as if they
have been defined in the same schema. Furthermore, multiple
namespaces are avoided, since all elements share the same
targetNamespace.

Listing 7: Redefine XML instance document
108 <t c o : D e t a i l s>
109 <t c o : L i n e I t e m>
110 <t c o : P o s i t i o n N u m b e r>1</ t c o : P o s i t i o n N u m b e r>
111 <t c o : D e s c r i p t i o n>C a l l s t o o t h e r p r o v i d e r s</ t c o : D e s c r i p t i o n>
112 <t c o : Q u a n t i t y t c o : U n i t =” U n i t s ”>60 .00</ t c o : Q u a n t i t y>
113 <t c o : U n i t P r i c e>0 . 1</ t c o : U n i t P r i c e>
114 <t c o : T a x R a t e>20 .00</ t c o : T a x R a t e>
115 <t co :L ine I t emAmoun t>6 . 0 0</ t co :L ine I t emAmoun t>
116 <t c o : N u m b e r O f C a l l s>43</ t c o : N u m b e r O f C a l l s>
117 <t c o : C a l l i n g T i m e>1800</ t c o : C a l l i n g T i m e>
118 </ t c o : L i n e I t e m>
119 </ t c o : D e t a i l s>

Although smooth to implement, the redefine approach has a
set of drawbacks. The redefined schema overwrites the element
definitions of the original schema, thus making backward com-
patibility to the original ebInterface schema impossible. This
means for example, that a system being capable of processing
ebInterface schema X is not able to process schema X’, which
is a redefined version of X. Furthermore, the possibility to
redefine arbitrary X’ schemas with domain-specific extensions
leads to a multitude of different and incompatible business
document definitions.

C. Substitution Group

The concept of substitution groups allows the substitution
of an existing element (called head element) using another
element from a defined group of elements (substitution group).
First, a head element is declared followed by a definition
which elements may be used to substitute it. The substitutable
elements must have the same type as the head element or must
have an extended or restricted type of the head element’s type.
The existence of a substitution group does not imply that the
use of the elements in the substitution group is mandatory nor
does a substitution group prevent the use of the head element.

As shown in Listing 8 a new schema is created for
the telecom application domain. In line 121 the origi-
nal ebInterface schema is imported and assigned with its
original targetNamespace. Consequently, line 122 de-
fines a new LineItem element which may serve as
a substitutable element for the original ebInterface ele-
ment eb:LineItem. The new LineItem element is de-
fined in the target namespace http://www.ebinterface.at/ext/
telecom and adds the three elements NumberOfCalls,
CallingTime, and DataVolume to the original sequence.

Listing 8: Substitution Group XML Schema
120 <xs : s chema x m l n s : x s =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema” x m l ns : e b =” h t t p : / /www.

e b i n t e r f a c e . a t / schema / 3 p0 / ” x m l n s : t c o =” h t t p : / /www. e b i n t e r f a c e . a t / e x t / t e l e c o m ”
t a r g e t N a m e s p a c e =” h t t p : / /www. e b i n t e r f a c e . a t / e x t / t e l e c o m ” e l e m e n t F o r m D e f a u l t =”

q u a l i f i e d ” a t t r i b u t e F o r m D e f a u l t =” u n q u a l i f i e d ”>

121 <x s : i m p o r t namespace=” h t t p : / /www. e b i n t e r f a c e . a t / schema / 3 p0 / ” schemaLoca t ion =”
I n v o i c e . xsd ” />

122 <x s : e l e m e n t name=” L i n e I t e m ” s u b s t i t u t i o n G r o u p =” e b : L i n e I t e m ”>
123 <xs :complexType>
124 <x s : c o m p l e x C o n t e n t>
125 <x s : e x t e n s i o n base =” e b : L i n e I t e m T y p e ”>
126 <x s : s e q u e n c e>
127 <x s : e l e m e n t name=” NumberOfCal ls ” t y p e =” x s : i n t e g e r ” minOccurs=” 0 ” />
128 <x s : e l e m e n t name=” C a l l i n g T i m e ” t y p e =” x s : i n t e g e r ” minOccurs=” 0 ” />
129 <x s : e l e m e n t name=” DataVolume ” t y p e =” x s : d e c i m a l ” minOccurs=” 0 ” />
130 </ x s : s e q u e n c e>
131 </ x s : e x t e n s i o n>
132 </ x s : c o m p l e x C o n t e n t>
133 </ xs :complexType>
134 </ x s : e l e m e n t>
135 </ x s : s chema>

Listing 9 shows how the concept of a substitution group is
reflected in an instance document. The namespace prefix tco
in line 137 refers to the namespace http://www.ebinterface.at/
ext/telecom and thus it becomes apparent that the redefined
LineItem from the telecom domain is used in this instance
and not the original LineItem from the ebInterface schema.
The two elements in line 144 and 145 also have the telecom-
specific namespace. All the other elements are in the original
ebInterface namespace http://www.ebinterface.at/schema/3p0/,
indicated by the prefix eb.

Listing 9: Substitution Group XML instance document
136 <e b : D e t a i l s>
137 <t c o : L i n e I t e m>
138 <e b : P o s i t i o n N u m b e r>1</ e b : P o s i t i o n N u m b e r>
139 <e b : D e s c r i p t i o n>C a l l s t o o t h e r p r o v i d e r s</ e b : D e s c r i p t i o n>
140 <e b : Q u a n t i t y e b : U n i t =” U n i t s ”>60 .00</ e b : Q u a n t i t y>
141 <e b : U n i t P r i c e>0 . 1</ e b : U n i t P r i c e>
142 <e b : T a x R a t e>20 .00</ e b : T a x R a t e>
143 <eb :LineI temAmount>6 . 0 0</ eb :LineI temAmount>
144 <t c o : N u m b e r O f C a l l s>43</ t c o : N u m b e r O f C a l l s>
145 <t c o : C a l l i n g T i m e>1800</ t c o : C a l l i n g T i m e>
146 </ t c o : L i n e I t e m>
147 </ e b : D e t a i l s>

An advantage of the substitution group approach is
the fact that the original ebInterface schema remains
unchanged. All extensions or restrictions on existing
types are defined in a separate schema. In doing so a
flexible and module-based extension approach is enabled.
In the instance document the new elements induced
by the substitution group are labeled by their specific
namespace prefix, e.g., tco which equals namespace
http://www.ebinterface.at/ext/telecom in
Listing 9. Therefore, the domain-specific extensions can be
easily distinguished from the original ebInterface elements.

A major shortcoming of the substitution group approach is
the fact that a refined element is placed in its own namespace.
In Listing 9 the substituted LineItem element is assigned its
own namespace tco (cf. line 137). Thus, an application which
is only capable of processing original ebInterface compliant
instances cannot process the instance with the telecom-specific
extensions, since it does not know what, e.g., the element
<tco:LineItem> is. This undermines the idea of a modular
approach, where all applications should be able to process the
core schema, regardless of what is defined in any extension
module.

D. xsi:type Overloading

An approach similar to substitution groups is introduced
with the concept of xsi:type. xsi:type uses the concept
of type hierarchies, where a sub-type inherits features from a
supertype by extension. First a supertype is created, followed

by multiple specialized subtypes, meeting different require-
ments. Similar to the concept of polymorphism in object-
oriented technologies, a derived type can be used wherever
a base type is expected. Using the xsi:type a type of an
element can be explicitly specified. Through this mechanism
it is possible to specify a certain type of an element, although
the specified type is not defined in the actual schema, but
defined in another schema. The XML parser validates that the
type which is specified in the xsi:type attribute is derived
from the originally expected base type. Thus, the concept of
xsi:type fits very well for extending a core schema with
domain-specific amendments.

Before we can apply an xsi:type construct we have to
extend a given base type. As shown in Listing 10 we define
a new complex type tco:LineItemType (cf. line 150) by
extending the base type eb:LineItemType (cf. line 152).
Before the complex type is refined, the necessary type defini-
tions are made available by importing the original ebInterface
schema in line 149. Note that the new complex type is defined
in the target namespace http://www.ebinterface.at/ext/telecom,
specific to the telecom application domain. In the actual XML
instance document the xsi:type attribute in a given element
will be used to indicate of which type the given element is.

Listing 10: xsi:Type XML Schema
148 <xs : s chema x m l n s : x s =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema” x m l ns : e b =” h t t p : / /www.

e b i n t e r f a c e . a t / schema / 3 p0 / ” xmlns=” h t t p : / /www. e b i n t e r f a c e . a t / e x t / t e l e c o m ”
t a r g e t N a m e s p a c e =” h t t p : / /www. e b i n t e r f a c e . a t / e x t / t e l e c o m ” e l e m e n t F o r m D e f a u l t =”
q u a l i f i e d ” a t t r i b u t e F o r m D e f a u l t =” u n q u a l i f i e d ”>

149 <x s : i m p o r t namespace=” h t t p : / /www. e b i n t e r f a c e . a t / schema / 3 p0 / ” schemaLoca t ion =”
I n v o i c e . xsd ” />

150 <xs :complexType name=” LineI temType ”>
151 <x s : c o m p l e x C o n t e n t>
152 <x s : e x t e n s i o n base =” e b : L i n e I t e m T y p e ”>
153 <x s : s e q u e n c e>
154 <x s : e l e m e n t name=” NumberOfCal ls ” t y p e =” x s : i n t e g e r ” minOccurs=” 0 ” />
155 <x s : e l e m e n t name=” C a l l i n g T i m e ” t y p e =” x s : i n t e g e r ” minOccurs=” 0 ” />
156 <x s : e l e m e n t name=” DataVolume ” t y p e =” x s : d e c i m a l ” minOccurs=” 0 ” />
157 </ x s : s e q u e n c e>
158 </ x s : e x t e n s i o n>
159 </ x s : c o m p l e x C o n t e n t>
160 </ xs :complexType>
161 </ x s : s chema>

Listing 11 shows an XML document instance using
an xsi:type construct. Using the xsi:type attribute
in line 163 it is indicated that LineItem is of type
tco:LineItemType. The two additionally used elements
defined in tco:LineItemType are defined in the telecom-
specific namespace http://www.ebinterface.at/ext/telecom as
indicated by the prefix tco (cf. 170 line and 171).

Listing 11: xsi:Type XML instance document
162 <e b : D e t a i l s>
163 <e b : L i n e I t e m x s i : t y p e =” t c o : L i n e I t e m T y p e ”>
164 <e b : P o s i t i o n N u m b e r>1</ e b : P o s i t i o n N u m b e r>
165 <e b : D e s c r i p t i o n>C a l l s t o o t h e r p r o v i d e r s</ e b : D e s c r i p t i o n>
166 <e b : Q u a n t i t y e b : U n i t =” U n i t s ”>60 .00</ e b : Q u a n t i t y>
167 <e b : U n i t P r i c e>0 . 0 1</ e b : U n i t P r i c e>
168 <e b : T a x R a t e>20 .00</ e b : T a x R a t e>
169 <eb :LineI temAmount>6 . 0 0</ eb :LineI temAmount>
170 <t c o : N u m b e r O f C a l l s>43</ t c o : N u m b e r O f C a l l s>
171 <t c o : C a l l i n g T i m e>1800</ t c o : C a l l i n g T i m e>
172 </ e b : L i n e I t e m>
173 </ e b : D e t a i l s>

By using the xsi:type approach a clear distinction
between the core elements and the extension elements of
the ebInterface schema is made. The extension elements are
indicated using the tco namespace (line 170 to 171), but the
extended element LineItem remains in the original names-
pace 163. The only indication that LineItem is a specialized

type is given by the xsi:type attribute in line 163. In
regard to schema modularity this approach is superior to all
the other introduced approaches. If a software application has
been designed to process only the core ebInterface standard,
it is still able to receive a document including extensions, but
it processes only the core and ignores the extensions.

The xsi:type extension mechanism has a set of minor
shortcomings as well. First of all, it assumes that the receiver
has the XML Schema for the instance document. In case the
receiver uses alternative XML instance validation mechanisms
such as RELAX NG [16], the xsi:type mechanism does
not work. However, since the ebInterface standard relies on a
well-defined XML Schema and every recipient of an instance
document is supposed to have the relevant ebInterface schema
definition including any necessary extension element defini-
tions, this argument does not hold here. Second, some experts
critically argue that the inclusion of the abstract type (i.e.,
the xsi:type) into the XML instance violates the paradigm
of the separation of data (XML instance document) and data
definition (XML Schema). While this argument might hold
for XML purists, the superiority of the xsi:type approach
in regard to XML Schema extension is evident. The last and
probably major criticism of the xsi:type approach is in
terms of processability of such schema constructs by tools,
because not all parsers support xsi:type.

V. CONCLUSION

In the previous sections we have analyzed four different
approaches in order to extend the existing ebInterface stan-
dard with domain-specific extension in a bottom-up manner.
Thereby, we evaluated every extension approach in regard to
four key criteria: i) core schema integrity ii) core schema com-
patibility iii) extension control, and iv) guarantee of validity.
Core schema integrity refers to the fact, whether an extension
alters the original core schema definition. If an instance
document with domain-specific extensions is still compatible
with the core schema definition, it meets the criteria of core
schema compatibility. Extension control refers to the fact,
whether the extension mechanism allows for a governance
of different extensions by a standardization body. If the core
schema together with the domain-specific extensions may still
be validated it meets the criteria of guaranteed validity.

The results of our study are aggregated in Table I. The
first three examined extension mechanisms used the concept
of custom sections (A1-A3).

A1 A2 A3 B C D
Core schema integrity - - - + + +
Core schema compatibility - - - - - +
Extension control - + - + + +
Guarantee of validity +/- +/- +/- + + +

TABLE I: Comparison matrix
A1 - xs:any and any namespace; A2 - xs:any and defined namespaces; A3 -
multiple custom sections; B - Redefine; C - Substitution Group; D - xsi:type

As clearly shown in Table I neither A1 (xs:any and any
namespace), nor A2 (xs:any and defined namespaces), nor
A3 (multiple custom sections) preserve the integrity of the

core schema or ensure backward compatibility to the original
schema. Extension control, that is the ability of a standardiza-
tion organization to prescribe what XML elements to use in
an extension, is only possible if using A2. Whether the overall
validity of the core schema plus the extension may be guaran-
teed depends on how the processContents attribute is set.
If it is set to strict, validity can be ensured. Thus, neither
of the three approaches (A1-A3) using the concept of custom
sections meets the requirements for an appropriate extension
mechanism of a bottom-up schema.

Using redefine (B) it is possible to guarantee extension
control and validity of the overall schema. Since a redefine
statement imports the original schema and alters its elements
in a new file, the original schema remains untouched. However,
a redefine statement may alter any of the elements of the
original schema, thus, obstructing backward compatibility to
the core standard schema.

The same problem occurs if using the concept of substitu-
tion groups (C) for the extension of a core bottom-up schema.
Although integrity of the original schema as well as extension
control and validity is ensured, backward compatibility is
violated. Eventually, the only remaining extension mechanism
meeting all four requirements for the successful extension of
a bottom-up business document standard is xsi:type.

Currently, the findings of this paper are evaluated in
our research project ERPEL (E-Business Registry Permit-
ting Enterprise Liaisons) [17]. The project aims at enabling
inter-operability between heterogeneous ERP systems using
XML business documents. Thereby, the applicability of the
xsi:type approach for bottom-up business document ex-
tensions will be scrutinized.

In this paper it has been shown how a bottom-up business
document approach can be extended to meet domain-specific
requirements, while still maintaining interoperability at the
core level. We examined different XML Schema extension
mechanisms and analyzed their applicability for defining
domain-specific XML Schema extensions by the example
of the Austrian e-Invoice standard ebInterface. We evaluated
every approach using four key indicators and concluded, that
the concept of xsi:type is the only competitive solution for
bottom-up schema extensions. Thus, we provided important
input for the further development of XML-based business
document standards.

REFERENCES

[1] UN/CEFACT, “United Nations Electronic Data Interchange
For Administration, Commerce and Transport (UN/EDIFACT),”
http://www.unece.org/trade/untdid/welcome.htm.

[2] H. Li, “XML and Industrial Standards for Electronic Commerce,”
Knowledge and Information Systems, vol. 2, no. 4, pp. 487–497, 2000.

[3] D. J. Kim, M. Agrawal, B. Jayaraman, and H. R. Rao, “A Comparison of
B2B e-Service Solutions,” Communications of the ACM, vol. 46, no. 12,
pp. 317–324, 2003.

[4] J.-M. Nurmilaakso, P. Kotinurmi, and H. Laesvuori, “XML-based e-
Business Frameworks and Standardization,” Computer Standards and
Interfaces, vol. 28, no. 12, pp. 585–599, 2006.

[5] P. Liegl, M. Zapletal, C. Pichler, and M. Strommer, “State-of-the-
art in business document standards,” in Proceedings of the 8th IEEE
International Conference on Industrial Informatics, 2010.

[6] ebInterface 3.0, http://www.ebinterface.at/, AustriaPRO, 2008.
[7] W. Martens, F. Neven, T. Schwentick, and G. J. Bex, “Expressiveness

and complexity of XML Schema,” ACM Trans. Database Syst., vol. 31,
no. 3, pp. 770–813, 2006.

[8] E. Wilde, “What are you talking about?” in Proceedings of the Interna-
tional Conference on Services Computing, 2007, pp. 256–261.

[9] J. Pasley, “Avoid XML schema wildcards for Web service interfaces,”
Internet Computing, IEEE, vol. 10, no. 3, pp. 72–79, 2006.

[10] H. Su, D. K. Kramer, and E. A. Rundensteiner, “XEM: XML Evolution
Management,” Worchester Polytechnic Institute, Tech. Rep., 2002.
[Online]. Available: http://citeseer.ist.psu.edu/501995.html

[11] G. Guerrini, M. Mesiti, and D. Rossi, “Impact of XML schema evolution
on valid documents,” in Proceedings of the 7th annual ACM interna-
tional workshop on Web information and data management, 2005, pp.
39–44.

[12] G. Guerrini and M. Mesiti, “X-Evolution: A Comprehensive Approach
for XML Schema Evolution,” in Proceedings of the 19th International
Conference on Database and Expert Systems Application, 2008, pp.
251–255.

[13] M. Raghavachari and O. Shmueli, “Efficient Revalidation of XML
Documents,” Knowledge and Data Engineering, IEEE Transactions on,
vol. 19, no. 4, pp. 554–567, April 2007.

[14] D. Barbosa, A. O. Mendelzon, L. Libkin, L. Mignet, and M. Arenas,
“Efficient Incremental Validation of XML Documents,” in Proceedings
of the 20th International Conference on Data Engineering, 2004, pp.
671–682.

[15] A. Balmin, Y. Papakonstantinou, and V. Vianu, “Incremental validation
of XML documents,” ACM Trans. Database Syst., vol. 29, no. 4, pp.
710–751, 2004.

[16] OASIS, “RELAX NG,” http://relaxng.org/.
[17] Vienna University of Technology, “ERPEL - E-Business Registry Per-

mitting Enterprise Liaisons,” http://www.erpel.at/.

